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Abstract. In this paper we show that intelligent water drops (IWD),
a swarm intelligence based approach to discrete optimization proposed
by Shah-Hosseini in 2007, is a particular instantiation of the ant colony
optimization (ACO) metaheuristic. To do so, in the paper, we identify
the components of IWD and place them into the ACO metaheuristic
framework. We show therefore that there was no need for a new natural
metaphor. We also discuss that the proposed metaphor does not bring
any novel insight into the algorithmic optimization process used by IWD.
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1 Introduction

Recently, many so-called novel approaches to stochastic optimization based on
a natural metaphor have been proposed in the literature. Unfortunately, as also
discussed in [29], such natural metaphors are often unnecessary or even mislead-
ing. For example, stochastic optimization algorithms based on diverse metaphors
such as spiders [8], whales [22], grey wolves [23], birds [2], and so on, have been
proposed and published in the literature. However, the real value of using a
metaphor is often unclear. In some rare cases such as for harmony search [32]
and black holes [24], it has been formally shown that the novel algorithm is
just a re-formulation, using different terms, of an already well-known algorithm.
In general, however, it remains challenging to understand whether the novel
algorithms are indeed new or not.

We believe that the usage of such new metaphors should be limited to the
cases in which they are indeed useful to express a new concept. This means that
(i) it should not be possible to express the same algorithmic ideas using the ter-
minology of already existing algorithms, and (ii) the inspiring metaphor should
bring some new concepts that are related to the optimization process proposed.
Unfortunately, this is often not the case. In our research we intend to examine
a number of such novel nature-inspired algorithms to understand if they meet
the two above-mentioned requirements and therefore deserve to be considered
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novel. In this particular paper, we study the intelligent water drops (IWD) algo-
rithm and its relation to the well-known ant colony optimization metaheuristic
[16]. To do so, we first briefly present the ACO metaheuristic (Sect. 2) and the
IWD algorithm (Sect. 3), highlighting their constituent components. Then, in
Sect. 4, we perform a component-by-component comparison between ACO and
IWD and show that IWD is indeed a particular case of ACO and that there-
fore it was not necessary to introduce a new terminology. We also discuss the
fact that the inspiring metaphor does not bring any concepts that are related to
the optimization process proposed. Therefore, the proposed IWD algorithm does
not meet the two conditions set out in points (i) and (ii) above. Accordingly, we
conclude that there is no need for an IWD algorithm and that adding it as a
new tool to the optimization tool set is unnecessary and misleading.

2 Ant Colony Optimization

Ant colony optimization (ACO) is a metaheuristic that was first proposed in the
early ’90s [10,13,14]. The original source of inspiration was the foraging behavior
of Argentine ants as described in a seminal paper by Deneubourg et al. [9]. In
[9], it was shown that ants can find a shortest path between their nest and a food
source by depositing pheromones on the ground and by choosing their way using
a stochastic rule biased by pheromone intensity. In an analogous way, Dorigo
et al. [10,13,14] showed that artificial agents, also called artificial ants, that

– move on a graph representation of a discrete optimization problem, where a
path on the graph corresponds to a problem solution,

– deposit virtual pheromones on the graph edges, and
– use pheromones to bias the construction of random paths on the graph,

can find high quality solutions by letting their stochastic solution construction
routine be biased by the value of virtual pheromones.

After the publication of the seminal algorithm in [13–15], many variants
and improvements have been proposed [1,3–7,12,15,17,18,20,28,30]. Most of
this work has been summarized in a book [16] where ACO is described as a
constructive population-based metaheuristic comprising three main algorithmic
components: (i) stochastic solution construction; (ii) daemon actions ; and (iii)
a pheromone update procedure.

One iteration of the ACO metaheuristic can be described as follows. First,
every ant constructs a solution using a stochastic solution construction mecha-
nism that iteratively selects solution components to add to the partial solution
under construction. Once all ants have completed their solutions, an optional
procedure called daemon action can be applied.1 Finally, a pheromone update
procedure modifies the pheromone trails.2 Several iterations are executed until
1 Daemon actions, for example, perform a local search procedure to improve an ant’s

solution or deposit an additional amount of pheromone on some solution components.
2 In some ACO implementations, the pheromone update procedure can be interleaved

with the solution construction (e.g., [12,17]), an example being the local pheromone
update procedure that is implemented in ACS [12].
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Algorithm 1. ACO metaheuristic
1: Set initial parameters
2: while termination condition not met do
3: repeat

4: Apply stochastic solution construction

% solution components are iteratively added to a partial solution using a

stochastic selection rule biased by artificial pheromones
5: Apply local pheromone update procedure % optional
6: until construction process is completed

7: Apply daemon actions % optional
8: Apply pheromone update procedure
9: end while

10: Return best solution

a termination condition is verified. An algorithmic outline of the ACO meta-
heuristic is shown in Algorithm 1.

