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Abstract. Tuning methods for selecting appropriate parameter configu-
rations of optimization algorithms have been the object of several recent
studies. The selection of the appropriate configuration may strongly im-
pact on the performance of evolutionary algorithms. In this paper, we
study the performance of three memetic algorithms for the quadratic
assignment problem when their parameters are tuned either off-line or
on-line. Off-line tuning selects a priori one configuration to be used
throughout the whole run for all the instances to be tackled. On-line
tuning selects the configuration during the solution process, adapting pa-
rameter settings on an instance-per-instance basis, and possibly to each
phase of the search. The results suggest that off-line tuning achieves a
better performance than on-line tuning.

1 Introduction

Tuning an algorithm means to select its configuration, that is, a specific setting
of all relevant parameters. The selection of the appropriate configuration has a
major impact on the performance of evolutionary algorithms and, more generally,
of all stochastic optimization algorithms. Several automatic tuning methods are
available in the literature.

Tuning methods can be grouped in two main categories, namely off-line and
on-line ones. In off-line methods the configuration to be used is selected after
testing several ones on a set of tuning instances. The selected configuration is
then used for solving all instances to be tackled. Off-line methods typically con-
sider the algorithm to be tuned as a black-box. Thus, they may be easily applied
to any algorithm without any intervention on the algorithm itself [1,2,3,4]. On-
line methods vary the configuration during the solution of the instances to be
tackled, by exploiting some feedback from the search process [5,6,7]. On-line
tuning is often named parameter control, or parameter adaptation [8,9].

In this paper, we study the performance achieved by three memetic algo-
rithms for the quadratic assignment problem, when the crossover operator [7] is
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tuned either off-line or on-line. We focus here on the operator selection since it
is recognized to be a major issue when dealing with evolutionary algorithms, as
it has a great impact on the performance achieved [10]. We test one off-line and
three on-line methods for selecting the appropriate operator out of a set of four
possible ones. The configuration space so obtained is very small, and, thus, the
tuning problem can be considered rather simple. In fact, we earlier have shown
that the increase of the dimension of the configuration space penalizes on-line
more than off-line tuning [11]. Thus, the current experimental setup can be seen
as the most favorable for on-line tuning. We compare the tuning methods as a
function of the quality of the specific algorithm to be tuned. These quality differ-
ences are obtained by considering variants of the memetic algorithm. Our initial
conjecture was that the performance level of an algorithm may have an impact
on the relative desirability of off-line vs. on-line tuning methods. Therefore, we
tested the tuning methods on three variants of the memetic algorithm: the first
variant does not include either local search or mutation operator; the second one
includes local search, but no mutation operator; the third one includes both, local
search and the mutation operator.

The results obtained are actually not fully conclusive: only some trends can
be detected for supporting our initial conjecture. In general, off-line tuning is
the best performing method, with on-line tuning achieving seldomly the best
results. Still, some relation may exist between the method to be preferred and
the quality of the algorithm. In particular, one should prefer off-line tuning when
a high quality algorithm is to be applied. Surprisingly, the heterogeneity of the
instances to be solved does not have a remarkable impact on the results.

The rest of the paper is organized as follows: in Section 2, we describe the
memetic algorithms we consider in this study, in Section 3, we present the tuning
methods we apply. In Section 4, we depict the experimental setup, and in Section 5,
we discuss the results obtained. In Section 6, we draw some conclusions.

2 The Algorithms Implemented

Memetic algorithms (MA) represent one of the most successful approaches in the
field of evolutionary computation [12]. Typically, a memetic algorithm combines
a population based technique and a local search.

In the experimental analysis reported in this paper, we tackle the quadratic
assignment problem (QAP). In the QAP, a set of n facilities are to be assigned to
a set of n locations. A flow fij is associated to each pair of facilities i, j = 1, ..., n,
and a distance dhk is given for each pair of locations h, k = 1, ..., n. A solution of
the QAP is an assignment of each facility to a location, and it can be represented
as a permutation π: the value in the i−th position of the permutation, π(i),
corresponds to the facility that is assigned to the i−th location. The cost of a
solution is equal to the sum over all pairs of facilities of the product of the flow
between them, and the distance between their assigned location:

n∑

i=1

n∑

j=1

fπ(i)π(j)dij .
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The goal of the QAP is to find the solution that minimizes the cost of the
assignment.

