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Thyroid FNAB: an imperfectly-annotated cytology dataset

A sparsely annotated dataset for thyroid nodule malignancy assessment.

Annotated by the team of Prof. Isabelle Salmon from Erasme hospital (Université Libre de Bruxelles, Belgium).
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Using sparsely-labeled data

How to exploit such a sparse/incomplete segmentation dataset in a
supervised learning settings 7

output

*|*|* segmentation
map

>l ‘ >l = conv 3x3, ReLU
Vo T copy and crop

(Ronneberger, Fischer and Brox, 2015)

Our proposal: use the segmentation model being trained to generate the
missing information

= self-training <

Introduction October 24, 2022 3/12



Sparsely-labeled settings

n; images and masks. All pixels have a 0 ns images and masks. Unlabeled pixels

(background) or 1 (foreground) label. have label 0 (background) and labeled
pixels are exclusively foreground.
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Our self-training algorithm
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Experiments
3 public datasets

(Kumar et al., 2019)

(Gupta et al., 2021)

(Sirinukunwattana et al., 2017)

Sparsity is simulated by randomly removing p% of annotations in ns

Experiments

images.
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Experiments

3 baselines

To be considered of interest, our method should be as close as possible to
(1) (upper bound) and outperform baselines (2) and (3).




Results
Self-training at fixed ny

® There is always a cut-off point at which exploiting additional sparse
annotations with self-training becomes beneficial !

® Self-training struggles at very high data scarcity

® Using D; as if it was exhaustively annotated is a bad idea

® For MoNuSeg, the upper baseline is reached with only ~ 30% of the
original annotations.
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Results
Application to Thyroid FNAB - quantitative

Self-training significantly outperforms the “D; only” and “D; U Dy"

baselines.
Method Dice* (%)
Self-training | 89.05 + 0.85
D, only 80.30 +5.39
D, U D 83.62 £+ 3.52
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Results
Application to Thyroid FNAB - qualitative
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Conclusion

Self-training can be used to obtain competitive binary segmentation
performance with less annotations !

However, let's nuance:

® self-training performance margins (compared to the baselines) are
dataset-dependant

® self-training requires a bit of tuning (i.e. hyperparameters)

In the future, we plan to:

® further investigate what labeling strategy is more efficient for new
datasets

® implement the algorithm in the Cytomine application (batch and
interactive)
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Pseudo-labels

Generating a pseudo-label y,-S-pl) for an unlabeled pixel from the model
prediction y;; for this pixel:
® Soft label: use y;; as-is

® Hard label: 1if §;; > T, 0 otherwise. T is an auto-calibrated
threshold.
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Weighting strategies
We weight the pixel contribution in the loss:
1 .
L= L wit (i yy)
i

The weighting strategy is an hyperparameter:
e Constant: W,.J(.CSt) = C > 0 where C is an hyperparameter

® Entropy: went)

i is the entropy of the model prediction ¥;;

. ct . . ..
® Consistency: WIS- ) is a consistency score between model predictions

of pixel (7, /) and close pixels

Merged: W,S-mgd) combines the entropy and consistency strategies

Eventually, wj; is obtained by normalizing the weights computed over a
patch so that they sum to 1.
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Results
Hard vs. soft labeling
For the given data scarcity regime (o0 = 90%):
® The best performance are obtained with hard labels.

® Soft labeling yields more stability as performance are less impacted by
the choice of a weighting strategy
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Results
Self-training at fixed n; - SegPC and Gla$S
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Results

Label sparsely or exhaustively ?

® The answser is dataset-dependant !

® MoNuSeg: annotation budget better spent on sparse labeling (later
used with self-training)

® QOthers: annotation better spent on exhaustive labeling and using
supervised training
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