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Abstract
In this article, we rigorously analyze the intelligentwater drops (IWD) algorithm, ametaphor-
based approach for the approximate solution of discrete optimization problems proposed by
Shah-Hosseini (in: Proceedings of the 2007 congress on evolutionary computation (CEC
2007), IEEE Press, Piscataway, NJ, pp 3226–3231, 2007). We demonstrate that all main
algorithmic components of IWD are simplifications or special cases of ant colony optimiza-
tion (ACO), and therefore, IWD is simply a particular instantiation of ACO. We show that
the natural metaphor of “water drops flowing in rivers removing the soil from the riverbed”,
the source of inspiration of IWD, is unnecessary, misleading and based on unconvincing
assumptions of river dynamics and soil erosion that lack a real scientific rationale. We carry
out a detailed review of modifications and extensions proposed to IWD since its first pub-
lication in 2007. We find that research on IWD is for the most part misguided and that the
vast majority of the ideas explored in the literature on IWD have been studied many years
before in the context of ACO. Finally, we discuss the use of natural metaphors as a source
of inspiration for optimization algorithms, which has become an extremely popular trend in
the last 15 years, and propose some criteria to limit their usage to the cases in which the
metaphor is indeed useful.
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1 Introduction

Over the last 15 years, many so-called novel approaches to stochastic optimization, devel-
oped usingmetaphors fromnatural and artificial systems, have been proposed in the literature.
Most of these approaches belong to one of the three categories, depending on the source of
inspiration: (i) algorithms using metaphors from living organism, such as spiders (Cuevas
et al. 2013), fireflies (Yang 2009) whales (Mirjalili and Lewis 2016), gray wolves (Mirjalili
et al. 2014), birds (Askarzadeh 2014), bacteria (Passino 2002), flower pollination (Yang
2012), and invasive weed (Mehrabian and Lucas 2006); (ii) algorithms using metaphors
from physical, chemical or other natural phenomena, such as biogeography (Simon 2008),
electromagnetism (Birbil and Fang 2003), black holes (Hatamlou 2013), river erosion (Shah-
Hosseini 2007), the big bang (Erol and Eksin 2006), electricity (Kaveh and Talatahari 2010),
water cycle (Eskandar et al. 2012), and wheel spinning (Joslin and Clements 1999); and (iii)
algorithms usingmetaphors from different aspects human behavior, such asmusicians (Geem
et al. 2001), political imperialism (Atashpaz-Gargari and Lucas 2007), teachers (Rao et al.
2011), social behavior (Ray andLiew2003), interior design and decoration (Gandomi 2014),
and so on (see Campelo 2017) . However, the real value of using such metaphors in opti-
mization algorithms is often unclear and has recently prompted a number of criticisms (e.g.,
see Sörensen 2015).

One initial criticism is that, in the absence of a common framework to classify
metaphor-based algorithms using standard optimization and computational terminology, the
mainstream approach has been to differentiate them in terms of the inspiring metaphor and
terminology employed, which has shown to be very ineffective to pinpoint real differences
at an algorithmic level. In fact, very often the metaphoric terms used by the authors hide the
fact that there are no algorithmic differences with previously published work. There are a
few papers, in which this has been shown explicitly. For example,Weyland (2010) has shown
that harmony search is a simplification of evolutionary strategies; Piotrowski et al. (2014)
have shown that black holes optimization is a variant of particle swarm optimization; and
Simon et al. (2011) have shown that biogeography-based optimization is a generalization of
genetic algorithms.

There are also important criticisms about whether the use of many of the proposed
metaphors is useful at all in the development of optimization algorithms. A few analyses
(Melvin et al. 2012; Piotrowski et al. 2014; Sörensen 2015) have found that often, although
the inspiration source comes from a well-understood phenomenon described by mathemat-
ical models, in the corresponding proposed algorithm such models are modified, or even
completely forgotten, so that the algorithm does not match the inspiring metaphor anymore.
On the other hand, for many other inspiring metaphors there is no scientific model at all,
and the algorithm uses unrealistic oversimplifications of the inspiring phenomenon. Thus,
the pertinence of using a metaphor to guide the design of an algorithm becomes questionable
if the inspirations provided by the metaphor are used in an inaccurate way or are wrongly
translated—in some cases, even simply omitted—in the resulting algorithm.

As it has been discussed in great detail by Sörensen (2015), even though in the vast
majority of cases metaphors are completely unnecessary to describe the metaphor-based
algorithm, their role is frequently overstated by their authors. Unfortunately, very often not
only the added value of using them is unclear, but their usage can also be misleading. In
general, in the absence of a taxonomy that allows classifying the many different proposed
metaphor-based algorithms, it remains quite challenging to understandwhether these“novel”
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algorithms are indeed new or not—for the time being, formal or empirical analyses of these
algorithms can only be done case by case.

In this paper, we study the intelligent water drops (IWD) algorithm and its relation with
the well-known ant colony optimization metaheuristic (ACO, Dorigo and Stützle 2004).
We start by describing the two approaches, the ACO metaheuristic in Sect. 2 and the IWD
algorithm in Sect. 3, discussing their source of inspiration and highlighting their algorithmic
components. Then, in Sect. 4, we perform a component-by-component comparison between
the two approaches and we show that it is neither useful nor necessary to introduce the new
metaphor and the new terminology used by IWD, as IWD is indeed a particular case of ACO.
We also discuss the fact that the optimization process proposed does not bring any concepts
that are related to optimization and is in fact based on unconvincing assumptions about river
systems dynamic and erosion. In Sect. 5, we review published research on IWD. We provide
compelling evidence that most of the ideas proposed to enhance the performance of IWD
were already proposed in the previously published research on ACO.

