Relieving pixel-wise labeling effort for pathology image segmentation with self-training

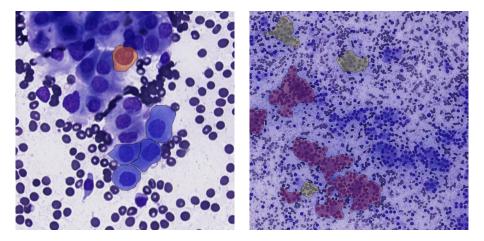
Romain Mormont, Mehdi Testouri, Raphaël Marée & Pierre Geurts

University of Liège, Belgium

October 24, 2022

Thyroid FNAB: an imperfectly-annotated cytology dataset

A sparsely annotated dataset for thyroid nodule malignancy assessment.



Annotated by the team of Prof. Isabelle Salmon from Erasme hospital (Université Libre de Bruxelles, Belgium).

Using sparsely-labeled data

How to exploit such a sparse/incomplete segmentation dataset in a supervised learning settings ?

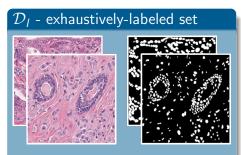
(Ronneberger, Fischer and Brox, 2015)

Our proposal: use the segmentation model being trained to generate the missing information

$$\Rightarrow$$
 self-training \Leftarrow

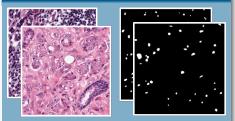
Introduction

Sparsely-labeled settings



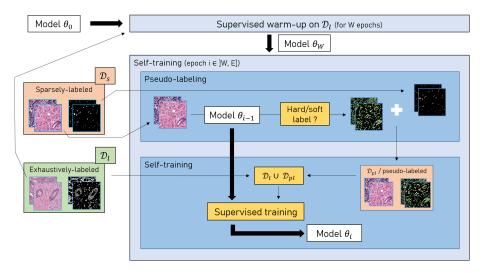
 n_l images and masks. All pixels have a 0 (background) or 1 (foreground) label.

\mathcal{D}_s - sparsely-labeled set



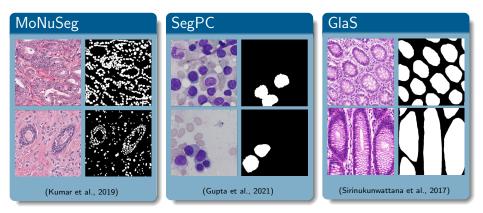
n_s images and masks. Unlabeled pixelshave label 0 (background) and labeledpixels are exclusively foreground.

Our self-training algorithm



Experiments

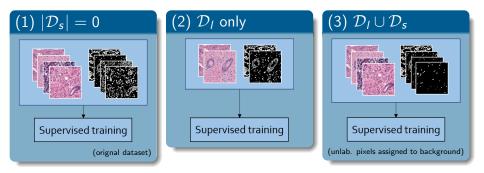
3 public datasets



Sparsity is simulated by randomly removing $\rho\%$ of annotations in n_s images.

Experiments

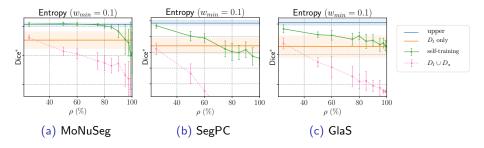
3 baselines



To be considered of interest, our method should be as close as possible to (1) (upper bound) and outperform baselines (2) and (3).

Self-training at fixed n_l

- There is always a cut-off point at which **exploiting additional sparse annotations with self-training becomes beneficial** !
- Self-training struggles at very high data scarcity
- Using \mathcal{D}_s as if it was exhaustively annotated is a bad idea
- For MoNuSeg, the upper baseline is reached with only \sim 30% of the original annotations.

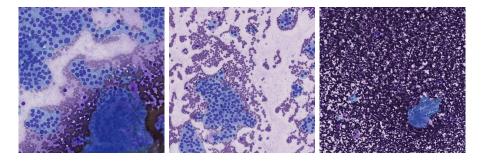


Application to Thyroid FNAB - quantitative

Self-training significantly outperforms the " \mathcal{D}_{I} only" and " $\mathcal{D}_{I} \cup \mathcal{D}_{s}$ " baselines.

Method	Dice* (%)
Self-training	89.05 ± 0.85
\mathcal{D}_I only	80.30 ± 5.39
$\mathcal{D}_{I} \cup \mathcal{D}_{s}$	83.62 ± 3.52

Application to Thyroid FNAB - qualitative



Conclusion

Self-training can be used to obtain competitive binary segmentation performance with less annotations !

However, let's nuance:

- self-training performance margins (compared to the baselines) are dataset-dependant
- self-training requires a bit of tuning (*i.e.* hyperparameters)

In the future, we plan to:

- further investigate what labeling strategy is more efficient for new datasets
- implement the algorithm in the Cytomine application (batch and interactive)

Pseudo-labels

Generating a pseudo-label $y_{ij}^{(pl)}$ for an unlabeled pixel from the model prediction \hat{y}_{ij} for this pixel:

- Soft label: use ŷ_{ij} as-is
- Hard label: 1 if $\hat{y}_{ij} > T$, 0 otherwise. T is an auto-calibrated threshold.

Weighting strategies

We weight the pixel contribution in the loss:

$$\mathcal{L} = rac{1}{|\mathbf{y}|} \sum_{i} \sum_{j} w_{ij} \ell(\hat{y}_{ij}; y_{ij})$$

The weighting strategy is an hyperparameter:

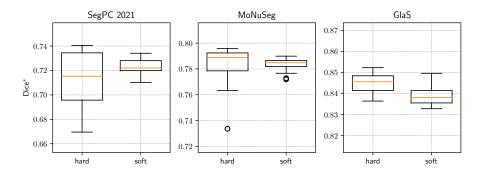
- **Constant**: $w_{ij}^{(cst)} = C > 0$ where C is an hyperparameter
- Entropy: $w_{ij}^{(ent)}$ is the entropy of the model prediction \hat{y}_{ij}
- **Consistency**: $w_{ij}^{(cty)}$ is a consistency score between model predictions of pixel (i, j) and close pixels

• Merged: $w_{ij}^{(mgd)}$ combines the *entropy* and *consistency* strategies Eventually, w_{ij} is obtained by normalizing the weights computed over a patch so that they sum to 1.

Hard vs. soft labeling

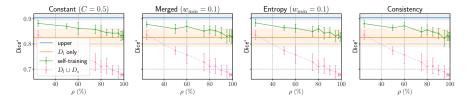
For the given data scarcity regime ($\rho = 90\%$):

- The best performance are obtained with hard labels.
- Soft labeling yields more stability as performance are less impacted by the choice of a weighting strategy

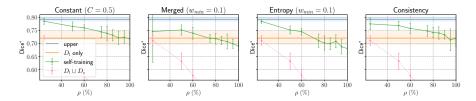


Self-training at fixed n_l - SegPC and GlaS

(a) Glas



(b) SegPC



Label sparsely or exhaustively ?

- The answser is dataset-dependant !
- MoNuSeg: annotation budget better spent on sparse labeling (later used with self-training)
- Others: annotation better spent on exhaustive labeling and using supervised training