Artificial pheromones, indicated by τ , are numerical values given to each of
the solution components in the search space. They are iteratively modified by
ants in order to bias the selection of solution components. Pheromone values
can increase due to ants depositing pheromones (positive feedback) or decrease
through evaporation (negative feedback). ACO algorithms also use heuristic
information, indicated by η, to bias the solution construction process.

In Table 1 we summarize all the most important ACO algorithms. They differ
in the way in which stochastic solution construction and pheromone update are
implemented.

3 The Intelligent Water Drops Algorithm

The intelligent water drops (IWD) algorithm, published first by Shah-Hosseini in
2007 [25], was proposed as a novel nature-inspired algorithm for combinatorial
optimization problems. This algorithm is explained using a metaphor in which
water streams are seen as groups of individual particles (water drops) moving in
discrete steps.

In the words of the author:

In the water drops of a river, the gravitational force of the earth provides
the tendency for flowing toward the destination . . . It is assumed that each
water drop flowing in a river can carry an amount of soil. The amount
of soil of the water drop increases while the soil of the riverbed decreases.
In fact, some amount of soil of the river bed is removed by the water drop
and is added to the soil of the water drop.
[26, pp. 195]
A water drop has also a velocity and this velocity plays an important role
in the removing of soil from the bed of the rivers . . .The faster water drops
are assumed to gather more soil than others.
[26, pp. 196]
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In computational terms, the intelligent water drops:

– move on a graph representation of a discrete optimization problem, where a
path on the graph corresponds to a problem solution,

– modify the amount of soil on the graph edges as a function of their velocity,
– use soil amount to bias the construction of random paths on the graph.

Shah-Hosseini [25–27] has described IWD as a constructive population-based
algorithm composed of three algorithmic components: (i) stochastic solution con-
struction; (ii) local soil update procedure; and (iii) global soil update procedure.

One iteration of the IWD algorithm consists of the following steps. First,
each water drop constructs a solution using a stochastic solution construction
mechanism biased by the amount of soil associated to the solution components,
so that components with lower soil values have a higher probability to be chosen.
After a solution component is selected, a local soil update procedure performs two
actions: (i) it decreases the soil in the solution component, which is, according
to the metaphor, removed by the water drop, and (ii) it increases the soil in the
water drop, which indicates that it has been loaded into the water drop. For this
procedure to take place, each water drop keeps a record of its own velocity and
soil gathered during the iteration. After each water drop has built a complete
solution, a global soil update procedure updates the soil values using the iteration-
best water drop (i.e., the water drop that built the best solution in the current
iteration). Several iterations are performed before a termination criterion is met
and the algorithm stops. Algorithm 2 depicts this process.

Algorithm 2. Intelligent water drops algorithm
1: Set initial parameters
2: while termination condition not met do
3: repeat

4: Apply stochastic solution construction

% solution components are iteratively added to a partial solution using a

stochastic selection rule biased on amount of soil
5: Apply local soil update procedure
6: until construction process is completed
7: Apply global soil update procedure
8: end while
9: Return best solution

It is clear that in the IWD algorithm the soil variable plays the same role as
pheromone in ACO: it represents the numerical information given to the solution
components in order to bias their selection during the stochastic construction
process. Differently from artificial ants in ACO, water drops have associated a
velocity variable. The velocity is an independent property of each water drop,
that is, for different solutions constructed different velocities are obtained. When
one iteration starts, all water drops have the same initial velocity; however, the
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velocity of a water drop is updated as a function of the soil found in the edges it
traverses while building a solution. The value of soil loaded in the water drops
is non-linearly proportional to the heuristic undesirability,3 that is, the inverse
of the time needed for the water drops to move from one solution component to
another.