In Sect. 6, we propose some criteria that should be verified to ensure that the use of a
metaphor to present a new algorithm is meaningful and we discuss the fact that the proposed
IWD algorithm does not meet any of these conditions. Finally, in Sect. 7 we draw some
conclusions, the most important one being that adding the IWD algorithm to the optimization
tool set is unnecessary and misleading.

2 Ant colony optimization

Ant colony optimization (ACO) is a metaheuristic proposed in the early 1990s by Dorigo
(1992) and Dorigo et al. (1991a, b) inspired by Deneubourg et al. (1990)’s seminal work
on the Argentine ant foraging behavior. Denebourg et al. showed that Argentine ants can
find a shortest path between their nest and a food source by depositing pheromones on the
ground and by choosing their way using a stochastic rule biased by their perceived pheromone
intensity.

Based on Deneubourg’s findings, Dorigo et al. showed that, in analogous way to real ants,
artificial ants that

– move on a graph representation of a discrete optimization problem, where edges are
solution components and where a path on the graph corresponds to a problem solution,

– deposit virtual pheromones on the graph edges (or equivalently on solution components),
and

– use pheromones to bias the construction of random paths on the graph

can find high-quality solutions by letting their stochastic solution construction routine be
biased by the value of virtual pheromones. Thefirst algorithmproposed based on themetaphor
of ants foraging behavior (Dorigo et al. 1991a, 1996) was a combination of many interactive
agents, also called artificial ants, a reinforcement mechanism to give a positive feedback to
selected solution component,1 and a constructive greedy heuristic to build paths on a graph.

The publication of the seminal algorithm (Dorigo et al. 1991a, b;Dorigo 1992;Dorigo et al.
1996) was followed by many variants and improvements (Gambardella and Dorigo 1995;
Dorigo et al. 1996; Dorigo and Gambardella 1997b; Stützle and Hoos 1997; Bullnheimer
et al. 1999; Maniezzo 1999; Cordón et al. 2000; Guntsch and Middendorf 2002; Blum and

1 As explained in Dorigo et al. (1991a), positive feedback allows ants to generate a process that reinforces
itself, that is, the higher the number of ants following a trail, the more attractive that trail becomes for being
followed.
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Dorigo 2004; Blum 2005; Birattari et al. 2006; Alaya et al. 2007; Socha and Dorigo 2008);
most of theseworks are summarized in theAnt Colony Optimization book (Dorigo and Stützle
2004). Throughout all these studies, ACO has been described as a constructive population-
based metaheuristic composed of three main algorithmic components: (i) stochastic solution
construction, involving the routines needed to construct solutions; (ii) daemon actions, con-
taining optional routines to improve the solutions constructed by the ants; and (iii) pheromone
update, involving the routines to modify the pheromone trails in order to ensure the explo-
ration and exploitation of the search space. Themain idea is that artificial ants are probabilistic
procedures that construct solutions incrementally—that is, adding one solution component
at a time to a partial solution—biased by virtual pheromones and heuristic information.

One iteration of ACO can be described as follows. Starting from an empty solution, an
artificial ant implements the stochastic solution construction routines needed to add solu-
tion components until the solution is completed.2 After the construction phase is over,
daemon actions may take place. Daemon actions are routines that cannot be performed
by a single ant. They may consist, for example, of a local search procedure that improves
the solution constructed by an ant; or of a procedure that deposits an additional amount
of pheromone on solution components that belong to solutions with some desirable char-
acteristics. Finally, pheromone update consists in the modification of the pheromones with
the goal to bias the construction process in the following iterations toward better solutions;
pheromone update involves depositing pheromone on some selected solution components,
generally those belonging to good-quality solutions, and evaporating pheromone in compo-
nents producing solutions of lower quality.3 Several iterations are executed until a termination
condition is verified, and the algorithm stops. This process is shown in Algorithm 1.

Algorithm 1 ACO metaheuristic
1: Set initial parameters
2: while termination condition not met do
3: repeat
4: Apply stochastic solution construction

% solution components are incrementally added to a partial solution using a stochastic selection rule
biased by virtual pheromones

5: Apply local pheromone update % optional
6: until construction process is completed
7: Apply daemon actions % optional
8: Apply pheromone update
9: end while
10: Return best solution

As said above, virtual pheromones—pheromones for short in the following—and heuristic
information are the main sources of information used by artificial ants to construct solutions
stochastically. Pheromones, indicated by τ , are numerical values associated with solution
components that are iteratively modified by ants in order to mark solution components
that produce good solutions. The amount of pheromones in the solution components can
be increased by pheromone deposit, or decreased through pheromone evaporation. While

2 The rule for selecting solution components, called transition rule, implemented during the stochastic solution
construction varies among ACO variants.
3 In some ACO implementations, the pheromone update can be interleaved with the solution construction
(e.g., see (Gambardella and Dorigo 1995; Dorigo and Gambardella 1997b)), an example being the offline
pheromone update implemented in ACS (Dorigo and Gambardella 1997b).
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pheromones represents the knowledge acquired during the algorithm’s execution, the heuris-
tic information, indicated by η and also associated with solution components, is a way to
include problem-specific information to guide the search. The use of heuristic information
greedily biases the selection of components that have a lower cost in the solution under con-
struction. There are different strategies to weight the relative importance of parameters τ and
η; we discuss some of them in Sect. 4.1.