In MA, each individual represents a solution of the problem. In the initializa-
tion phase of our MA for the QAP, a population of p individuals is randomly
generated and it is improved by local search. The algorithm evolves the current
population through crossover and mutation operators, until a stopping criterion
is fulfilled. At each iteration, the algorithm generates pc new individuals through
a crossover operator. A crossover operator generates an individual by combin-
ing two different ones belonging to the current population. The new individual
is named offspring, the two preexisting ones are named parents. A mutation
operator modifies an individual. After crossover and mutation, local search is
applied to each individual. The new population is obtained by selecting the best
p individuals from both old and new ones. For avoiding premature convergence,
the search is restarted as soon as the average distance between individuals be-
comes smaller than a predefined threshold t. In this case, the new population is
generated randomly.

We study the performance of three algorithms that are inspired by the imple-
mentation proposed by Merz and Freisleben [13]. They differ in the application
of either the local search or the mutation operator. The first algorithm (simple
MA) does not adopt either local search or a mutation operator (actually, this
is not really an MA, but we keep this name for simplicity of language). The
second algorithm (intermediate MA) adopts local search, but it does not adopt
a mutation operator. The third algorithm (full MA) adopts both local search
and a mutation operator. The mutation operator performs a random perturba-
tion of individuals. In particular, the algorithm randomly draws a number of
pm = p/2 individuals from the overall population, including both the p current
individuals and the new ones generated through crossover. For each individual,
the operator iteratively exchanges elements in the permutation selecting them
randomly according to a uniform distribution. Such exchanges are performed
until the distance between the original and the resulting individuals is higher
than a predefined threshold m. The distance between two individuals is equal to
the number of components with different values.

A crossover operator generates an offspring, Io, starting from a pair of parents,
Ip1 and Ip2 . We consider the crossover operator to be used as a parameter with
four possible settings.

The cycle crossover operator, CX [14], copies to the offspring all components
that are equal in both parents. The remaining components of Io are assigned
starting from a random one, Io(j), according to the following procedure. One
of the two parents is randomly drawn. Let it be Ip1 . CX sets Io(j) = Ip1(j).
Then, let Ip1 (j′) be the component such that Ip1(j′) = Ip2(j): CX sets Io(j′) =
Ip1(j′), and it substitutes the index j with j′. This procedure is repeated until
all components of Io are instantiated.

The distance preserving crossover, DPX [13,15], generates an offspring that
has the same distance from both parents. DPX copies in Io all the components
that are equal in Ip1 and Ip2 . Each remaining component Io(j) is randomly
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assigned, provided that Io(j) is a permutation and it is different from both
Ip1(j) and Ip2(j).

The partially mapped crossover operator, PMX [16], randomly draws two
components of Io, Io(j) and Io(j′), j < j′. It sets Io(k) = Ip1(k) for all k < j
or k > j′, and Io(k) = Ip2(k) for all j ≤ k ≤ j′. If the so obtained offspring is
not a feasible solution, for each pair of components Io(k) and Io(z) such that
Io(k) = Io(z), j ≤ z ≤ j′, PMX sets Io(k) = Ip1 (k).

The order crossover, OX [17], randomly draws two components of Io, Io(j)
and Io(j′). It sets Io(k) = Ip1(k) for all j ≤ k ≤ j′. Then, OX copies in the
kth unassigned component of Io the kth component of Ip2 that differs from any
Io(z), j ≤ z ≤ j′.

3 Parameter Tuning

For selecting the appropriate configuration of the three MAs described in Sec-
tion 2, we apply one off-line and three on-line tuning methods.

The off-line method performs an exhaustive exploration of the configuration
space, based on a set of instances with characteristics that are similar to those
of the instances to be tackled: all tuning instances are solved using all possible
configurations in 10 independent runs.

The three on-line methods select the configuration to be used among the
possible ones. The selection is a function of the quality of solutions previously
generated by applying each configuration. The configuration to be used varies at
each step, where a step corresponds to the generation of one offspring starting
from two parents. The quality of a configuration c, Qc, is evaluated after each
iteration. The equation used for updating Qc depends on a reward function Rc,
which is given by

Rc =
1

|Ic|
∑

Io∈Ic

fIo

fIbest

max
{

0,
fIo − fIp

fIp

}
, (1)

where Ic is the set of offspring generated in the current iteration by configuration
c; fI is the value of the fitness function associated to individual I; Ibest is the
individual with the highest fitness generated up to the current iteration; Ip is
the Io’s parent with the highest fitness. The contribution of each offspring to the
reward is the product of two quantities. The first quantity is the ratio between
the fitness of Io and the one of Ibest . The second quantity is the relative fitness
improvement of Io with respect to Ip, or zero in absence of an improvement.