4 Discussion

Algorithms 1 and 2 show the general structure of the ACO metaheuristic and of
the IWD algorithm. Both are composed of the following three main algorithmic
components:

– a stochastic solution construction mechanism to iteratively construct solu-
tions biased by a quantity (pheromone/soil) associated to solution compo-
nents,

– a local update procedure to improve the search interleaving the construction
mechanism with a local update of pheromone/soil,

– a global update procedure to give a positive feedback via modifications of the
pheromone/soil associated to specific solutions.

In this section, we present a detailed analysis of the two approaches com-
paring their algorithmic components in order to clarify if IWD is in fact a new
algorithm and deserves to be called a novel approach or should rather be con-
sidered a variant of ACO. To this purpose, in Table 1 we schematically present
the algorithmic components proposed in some of the best-known ACO variants:
Ant System (AS) [13–15], Ant System with Q-learning (Ant-Q) [17], MAX-MIN
Ant System (MMAS) [31], Ant Colony System (ACS) [12], Approximate Non-
deterministic Tree-Search procedure (ANTS) [20]; and in IWD.

One difference between IWD and ACO is that in ACO pheromone values are
always positive, while in IWD the value of soil progressively becomes negative.
Unlike ACO pheromones, in IWD the soil is gradually removed by the water
drops, which implies that additional mechanisms have to be introduced to man-
age negative and positive soil values as well as to avoid a possible division by
zero.

Another difference is that IWD constructs solutions biased solely by the
values of soil ; that is, no problem-specific information is used to bias solution
construction, as opposed to what is done in ACO with heuristic information.4

3 The author calls heuristic undesirability the inverse of the heuristic information
used in ACO. For example, in the travelling salesman problem the ACO heuristic
information is commonly defined as ηij = 1/dij , where dij refers to the distance
between city i and city j. In IWD, the heuristic undesirability is, for the same
problem, defined as HUDij = dij .

4 The usage of heuristic information is a way to integrate problem-specific information
in the stochastic solution construction procedure so as to stochastically favor solution
components of lower cost.
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As it is shown in the following, IWD’s local soil update and global soil update
are special cases of the components used to update pheromones in ACO. How-
ever, the function of these components in IWD is different from their typical
function in ACO. The local soil update procedure is the most different due to the
introduction of the water drop velocity and the soil removed from the riverbed,
this latter computed using the linear motion equations and the heuristic unde-
sirability.

4.1 Stochastic Solution Construction

Ants construct solutions adding new solution components with a probability
computed using a transition rule (see second column of Table 1), that is, a func-
tion of the pheromone values and of the heuristic information. The transition
rule not only states which information will be used by ants to choose the next
solution component, but also how the relative importance of such information
will be weighted.

The stochastic solution construction mechanism used in IWD is a particu-
lar case of the random proportional rule of AS proposed in [15], in which the
parameters τ and η are weighted using α = −1 and β = 0.

Equations 1 and 2 show the transition rules in AS and IWD respectively:

pant
j =

[τj ]α · [ηj ]β∑

h∈Nf

[τh]α · [ηh]β
(1)

piwd
j =

1
ε+g(soilj)∑

h∈Nf

( 1
ε+g(soilh)

)
(2)

where Nf is the set of feasible solution components and j is one solution com-
ponent in the search space. The parameter ε is a small positive constant added
to avoid a possible division by zero in Eq. 2.

From the equations, it can be seen that IWD uses a transition rule that
includes only the information given by the soil (i.e., heuristic information is not
used) and that 1/soil is used so as to favor solution components with a low soil
level (as opposed to ACO variants which favor solution components with a high
pheromone level).

Additionally, because the value of soil can become negative, IWD applies a
function g to the value of soil to keep it positive in Eq. 2:

g(soilj) =

⎧
⎨

⎩

soilj if min
h∈Nf

soilj ≥ 0

soilj − min
h∈Nf

soilj otherwise
(3)
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4.2 Local Update Procedure

The local pheromone update procedure allows the artificial ants to give a negative
or a positive feedback to other ants while constructing solutions5 so as to avoid
stagnation6. ACO variants implementing the idea of local negative feedback are,
for example, Ant-Q [17] and ACS [12]. In the Ant-Q algorithm, pheromones are
called AQ-values and the goal of the artificial ants is to learn these values (see
AQ-values learning rule in Table 1) so that they can probabilistically favor better
solution components.