In Table 1, we list the most important ACO algorithms. They differ in the way in which
stochastic solution construction and pheromone update are implemented.

3 The intelligent water drops algorithm

The intelligent water drops (IWD) algorithm was proposed by Shah-Hosseini (2007) as a
new problem solving algorithm for combinatorial optimization. According to the author, the
algorithm is based on the observation of rivers in nature and is explained using a metaphor
in which water streams are seen as groups of individual particles (water drops) removing
soil from the ground over which the river flows, that is, the riverbed. In their journey from
a source to a destination, in the IWD algorithm metaphor water drops prefer paths with less
soil; also, on paths with less soil they move faster, and the faster they move the more soil they
remove. Following this self-reinforced mechanism, the water drops are capable of finding
shortest paths from a source to a destination.

In the words of the author:

In nature, we often see water drops moving in rivers, lakes and seas. As water drops
move, they change their environment in which they are flowing . . . We also know that
the water drops have no visible eyes to be able to find the destination (lake or river).
If we put ourselves in place of a water drop of the river, we feel that some force pulls
us toward itself (gravity).
(Shah-Hosseini 2007, pp. 3326)
In the water drops of a river, the gravitational force of the earth provides the tendency
for flowing toward the destination. If there were no obstacles or barriers, the water
drops would follow a straight path toward the destination, which is the shortest path
from the source to the destination. However, due to different kinds of obstacles in their
way to the destination, which constrain the path construction, the real path has to be
different from the ideal path and lots of twists and turns in the river path is observed.
(Shah-Hosseini 2008, pp. 195)
It is assumed that each water drop flowing in a river can carry an amount of soil... The
amount of soil of the water drop increases while the soil of the riverbed decreases. In
fact, some amount of soil of the river bed is removed by the water drop and is added
to the soil of the water drop.
(Shah-Hosseini 2008, pp. 195)
A water drop has also a velocity and this velocity plays an important role in the removing
of soil from the bed of the rivers . . . The faster water drops are assumed to collect
more soil than others.
(Shah-Hosseini 2008, pp. 196)

Shah-Hosseini (2007, 2008, 2009) translated these ideas into an algorithm where water
drops: (i) move in discrete steps on a graph representation of the considered optimization
problem where edges are solution components and where each solution component j has an
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associated amount soil j of soil; (ii) modify the amount of soil on the solution components
(graph edges) as a function of their velocity and of problem-specific information called
heuristic undesirability; and (iii) use the amount of soil associated with solution components
to bias the construction of random paths.

The algorithm, as described in (Shah-Hosseini 2007, 2008, 2009), is a constructive
population-based algorithm composed of three algorithmic components: (i) stochastic solu-
tion construction, (ii) local soil update, and (iii) global soil update. In the IWD algorithm,
the water drops have two associated variables: velocity and total amount of soil collected
and cooperatively construct solutions incrementally using a probabilistic rule, called random
selection rule, biased by the amount of soil associated with solution components.

In one iteration of IWD, these three algorithmic components are applied as follows. First,
during stochastic solution construction, each water drop starts from an empty solution and
adds one solution component at a time until the solution is completed. Interleaved with
stochastic solution construction, local soil update involves two actions after a solution com-
ponent is added to a partial solution: (i) a decrease in the soil in the added solution component,
and (ii) an increase in the soil collected in the water drop. In fact, every time a water drop adds
a new solution component to the solution it is constructing, it updates its velocity and its total
amount of soil collected. Finally, global soil update updates the soil in solution components
of the iteration-best water drop (i.e., the water drop that built the best solution in the current
iteration). The algorithm stops once a termination criterion is met. A high-level description
of the algorithm is given in Algorithm 2.

Algorithm 2 Intelligent water drops algorithm
1: Set initial parameters
2: while termination condition not met do
3: repeat
4: Apply stochastic solution construction

% solution components are iteratively added to a partial solution using a stochastic selection rule
biased on amount of soil

5: Apply local soil update
6: until construction process is completed
7: Apply global soil update
8: end while
9: Return best solution

It is clear that in the IWD algorithm, the soil associated with solution components plays
the same role as pheromone in ACO: it biases the stochastic choice of solution components
during the stochastic solution construction process. However, as we said and differently from
artificial ants in ACO, each water drop k has two associated variables: the velocity velk , that
represents the quality of the partial solution that the water drop has built and collected_soilk

that memorizes the soil collected by the water drop while building a solution. All water
drops start one iteration of the algorithm with the same initial velocity. However, the velocity
of water drops is updated as a function of the soil found in the components added to the
partial solution under construction. Therefore, different water drops end up having different
velocities. The velocity of a water drop is used to compute the amount of soil that the water
drop collects when adding a new solution component.4

4 Note that, even though this is highly counter-intuitive, the amount of soil that a water drop collects when
adding a new solution component to the partial solution it is building is different from the amount of soil that
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The variable collected_soilk is used by the water drop to keep a record of the soil collected
from the solution components added to the solution that it is constructing. The amount of
soil added to collected_soilk is also proportional to a value called heuristic undesirability5

divided by the water drop velocity.
As mentioned above, the best water drop updates the solution components at the end of

each iteration using the amount of soil collected in its associated variable collected_soilbest .

