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Thyroid FNAB: an imperfectly-annotated cytology dataset

A sparsely annotated dataset for thyroid nodule malignancy assessment.

Annotated by the team of Prof. Isabelle Salmon from Erasme hospital (Université Libre de Bruxelles, Belgium).
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Using sparsely-labeled data

How to exploit such a sparse/incomplete segmentation dataset in a
supervised learning settings ?

(Ronneberger, Fischer and Brox, 2015)

Our proposal: use the segmentation model being trained to generate the
missing information

⇒ self-training ⇐
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Sparsely-labeled settings

Dl - exhaustively-labeled set

nl images and masks. All pixels have a 0

(background) or 1 (foreground) label.

Ds - sparsely-labeled set

ns images and masks. Unlabeled pixels

have label 0 (background) and labeled

pixels are exclusively foreground.
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Our self-training algorithm
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Experiments
3 public datasets

MoNuSeg

(Kumar et al., 2019)

SegPC

(Gupta et al., 2021)

GlaS

(Sirinukunwattana et al., 2017)

Sparsity is simulated by randomly removing ρ% of annotations in ns
images.

Experiments October 24, 2022 6 / 12



Experiments
3 baselines

(1) |Ds | = 0

(orignal dataset)

(2) Dl only (3) Dl ∪Ds

(unlab. pixels assigned to background)

To be considered of interest, our method should be as close as possible to
(1) (upper bound) and outperform baselines (2) and (3).
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Results
Self-training at fixed nl

• There is always a cut-off point at which exploiting additional sparse
annotations with self-training becomes beneficial !

• Self-training struggles at very high data scarcity

• Using Ds as if it was exhaustively annotated is a bad idea

• For MoNuSeg, the upper baseline is reached with only ∼ 30% of the
original annotations.
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(a) MoNuSeg
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(b) SegPC
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(c) GlaS
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Results
Application to Thyroid FNAB - quantitative

Self-training significantly outperforms the “Dl only” and “Dl ∪Ds”
baselines.

Method Dice∗ (%)

Self-training 89.05± 0.85
Dl only 80.30± 5.39
Dl ∪Ds 83.62± 3.52

Results October 24, 2022 9 / 12



Results
Application to Thyroid FNAB - qualitative
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Conclusion

Self-training can be used to obtain competitive binary segmentation
performance with less annotations !

However, let’s nuance:

• self-training performance margins (compared to the baselines) are
dataset-dependant

• self-training requires a bit of tuning (i.e. hyperparameters)

In the future, we plan to:

• further investigate what labeling strategy is more efficient for new
datasets

• implement the algorithm in the Cytomine application (batch and
interactive)
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Thank you !
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Pseudo-labels

Generating a pseudo-label y
(pl)
ij for an unlabeled pixel from the model

prediction ŷij for this pixel:

• Soft label: use ŷij as-is

• Hard label: 1 if ŷij > T , 0 otherwise. T is an auto-calibrated
threshold.
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Weighting strategies

We weight the pixel contribution in the loss:

L =
1

|y| ∑
i

∑
j

wijℓ(ŷij ; yij )

The weighting strategy is an hyperparameter:

• Constant: w
(cst)
ij = C > 0 where C is an hyperparameter

• Entropy: w
(ent)
ij is the entropy of the model prediction ŷij

• Consistency: w
(cty )
ij is a consistency score between model predictions

of pixel (i , j) and close pixels

• Merged: w
(mgd)
ij combines the entropy and consistency strategies

Eventually, wij is obtained by normalizing the weights computed over a
patch so that they sum to 1.
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Results
Hard vs. soft labeling

For the given data scarcity regime (ρ = 90%):

• The best performance are obtained with hard labels.

• Soft labeling yields more stability as performance are less impacted by
the choice of a weighting strategy

hard soft
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Results
Self-training at fixed nl - SegPC and GlaS

(a) Glas
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(b) SegPC
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Results
Label sparsely or exhaustively ?

• The answser is dataset-dependant !

• MoNuSeg: annotation budget better spent on sparse labeling (later
used with self-training)

• Others: annotation better spent on exhaustive labeling and using
supervised training
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