In the first on-line method, named probability matching, PM, the selection
of the configuration to be used is stochastic [18]. The quality Qc associated to
configuration c is updated as:

Qc = Qc + max{0, α (Rc − Qc)}, (2)

where α is a parameter of the algorithm, 0 < α ≤ 1. The probability of selecting
configuration c is:
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Pc = Pmin + (1 − |C|Pmin)
Qc∑

c′∈C Qc′
, (3)

where C is the set of all possible configurations, and Pmin is a parameter of the
algorithm, 0 ≤ Pmin ≤ 1. In the initialization phase, the quality is initialized to
Qc = 1 for each configuration c, and the probability is uniformly distributed.

In the second on-line method, named adaptive pursuit, AP, as in proba-
bility matching, the selection of the configuration to be used is stochastic, and
the probability distribution is based on a quality measure that is updated fol-
lowing Equation (2) [19]. Here, the probability of selecting configuration c, Pc,
is computed as:

Pc =






Pc + β(Pmax − Pc), if Qc = maxc′∈C{Qc′},

Pc + β(Pmin − Pc), otherwise,
(4)

where C is the set of all possible configurations, Pmin and β are parameters of
the algorithm, 0 < β ≤ 1 and 0 ≤ Pmin ≤ 1, and Pmax is set to 1−(|C|−1)Pmin.

In the third on-line method, named multi-armed bandit, MAB, the se-
lection of the configuration to be used is deterministic [20]. The quality Qc is
computed as the average value returned by the reward function in all the itera-
tions performed. The configuration selected c̄ is:

c̄ = arg max
c∈C




Qc + γ

√
2 ln

∑
c′∈C nc′

nc




 , (5)

where nc is the number of offspring generated by using configuration c in all the
iterations performed, and γ, γ > 0, is a parameter of the algorithm.

4 Experimental Setup

In the experimental analysis we study the performance of off-line and on-line
tuned versions of three MA algorithms. By studying the various algorithms de-
scribed in Section 2, we compare the performance achieved by the different
tuning methods as a function of the quality of the algorithm. In addition, we
analyze the performance of the algorithms when different values of CPU time
are imposed as stopping criterion. We run the algorithms with the following de-
fault parameter settings: p = 40, pc = p/2, t = 30%; in full MA, pm = p/2,
m = 40%. In intermediate and full MA, we apply the 2-opt local search with
best improvement [21].

For each algorithm, we test seven different versions depending on the config-
uration selection policy:

– The configuration is maintained constant throughout the whole run: the con-
figuration to be used is i) default, D: CX crossover operator; ii) off-line, OFF:
the one selected by the off-line method; iii) random, R: random selection of
one crossover operator according to a uniform probability distribution.
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Table 1. Configuration selected by off-line tuning on the two sets of instances tackled,
for each algorithm and for each CPU time limit in seconds

homogeneous heterogeneous
time 10 31 100 10 31 100
simple OX PMX PMX PMX PMX PMX
intermediate CX CX CX CX PMX PMX
full CX PMX PMX CX PMX PMX

– The configuration to be used is selected at each step: iv) naive, N: random
selection of the configuration, according to a uniform probability distribu-
tion; v) probability matching, PM: α = 0.3 and Pmin = 0.05 [18]; vi) adaptive
pursuit, AP: α = 0.3, β = 0.3 and Pmin = 0.05 [19]; vii) multi-armed bandit,
MAB: γ = 1 [20].

For a fair comparison between off-line and on-line tuning, all the methods select
the configuration to be used from the same set of possibilities: the crossover
operator can be set to CX, DPX, PMX, or OX.