4 A comparison between ACO and IWD

In the previous two sections,wehavedescribed theACOmetaheuristic and the IWDalgorithm
starting with a description of their sources of inspiration and showing how these sources of
inspiration were translated into algorithmic ideas to be used in optimization problems. In
summary, the two techniques consist of the following three main algorithmic components:

– stochastic solution construction: to construct solutions biased by a quantity (phero-
mone/soil) associated with solution components,

– local update: to improve the search by interleaving the construction mechanism with an
update of pheromone/soil on the last added solution component,

– global update: to provide a positive feedback via modifications of the pheromone/soil
associated with specific solution components.

In this section, we present a detailed comparison of the two optimization techniques in
order to clarify whether IWD is in fact a new algorithm, and deserves therefore to be called
a novel approach, or should rather be considered a variant of ACO. To do so, in Table 1
we schematically present the algorithmic components proposed in some of the best-known
ACO variants: Ant System (AS) (Dorigo et al. 1991a, b, 1996), Ant System with Q-learning
(Ant-Q) (Gambardella and Dorigo 1995),MAX –MIN Ant System (MMAS) (Stützle
and Hoos 2000), Ant Colony System (ACS) (Dorigo and Gambardella 1997b), Approximate
Nondeterministic Tree-Search (ANTS) (Maniezzo 1999); and in IWD (Shah-Hosseini 2009).

Before moving to the component-by-component comparison of ACO and IWD, we briefly
discuss the notions of soil and of water drop’s velocity. This discussion will help the reader
understand the analysis presented in this section.

In Sect. 3, we noted that the role played by the soil value associated with solution com-
ponents in IWD is very similar to the one played by pheromones in ACO. However, on
good solution components the value of soil tends to decrease over time while the value of
pheromone tends to increase. Therefore, more attractive components are characterized by
low soil values in IWD and by large pheromone values in ACO. The comparison of IWD and
ACO is therefore prone to confusion. In practice, the difference is that the construction of
solutions in ACO is biased toward higher pheromone values, while in IWD it is biased toward
lower soil values. Additionally, in IWD soil can become negative in high-quality solution
components, while in ACO it is always strictly positive.

The other concept that deserves some attention is the water drop’s velocity, introduced in
Sect. 3. This concept does not exist in ACO and, as mentioned in Sect. 3, it comes from the

is removed from the soil variable associated with the added component. For a detailed example, see the online
supplementary material.
5 The author callsheuristic undesirability to the inverse of theheuristic informationused inACO.For example,
in the traveling salesman problem, ACO’s heuristic information is commonly defined as ηi j = 1/di j , where
di j indicates the distance between city i and city j . In IWD, the heuristic undesirability is, for the same
problem, defined as HUDi j = di j .
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analogy with rivers, where water drops move with a certain velocity in the riverbed removing
soil. Leaving aside the metaphor, in IWD the velocity velk of a water drop k is used to
compute the amount of soil Δsoil j that the water drop collects when adding a new solution
component j and it is updated according to Eq. 1:

velk = velk + av

bv + cv × [soil j ]2 , (1)

where av , bv , cv are user-selected parameters.
Water drops that select “good” components (i.e., components that have a low soil value)

tend to be faster, and therefore, a water drop’s velocity somehow measures the quality of the
partial solution under construction. Awater drop’s velocity determines the extent towhich the
soil will be decreased after a solution component is added to a water drop’s partial solution:
faster water drops remove more soil from the added solution components than slower water
drops. As a consequence, since solution components with less soil have a higher probability
of being selected by another water drop, velocity is also a way to control the exploration–
exploitation capabilities of the algorithm. This can be done by selecting the initial value of
the water drops velocity. If a low initial velocity is chosen, water drops will tend to have a
more exploratory behavior, while if a high initial velocity is chosen they will tend to exploit
more the soil information.

In the next three subsections, we will compare the stochastic solution construction, the
local update and global update algorithmic components used in IWD with those used in
some of the ACO algorithms proposed in the literature. In particular, we will show that
the stochastic solution construction rule used by IWD—called random selection rule—is a
simplification of the stochastic solution construction rule implemented inAnt System (Dorigo
et al. 1991b; Dorigo 1992; Dorigo et al. 1996)—called random proportional rule; and that the
local update and global update used in IWD—called local soil update and global soil update,
respectively—are special cases of Ant-Q’s local reinforcement (Gambardella and Dorigo
1995) and of Ant Colony System’s global pheromone trail updating rule (Gambardella and
Dorigo 1996; Dorigo and Gambardella 1996, 1997a).

4.1 Stochastic solution construction

Ants construct solutions by adding new components probabilistically chosen using a func-
tion of the pheromone values and of the heuristic information. We refer to this function as
transition rule (see second column of Table 1). The transition rule not only states which
information will be used by ants to choose the next solution component, but also how the
relative importance of such information will be weighted.