IWD implements a variant of the AQ-values learning rule of Ant-Q, where
parameter γ is set to γ = 0, and Δsoilj is defined differently from Δτj (see
Eqs. 6, 7 and 8). In fact, Δsoilj is the only real difference between IWD and
what had already been proposed in the context of the ACO metaheuristic. The
implementation of this component in Ant-Q and IWD is shown in Eqs. 4 and 5,
respectively:

τj = (1 − α) · τj + α · [
Δτj + γ · max

h∈Nf
τh

]
(4)

soilj = (1 − ϕ) · soilj − ϕ · Δsoilj (5)

Equation 4 interpolates between the current pheromone value τj and the
maximum pheromone over the possible next components; it simulates the change
in the amount of pheromone due to evaporation and ant deposit. In Ant-Q,
Equation 4 is used for both local and global reinforcement, the former applied
after a solution component is selected during the solution construction, and
the latter applied after the construction process finishes and all solutions are
completed. However, in most Ant-Q implementations Δτj is defined as zero for
the local pheromone update and as 1/costbest for the global pheromone update
[11,17,19].

Parameters α and γ are the learning step and the discount factor, respec-
tively. The values chosen for these two parameters can favor the exploration or
the exploitation behavior of the algorithm. The application of Eq. 4 can either
enhance or reduce the exploration capabilities of Ant-Q by slightly reducing or
increasing (depending on the values of γ and max τh) the pheromones. In a later
ACO variant, ACS, a similar idea was proposed where γ · max τh was replaced
by a small constant τ0.

On the other hand, Eq. 5 intends to model the erosion of soil by water drops.
In the metaphor of the IWD algorithm, water drops remove part of the soil every
time a solution component is added. In practice, the local soil update procedure
slightly increases the probability of one solution component to be selected by
other water drops (in IWD lower soil values are preferred), thus implementing a

5 Note that the idea of giving a positive feedback during the construction process was
explored in some of the first ACO variants: ant quantity and ant density [10,13]
However, these variants were abandoned many years ago because of their inferior
performance compared with other ACO variants.

6 Stagnation happens when the pheromones trails converge and all ants construct the
same solutions over and over again.
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form of positive feedback. The amount of soil removed by a water drop, Δsoilj ,
is computed using the linear motion equations of physics. As said in Sect. 3,
different water drops have different velocities. The initial water drops velocity is
a user selected parameter and its value should be selected empirically by running
experiments on the considered problem. In fact, its value can greatly vary from
problem to problem; for example, in [27], where the traveling salesman problem
is considered, the water drops initial velocity is set 200, while in [26], where the
problem considered is the multidimensional knapsack problem, the water drops
initial velocity is set to 4. Once a solution component j has been added, the
velocity of a water drop veliwd is updated according to

veliwd = veliwd +
av

bv + cv × [soilj ]2
(6)

where av, bv, cv and soilj are also user selected parameters. The time required by
the water drop to move from the current solution component to the next one is
computed dividing the heuristic undesirability (HUDj) by the water drop’s new
velocity. HUDj represents the distance in the linear motion equation V = d/t,
which, hence, becomes

timeiwd =
HUDj

veliwd
(7)

Finally, the amount of soil to be removed and to be loaded into the water drop is
a function of the time taken by the water drop to move between the two solution
components:

Δsoilj =
as

bs + cs × [timeiwd]2
(8)

Δsoilj tends to be larger for solution components with lower soil values
or for those with small heuristic undesirability. In Eqs. 6 and 8, parameters bv

and bs are used to avoid a possible division by zero. Typical values for the
user selected parameters in the above equations are av = 1, bv = 0.01, cv = 1,
as = 1, bs = 0.01, cs = 1, and for the initial value of soil 10 000 [27].

The velocity can be seen as an indicator of the quality of the partial solution
constructed so far, that is, faster water drops have traversed edges with lower
soil. However, putting the desirability of a solution component in terms of the
velocity (quality of a partial solution) and of the heuristic information, as is
defined for Δsoilj , is rather similar to the abandoned idea of ant quantity (see
AS local update procedure in Table 1). Moreover, the local soil update component
cannot be explained in terms of the inspiring metaphor. For example, if soil is
removed, it is unclear why then the new amount of soil is computed by an
equation such as Eq. 5 that uses a decay factor ϕ (and not simply by subtracting
Δsoilj from the current soil value). Additionally, the metaphor of water drops
acting as individual particles removing the soil in the riverbeds is unrealistic, as
water in a river should rather be seen as a moving fluid.