We consider two sets of instances. First, we solve instances of size 50 to 100
from the QAPLIB [22]. We name these instances heterogeneous, since they come
from very different backgrounds, they have different sizes, and they are either
structured or unstructured. Second, we consider a set of instances obtained
through the instance generator described by Stützle and Fernandes [23]. We
name these instances homogeneous, since they are all unstructured, they have
all size 80, and they are generated based on the same distributions. Both sets
include 34 instances. We randomly split each set in two subsets. We use one of
them for performing the off-line tuning. Table 1 reports the configuration se-
lected by off-line tuning for each algorithm and for each CPU time limit, namely
10, 31 and 100 CPU seconds. In Section 5 we discuss the results achieved on
the instances of the second subsets by the seven versions implemented. For the
different stopping criteria, we perform 10 independent runs of each version on
all instances.

All the experiments are performed on Xeon E5410 quad core 2.33GHz pro-
cessors with 2x6 MB L2-Cache and 8 GB RAM, running under the Linux Rocks
Cluster Distribution. The algorithms are implemented in C++, and the code is
compiled using gcc 4.1.2.

5 Experimental Results

By analyzing the performance of three MA algorithms, we can observe the rel-
ative performance of the tuning methods as a function of the algorithm per-
formance. Table 2 shows the percentage error with respect to the best known
solution of each instance obtained by the default version of the three algorithms.
We present the results obtained in one run of 100 seconds on both the homoge-
neous and heterogeneous instances. The best algorithm is the full one, followed
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Table 2. Algorithm quality. Percentage error obtained after 100 seconds by the
default version of the three MA algorithms, with respect to the best known solution of
each instance.

homogeneous heterogeneous
simple 4.69343% 9.29772%
intermediate 1.51216% 2.17695%
full 0.79046% 1.44571%

by the intermediate. The simple algorithm is the worst performing. For each
instance set, the difference between all pairs of algorithms is statistically sig-
nificant at the 95% confidence level, according to the Wilcoxon rank-sum test.

Simple MA. For assessing the performance of the seven versions of the sim-
ple algorithm as a function of different run-lengths on both heterogeneous and
homogeneous instances, we present the results achieved in terms of ranking. We
test the significance of the differences with the Friedman test for all-pairwise
comparisons. The plots depicted describe the 95% simultaneous confidence in-
tervals of these comparisons. For each version we show the median rank over all
instances, together with the bounds of the corresponding confidence interval. If
the intervals of two versions overlap, then the difference among these versions is
not statistically significant [24]. We use the same type of representation for all
results provided in the paper.

The results achieved on the homogeneous instances are reported in Figure 1(a).
The off-line version performs significantly worse than at least one on-line version
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Fig. 1. Results achieved by the seven versions of the simple algorithm. Simul-
taneous confidence intervals for all-pairwise comparisons of ranks between all versions
applied to homogeneous and heterogeneous instances.
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Fig. 2. Results achieved by the seven versions of the intermediate algorithm.
Simultaneous confidence intervals for all-pairwise comparisons of ranks between all
versions applied to homogeneous and heterogeneous instances.

for runs of 10 and 31 seconds, while it is the best one for the longest run-length.
Which is the best on-line version depends on the CPU time available, even if in
most cases the difference among these versions is not significant. For what con-
cerns the benchmark versions, the random version outperforms only the default
versions for runs of 100 seconds, and it is the worst performing otherwise. The
naive version, instead, achieves quite good results. In particular, it is comparable
to the best on-line method for medium and long runs.

In Figure 1(b), we depict the results achieved on the heterogeneous instances.
The qualitative conclusions that can be drawn are equivalent to those derived
from the homogeneous instances. The off-line version is significantly worse than
the best on-line version for the short and medium run-lengths, while the opposite
holds for long ones. Which is the best on-line method depends on the run-length.
On these instances, the difference between the best on-line version and the other
ones is statistically significant for runs of 10 and 31 seconds.

Intermediate MA. In Figure 2(a), we report the results achieved on the homo-
geneous instances. The off-line version outperforms the best on-line one for the
short run-length. They are comparable for runs of 31 and 100 seconds. Adaptive
pursuit is the best on-line version for runs of 31 seconds. Naive and multi-armed
bandit achieve very similar results, and they outperform only the random version.
Differently from the case of the simple algorithm, the default version achieves
good results: it is always statistically equivalent to the best version.

The results on the heterogeneous instances, reported in Figure 2(b), show
that the characteristics of the instances do not have a remarkable impact on the
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Fig. 3. Results achieved by the seven versions of the full algorithm. Simul-
taneous confidence intervals for all-pairwise comparisons of ranks between all versions
applied to homogeneous and heterogeneous instances.

relative performance of off-line tuning: the off-line version is the best one for the
short and medium run-lengths, and it is comparable to all on-line versions in
long ones. Considering only the on-line versions, all of them are equivalent to
the naive one for runs of 10 and 100 seconds.