For example, in the transition rule of AS (Dorigo et al. 1996), the weighting strategy
consists in using two parameters α and β that modulate the value of τ and η, respectively; in
ANTS (Maniezzo and Carbonaro 2000), a parameter α ∈ [0, 1] allows changing the relative
importance of τ and η in the transition rule (see Table 1).

Equations 2 and 3 are the transition rules used in Ant System and in IWD:

pk
j = [τ j ]α · [η j ]β

∑

h∈N f

[τh]α · [ηh]β , (2)

pk
j =

1
ε+g(soil j )

∑

h∈N f

(
1

ε+g(soilh)

) . (3)
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In the equations, N f is the set of feasible solution components that can still be added to the
partially built solution, j ∈ N f is a solution component in the search space and k is one
of the m ants/water drops building a solution. The parameter ε in Eq. 3 is a small positive
constant added to avoid a possible division by zero.

It is easy to see that by setting α = −1 and β = 0 in the transition rule of Ant System,
IWD reduces to ACO. Note that IWD uses a transition rule that includes only the information
given by the soil (i.e., heuristic information is not used).

Additionally, because the value of soil can become negative in the solution components,
IWD applies a function g(·) to soil j so that its value in Eq. 3 remains positive:

g(soil j ) =
⎧
⎨

⎩

soil j if min
h∈N f

soil j ≥ 0,

soil j − min
h∈N f

soil j otherwise.
(4)

In both ACO and IWD, the initial value of pheromone/soil and other parameters, such as
m, the number of ants/water drops, or the value of α, β, are user-selected parameters that
have to be chosen according to the problem considered.6

4.2 Local update

The local pheromone update allows ants to update the pheromones not only after having built
a complete solution, but also while constructing it.

AnACOvariant implementing local pheromone update isAnt-Q (Gambardella andDorigo
1995). In Ant-Q’s local pheromone update, pheromones are updated immediately after a
component is added to a partial solution using the formula shown in Eq. 5. Comparing Eq. 5
with IWD’s local soil update given in Eq. 6, we can see that the two updates are very similar:

τ j = (1 − α) · τ j + α · [
Δτ j + γ · max

h∈N f
τh

]
(5)

soil j = (1 − ϕ) · soil j − ϕ · Δsoilkj (6)

In particular, if we set the value of γ = 0 in Eq. 5, the two equations become virtually
identical.

However, while α, Δτ j , γ , and ϕ are fixed parameters, the value of Δsoilkj in IWD has

to be computed using Eq. 7, involving the velocity velk of the water drop and the heuristic
undesirability (HUD j ) of the solution component j that is being added. Δsoilkj is computed
for every water drop after a solution component is added to the partial solution the water
drop is constructing. First, the water drop k updates its velocity velk according to Eq. 1, and
then, Δsoilkj is computed using Eq. 7:

Δsoilkj = as

bs + cs · [HUD j/velk]2
, (7)

where as , bs , cs are user-selected parameters.
Therefore, the value of Δsoilkj tends to be larger for solution components with lower soil

(because of the velocity update of Eq. 1) and for those with low HUD j . In Eqs. 1 and 7,
parameters bv and bs are used to avoid a possible division by zero.

6 Finding values for the parameters of stochastic algorithms that guarantee a good algorithm performance is
known to be a non-trivial task. See Stützle et al. (2012) for a comprehensive review of how this problem has
been studied in the ACO literature.

123



Swarm Intelligence

As we have seen in Sect. 4, water drops’ velocity can be seen as an indicator of the quality
of the partial solution constructed so far, that is, faster water drops have added components
with lower soil. However, computing the desirability of a solution component in terms of
the velocity (quality of a partial solution) and of the heuristic undesirability, as is defined for
Δsoilkj , is very similar to the abandoned idea of ant quantity (see AS local update procedure
in Table 1).

As explained in Sect. 3, each water drop k memorizes the amount of soil collected from
the solution components added to the solution that it is constructing in a variable called
collected_soilk . The new value of collected_soilk is computed by adding the value of Δsoilkj
to its current value (which contains the amount of soil collected from previous solution
components), as it is shown in Eq. 8:

collected_soilk = collected_soilk + Δsoilkj , (8)

Last, one might also ask whether the inspiring metaphor is a realistic model of the process
of erosion in rivers. For example, if soil is removed, it is unclear why then the new amount of
soil is computed by an equation such as Eq. 6 that uses a decay factor ϕ, and not simply by
subtracting Δsoilkj . Additionally, the metaphor of water drops acting as individual particles
removing the soil in the riverbeds is unconvincing, as water in a river should rather be seen
as a moving fluid.

Therefore, if the goal of the author was to test the optimization capabilities of natural
rivers (as it is mentioned repeatedly in (Shah-Hosseini 2007, 2008, 2009)), it would have
been a better approach to start with some of the models available in the scientific literature
describing this process (e.g., Merritt et al. 2003).

4.3 Global update

The global pheromone update inACO is performed at the end of an iteration once all solutions
have been completed. The main goal of this algorithmic component is to give a positive
feedback by increasing the amount of pheromone associated with solution components that
belong to good solutions; common choices in ACO algorithms are to update pheromones that
belong to the components of the best solution sbest found in the current iteration (iteration-
best update) or since the first iteration of the algorithm (global-best update), but other options
have been examined. Solution components that receive a higher amount of pheromone will
have a higher probability of being selected by other ants in the next iterations.