4.3 Global Update Procedure

The global pheromone update procedure in ACO is performed at the end of an
iteration once all solutions have been completed. The main goal of this procedure
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is to give a positive feedback to the solution components included in a set of
solutions that is used to deposit pheromones; common choices in ACO algorithms
are using the iteration-best or global-best solution, but other options have been
examined. Solution components that receive a higher amount of pheromone will
have a higher probability of being selected by other ants in the next iterations.

The global soil update is a special case of the offline pheromone update in
ACS, in which the parameter ρ has a range defined in the interval [−1, 0], dif-
ferently from its typical range defined in (0, 1]. Eqs. 9 and 10 show the definition
of this component in ACO and IWD7 respectively:

τj =

{
(1 − ρ) · τj + ρ · Δτ best

j if j ∈ sbest

τj otherwise
(9)

soilj =

{
(1 + ρ) · soilj − ρ · Δsoilbest

j if j ∈ iwdbest

soilj otherwise
(10)

where the parameter Δτ best
j is commonly defined as the inverse of the total

cost of the solution (1/costbest), while Δsoilbest
j is proportional to the soil gath-

ered by the best water drop divided by the number of solution components
(soilbest/N best).

The global soil update procedure, as defined in [27], has two different outcomes
depending on the value of soilj in the solution component. Let us consider the
first summand in the first case in Eq. 10, (1 + ρ) · soilj . It is easy to see that if
soilj > 0, the resulting value of the first summand will be positive and therefore
it will contribute with a negative feedback to the solution component. In the
opposite case, when soilj < 0, the product (1 + ρ) · soilj will be negative and
therefore the first summand will contribute with a positive feedback to the solu-
tion component. In other words, the first summand can either increase the value
of soil if soilj > 0, or decrease it if soilj < 0. Regarding the second summand in
the first case of Eq. 10, −ρ · Δsoilbest

j , the value of Δsoilbest
j is defined as always

positive (see Eq. 8) and as we have it multiplied by −ρ, the result of this second
summand will always be negative.

5 Conclusions

As the IWD algorithm, there are many other algorithms published as novel
nature-inspired approaches in the metaheuristics literature. In fact, the already
large number of these so-called novel approaches has made the selection of opti-
mization algorithms troublesome, specially for those who use them for specific
application problems and do not necessarily have a deep knowledge in the field

7 There are two versions of this component in IWD. In [25], the first article proposing
IWD, ρ was defined in the range [0, 1] (just as in Eq. 9). However, in a later publi-
cation [27], the range of ρ was changed to [−1, 0], leading to a somewhat different
behavior of the update as explained here.
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of metaheuristics. The very few existing, rigorous analyses of novel algorithms
have shown in some selected cases that either (i) they simply re-use ideas pro-
posed in the past [24,32], or that (ii) the scientific rationale behind the source
of inspiration is incongruous and questionable [21,29].

In this paper, we contribute to such rigorous analyses by examining in more
detail the Intelligent Water Drops (IWD) algorithm. In particular, we have shown
that the algorithmic components proposed in IWD are not new and that they
mainly have been proposed in the context of ant colony optimization (ACO) often
already one or two decades earlier. More concretely, we found that the stochastic
construction mechanism of IWD is a special case of the random proportional rule
proposed in AS, the very first ACO algorithm. The local soil update component
is a slight variant of the AQ-values learning rule that was proposed in the Ant-Q
algorithm, a predecessor of ACS. The only, small, difference of IWD with earlier
ACO algorithms is the definition of the Δsoilj term in the local soil update;
unfortunately, the rationale behind the definition of Δsoilj and the definition of
the local soil update component cannot be explained in terms of the source of
inspiration of IWD. Finally, the global update procedure is a special case of the
offline pheromone update proposed in ACS.

If we reconsider the two main criteria we have defined in the introduction,
namely the fact that (i) it should not be possible to express the same algorithmic
ideas using the terminology of already existing algorithms, and (ii) the inspiring
metaphor should bring some new concepts that are related to the optimization
process proposed, we can summarize the analysis of our article by saying that
the IWD algorithm fails on both criteria.
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29. Sörensen, K.: Metaheuristics–the metaphor exposed. Int. Trans. Oper. Res. 22(1),
3–18 (2015). https://doi.org/10.1111/itor.12001
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