Full MA. In Figure 3(a), we depict the results achieved by the seven versions
of the full algorithm on the homogeneous instances. The off-line version always
appears to be the best choice. The default version achieves very good results,
too. The difference in the performance of the off-line and the on-line versions
decreases as the CPU time increases. The results achieved by the on-line versions
are very similar to each other.

The results obtained on the heterogeneous instances, reported in Figure 3(b),
suggest similar conclusions. In particular, the off-line version is the best per-
forming for the short run-length, while this is not true for runs of 31 and 100
seconds. The relative performance of the off-line and the on-line versions follows
the trend identified for the homogeneous instances: as the CPU time grows, the
on-line versions achieve relatively better performance. This trend is even more
evident here, since the off-line version is comparable to all the on-line ones for
runs of 100 seconds. The results achieved by the random version are quite poor,
while the naive version is always comparable to at least an on-line one.

Summary of the results. By examining the results just presented, we cannot
identify a clear relation between the quality of the algorithms and the rela-
tive performance of off-line and on-line tuning: off-line tuning achieves quite
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constantly very good performance, and thus it appears the most advantageous
and conservative choice. Nonetheless, when a low quality algorithm is to be used,
applying an on-line method may be preferable for short run-lengths. One criti-
cal issue in this case is the selection of the best on-line tuning method: on one
hand, adaptive pursuit achieves always quite good results; on the other hand,
in several cases it is not the best performing method. A further element that
cannot be neglected is the relatively good performance achieved by the naive
version, compared to the more advanced methods proposed in the literature.
Still, by counting the cases in which each operator is winning against the oth-
ers, we can conclude that adaptive pursuit is the on-line method to choose: it
achieves in general good performance, and it often outperforms the naive ver-
sion. Nonetheless, if we consider the effort devoted by the scientific community
to the development and the analysis of on-line tuning methods, the difference
between them and the naive version is surprisingly small.

Maybe surprisingly, the heterogeneity of the set of instances to be tackled
does not have a remarkable impact on the results.

These conclusions are supported by further results we have obtained by per-
forming the same analysis on two ant colony optimization (ACO) algorithms,
namely MAX–MIN ant system (MMAS) for the QAP either with or with-
out local search. We applied the on-line tuning methods described by Pellegrini
et al. [11]. We tuned parameter α, that is, the exponent value used for the
pheromone trails in the state transition rule. The results of this analysis are
depicted in a supplementary report [25].

6 Conclusions

In this paper, we studied the performance of three memetic algorithms for the
QAP, when their configurations are tuned either off-line or on-line. We consider
one off-line and three on-line methods, we tested the algorithms on two differ-
ent instance sets, a heterogeneous and a homogeneous one, and we observed
the impact of the different tuning methods as a function of the quality of the
algorithm.

The results do not allow drawing any clear conclusion on the relation between
the tuning methods and the quality of the algorithms. In general, off-line tuning
seems to be preferable under all experimental conditions. The heterogeneity of
the instances to be tackled does not have a remarkable impact on the results.
Some trend can be detected that indicates that, for a low quality algorithm,
on-line tuning may achieve better results than off-line tuning. In this case, the
choice of the on-line method to implement is not trivial and it must be done
after considering the computational time available.

In future studies, we will try to further investigate the relation between the
quality of the algorithms and the impact of off-line and on-line tuning. An ex-
tensive experimental analysis will be necessary to this aim. Moreover, we will
increase the heterogeneity of the instances to be tackled, for identifying whether
and for what level of heterogeneity on-line methods have a clear advantage over
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off-line ones. Finally, we will further focus on the relative performance of the
state-of-the-art on-line tuning methods compared to some simple approaches for
perturbing the configuration used during the search process. Recently, Fialho [10]
has proposed a well performing on-line method called rank-based multi-armed
bandit. We will implement this further method and analyze its performance in
our setting. In this framework, it may be interesting to identify some conditions
under which the additional effort required for selecting a specific on-line method
and for implementing it, is or is not payed in terms of improved performance.
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Thomas Stützle acknowledge support from the Belgian F.R.S.-FNRS, of which
they are Research Associates.

References
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