This algorithmic component was defined as follows in ACS7 and IWD, 8 respectively:

τ j =
{

(1 − ρ) · τ j + ρ · Δτ bestj if j ∈ sbest

τ j otherwise
(9)

soil j =
{

(1 + ρ) · soil j − ρ · Δsoilbestj if j ∈ sbest

soil j otherwise
(10)

7 ACS is one of the oldest and best performing ACO algorithms (Dorigo and Gambardella 1997b); its global
update rule is called global pheromone trail updating rule.
8 There are two versions of this component in IWD. In the first one (Shah-Hosseini 2007), the ρ parameter
was defined in [0, 1], making Eqs. 10 and 9 identical. However, for unknown reasons, in a later publication
(Shah-Hosseini 2009) the interval of variability of parameter ρ was changed to [−1, 0], leading to a somewhat
different behavior of the global update procedure, as explained here.
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where the parameterΔτ bestj is commonly defined as the inverse of the total cost of the solution

sbest, while Δsoilbestj is proportional to the soil collected by the best water drop divided by
the number of solution components:

Δsoilbestj = collected_soilbest/N best − 1 (11)

The similarity between the two equations is clear. Equation 9 easily converts into Eq. 10
by multiplying ρ by −1. However, a more formal way to see this is via a redefinition of the
interval over which the parameter ρ can vary in Eq. 9. That is, if we change this interval from
its typical value of [0, 1] to [−1, 0], we also convert Eq. 9 into Eq. 10. Because of this, the
global soil update component is a special case of the global pheromone trail updating rule
proposed in Ant Colony System by Dorigo and Gambardella (1996).

The global soil update, as defined in Shah-Hosseini (2009), has different outcomes depend-
ing on the value of ρ and soil j in the solution component. For simplicity, let us first consider
the second summand in the first case of Eq. 10, that is, −ρ · Δsoilbestj . Because Δsoilbestj
is defined as always positive (see Eq. 7) and as we have it multiplied by −ρ, the result of
this second summand will always be negative and contribute with a positive feedback to the
solution component, that is, a decrease in the value of soil.

On the other hand, the type of feedback given by the first summand in the first case of
Eq. 10, (1 + ρ) · soil j , is more difficult to understand. It is easy to see that if soil j < 0
the product (1 + ρ) · soil j will be negative, and therefore, this summand contributes with a
positive feedback to the solution component, which is the desired behavior (i.e., removing
soil increases the probability that future water drops will select the component). However, if
soil j > 0, the resulting value of this summand will be positive, and therefore, it contributes
with a negative feedback to the solution component and the function of the update in this
case is just the opposite of what it should be.

5 Modifications of IWD

Very often, after a new algorithm is proposed, differentmodifications are proposed to enhance
its performance and/or to overcome its drawbacks. In this section, we review the literature on
IWDwith a particular focus on the improvements that have been proposed since its initial pub-
lication in 2007 andwe show that all these improvements were already present in the previous
ACO algorithms. To select the relevant literature, we searched for the string “intelligent water
drop” in the title or in the abstract of the articles indexed in Scopus (www.scopus.com)
and Google Scholar (http://scholar.google.com). From this set of articles, we
selected all those published in journals and those published in conferences that included at
least one variant of the original IWD algorithmic components. The final set consisted of
seven articles which are presented and discussed as follows:

1. Duan et al. (2008, 2009) were the first to propose a variant of IWD, where problem-
specific information is added to IWD’s random selection rule. This is a relatively minor
modification that, in the case of ACO, was already present in its very first formula-
tion (Dorigo et al. 1991b). Later, Booyavi et al. (2014) and Teymourian et al. (2016b)
have proposed the use of a parameter λ to weight the importance of soil with respect to
heuristic information. Also this weighting mechanism is a part of most ACO algorithms
and in particular was already present in the very first ones (Dorigo and Stützle 2004).
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2. Niu et al. (2012) proposed five modifications to enhance the original IWD; they are:
random soil and velocity initialization, conditional probability computation, bounded
local soil update, elite global soil update, and combined local search.

– Random soil and velocity initialization aims to improve the diversity of the initial
solutions of the algorithm and, according to the authors, helps avoiding premature
convergence. Unfortunately, the authors did not test this hypothesis, for example, by
comparing the random initialization with the scheme originally proposed for IWD.

– Conditional probability computation consists of two changes in the stochastic solu-
tion construction procedure: (i) to include the heuristic information in the random
selection rule along with a parameter to weight its relative importance; and (ii) to
select the lower-cost component (i.e., greedy selection) with probability ϕ0 and to use
the random selection rule with the modification described in (i) otherwise. These two
modifications were already proposed in the context of ACO. The use of a parameter
to weight the relative importance of the heuristic information, modification (i), is part
of the random proportional rule of Ant System (see AS transition rule in Table 1),
the first ACO algorithm ever published (Dorigo et al. 1991b; Dorigo 1992; Dorigo
et al. 1996); while modification (ii) was used in the pseudo-random proportional rule
of Ant Colony System (see ACS transition rule in Table 1) and was first introduced
in (Gambardella and Dorigo 1996).

– Bounded local soil update uses two values, Δmax and Δmin , to set, respectively,
the maximum and minimum changes in the amount of soil for a given solution
component. This very same idea, in the form of upper and lower bounds to the value
of pheromones, was introduced in the ACO variant called MAX –MIN Ant
System, first proposed in a Technical Report in 1996 (Stützle and Hoos 1996), and
later published in (Stützle and Hoos 2000).

– Elite global soil update uses more than one water drop to update the soil in the global
soil update. The idea of using more than one solution to update the pheromone trails
was also explored in the context of ACO. This was done with Elitist Ant System, first
proposed in Dorigo’s PhD thesis (Dorigo 1992) and then published in (Dorigo et al.
1996).

– Combined local search adds a local search phase to the IWD algorithm. As said
when describing the ACOmetaheuristic in Sect. 2, daemon actions often consist of a
local search that improves the solutions constructed by the ants. The first publications
to introduce local search in ACO algorithms are (Dorigo and Gambardella 1997b;
Stützle and Hoos 1997); these were followed by many other (e.g., Maniezzo and
Colorni 1999; Gambardella et al. 1999) and nowadays, the usage of a local search
routine is pretty standard in the best performing ACO algorithms (Dorigo and Stützle
2004).

3. Msallam and Hamdan (2011) propose to reinitialize the soil and the velocities of all
water drops after reaching a certain number of iterations without improving the global-
best solution. The very same reinitialization scheme proposed in (Msallam and Hamdan
2011) was proposed for MMAS (Stützle and Hoos 1997, 2000) and has been widely
used in the ACO literature (Dorigo and Stützle 2004).

4. Alijla et al. (2014) have proposed to replace the original (i.e., Eq. 3) random selection
rule of IWD with two ranking selection methods originally proposed for GAs9, one

9 The GA’s community realized that proportionate selection is not best suited for optimization because it
assumes only positive fitness values and cannot differentiate between small fitness differences. The linear
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linear and one exponential. Both selection methods rank in descending order the feasible
solution components according to their value of soil. In linear selection, the probability of
selecting a solution component is computed using a linear function where a user-selected
parameter, S P , controls the steepness of the gradient. In exponential selection, the feasible
components are weighted exponentially according to their ranks. These two ranking
selection methods aim to overcome three shortcomings of IWD’s random selection rule,
that is its inability (i) to accommodate negative soil values, (ii) to differentiate between
solution components with small soil difference, and (iii) to control local stagnation.
Unlike IWD, ACO algorithms do not present these shortcomings because pheromones
have always positive values, which avoids shortcoming (i), and there are mechanisms to
bound pheromones lower and upper limit, avoiding the shortcomings (ii) and (iii).
Although the authors argue that these problems are caused by IWD’s transition rule that
implements fitness proportional selection, shortcomings (ii) and (iii) are rather the result
of having negative soil values and of the way in which the global soil update is defined.
That is, IWD has mechanisms to manage solution components with negative and positive
values in the transition rule (see Eqs. 3 and 4); however, this is not the case for the global
soil update (see Eq. 10) (see the discussion on the global soil update in Sect. 4.3).

In this review, we have identified the algorithmic ideas proposed to improve IWD since its
initial publication in 2007. A few articles seek to overcome drawbacks and limitation of the
algorithm (Msallam andHamdan 2011;Alijla et al. 2014),while others proposemodifications
to enhance its exploration–exploitation capabilities (Duan et al. 2008, 2009; Niu et al. 2012;
Booyavi et al. 2014; Teymourian et al. 2016a).

Although the research on IWD is not particularly rich, we found that everything proposed
to modify this algorithm consists of ideas that were first proposed in the context of ACO. In
fact, most of these modifications can bematched directly to well-knownACO algorithms that
have been in the literature for many years, even before the first IWD algorithmwas proposed.

6 Metaphors in stochastic optimization

Taking inspiration from the observation of natural systems has played an important role in
the history of the field of metaheuristics. Such inspirations have provided new ideas that have
resulted in a number of highly effective optimization frameworks that have changed and
extended the optimization toolset (Corne et al. 1999; Gendreau and Potvin 2010; Kacprzyk
and Pedrycz 2015), showing that ideas coming from other fields of knowledge could be
useful and effective also in optimization. Notable examples are evolutionary computation
(Holland 1975;Goldberg 1989), simulated annealing (Kirkpatrick et al. 1983), particle swarm
optimization (Eberhart and Kennedy 1995), ant colony optimization (Dorigo 1992; Dorigo
et al. 1996; Dorigo and Di Caro 1999), and so on.

In all these successful examples, there was always a direct match between the inspiring
source (i.e., the natural metaphor) and the mathematical models and formal terminology
used in the corresponding optimization algorithms. This has made the understanding of these
algorithms particularly easy and, togetherwith the fact that they provided high-quality results,
favored their application to a vast set of different optimization problems. As a matter of fact,
the key to the success ofmetaphor-based algorithmswas effective ideas clearly translated into
algorithm terms and insightful research supporting them. Unfortunately, in recent years many

(Baker 1987) and nonlinear (Goldberg and Deb 1991; Michalewicz 1992) ranking selection methods were
introduced to alleviate these problems.
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researchers started to propose optimization algorithms inspired by eye-catching metaphors
which often bring very little, if any, to the understanding and performance of the proposed
algorithms.

In fact, tens, if not hundreds, of optimization algorithms have been published, often in
obscure journals and conferences, using all different types of metaphors (see Campelo 2017,
for a long, although non-exhaustive list of metaphor-inspired optimization algorithms) that
most of the time do not bring anything to the understanding of the optimization process.
Unfortunately, it has become very frequent to come across articles proposing these types of
metaphor-inspired algorithms, where it is very hard to understand the nature of the metaphor
and the reason why the metaphor was being used to develop the algorithm.

Although one could get the impression that the usage of metaphors is the cause of this
problem, we believe this not to be the case. On the contrary, when properly used, metaphors
are a great tool to present, describe and understand new ideas, and their usage is very well
established in science. In fact, when things are very tricky to explain in formal terms, the use
of metaphors and analogies can be a powerful tool.10 On the contrary, what is questionable
is the way in which a large part of the research community has been using metaphors to
introduce new algorithms.

We believe that the introduction of new metaphors should be limited to the cases in which
they are indeed useful to express a new concept. This means that (i) the inspiring metaphor
should bring some new concepts that are related to the optimization process proposed and
that (ii) using the metaphor terminology should make it easier to convey these new concepts.
Obviously, (iii) it should also be the case that the proposed algorithmic ideas are indeed
new and not just a reformulation, using new terminology, of ideas already published in the
literature. It is not acceptable to use a metaphor to promote an algorithm as interesting or
novel just because the metaphor is interesting or novel for the author. In the context of
metaheuristics, metaphors must have a clear and sound scientific motivation and conditions
(i), (ii) and (iii) should always be verified.

In our future research, we intend to examine a number of the so-called novel metaphor-
based algorithms to understand whether they meet the above-mentioned requirements and
therefore deserve to be considered novel. In this article, we have contributed to this research
program by providing an analysis of the IWD algorithm and by showing that this algorithm,
once the proposed terminology based on water drops is removed, is just a particular instance
of ACO. However, at the moment, it is very hard to say anything conclusive over the vast
majority of recently proposed metaphor-based algorithms—the number of studies like the
one presented in this article is still very low (Weyland 2010; Melvin et al. 2012; Sörensen
2015; Piotrowski et al. 2014).

7 Conclusions

In this article, we have analyzed the IWD algorithm and compared it with the well-known
ACO metaheuristic. We found that the random selection rule of IWD is a simplified version
of the random proportional rule of Ant System, the very first ACO algorithm. In particular,
the transition rule of IWD simplifies to the one of ACO by setting the parameters α = −1
and β = 0, which means that while in ACO high pheromone values indicate good-quality

10 For example, consider the metaphoric explanation of gravity by Einstein in terms of space–time grid
warping caused by an object’smass, or selfish genes in genetics to introduce the idea of organismdifferentiation
within same species, or the terminology adopted in graph theory that includes terms such as tree, root, leaf,
forest.
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components, in IWD good-quality components have a low soil value and that in IWD the
heuristic information is not used. Additionally, local soil update is a special case of the local
reinforcement that was proposed in the Ant-Q algorithm. In fact, the only, small, difference
between IWD and this earlier ACO algorithm is a parameterΔsoil j computed using thewater
drop’s velocity and the solution components’ soil j andheuristic undesirability.Unfortunately,
the rationale behind the definition of Δsoil j and the general idea over which the local soil
update is based are based on unrealistic assumptions of how river systems erosion works.
The last algorithmic component, global soil update, is a special case of the global pheromone
trail updating rule proposed in Ant Colony System, in which the typical parameter interval
of ρ in ACO is redefined to the interval [−1, 0].

From our review of the literature of IWD, we conclude that research on IWD is just a
repetition of research ideas that had already been explored in the context of ACO.

In fact, all the modifications reviewed in this article have a direct correspondence with a
specific modification proposed before for an ACO algorithm.

Therefore, IWD and its variants are not novel and should rather be considered as particular
instantiations of the ACO metaheuristic.

We discussed the use ofmetaphors in the field ofmetaheuristics, whose role in the develop-
ment of a number of highly effective algorithms frameworks has been undeniable. However,
many important problems have arisen due to the overuse of metaphors that do not bring any-
thing to the understanding of new optimization algorithms. We believe that more analyses
have to be done to algorithms published as novel metaphor-based approaches in the meta-
heuristics literature, so that we can clarify whether they are indeed novel or not and broaden
our understanding of their contributions. However, it is clear that adopting the approach pre-
sented in this paper to analyze all the metaphor-inspired metaheuristic algorithms that have
not been rigorously analyzed yet, which are in the order of hundreds (Campelo 2017), would
require an unreasonable amount of work and time. Therefore, our future research will include
searching for more efficient ways to address this issue.

Finally, if we reconsider the three criteria proposed in Sect. 6 of this article, namely the
fact (i) that the inspiring metaphor should bring some new concepts that are related to the
optimization process proposed, (ii) that using themetaphor terminology shouldmake it easier
to convey these new concepts, and (iii) that the proposed algorithmic ideas are indeed new and
not just a reformulation, using new terminology, of ideas already published in the literature,
we can conclude that the IWD algorithm fails on all criteria and is therefore unnecessary and
misleading.
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