

Algorithmic-specific features to understand stochastic local search algorithms

Alberto Franzin Laboratory of Image Synthesis and Analysis LISA, ULB

Supported by Service public de Wallonie - Recherche under grant n°2010235 « ARIAC BY DIGITALWALLONIA4.AI »

LIÈGE université

Wallonie recherche SPW

ICLouvain Al4Belgium

UMONS

digital wallonia

Agence du Numérique

Metaheuristics and Stochastic Local Search (SLS) algorithms are routinely used in many practical applications.

But: how do they actually work?

Metaheuristics and Stochastic Local Search (SLS) algorithms are routinely used in many practical applications.

But: how do they actually work?

Several study try to understand how a SLS work for some problem. One possible approach: connect the results obtained by an algorithm on a particular problem by analyzing some **features**.

What kind of features?

In combinatorial optimization, problem-specific features are usually considered. Main issue: they cannot be used to compare findings across different problems.

But SLS algoriths work for different problems.

Landscape features have been also considered. Main issue: they are global features, that measure the state of the problem across all the solution space.

But SLS algorithms use only local information.

Algorithmic-specific features

We investigate the use of features that are problem-independent, and can therefore be used to compare the results of a SLS algorithm across different problems.

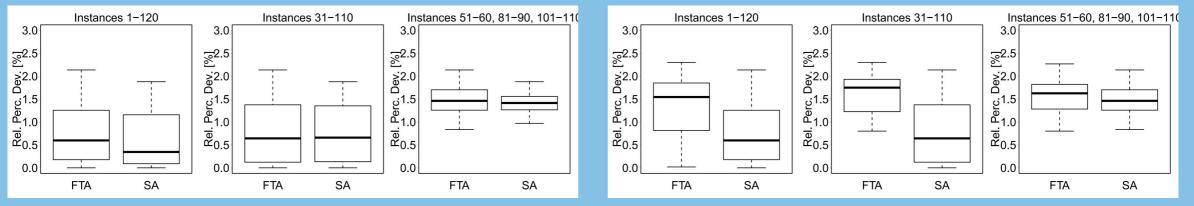
In particular, if we focus on one family of methods, we can use features that measure the conditions encountered by the algorithm during its search.

Case study: simulated annealing

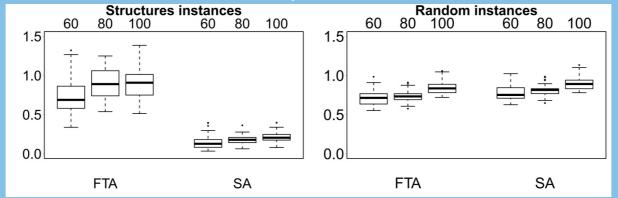
```
Input: a problem instance II, a neighbourhood N for the
            solutions, an initial solution s_0, control parameters
   Output: the best solution s<sup>*</sup> found during the search
 1 best solution s^* = incumbent solution \hat{s} = s_0;
 2 i = 1:
 s t_1 = initialize temperature;
 4 while stopping criterion is not met do
       choose a solution s_{i+1} in the neighbourhood of \hat{s} according
 5
       to search space exploration criterion;
       if s_{i+1} meets acceptance criterion then
 6
           \hat{s} = s_{i+1};
 \overline{7}
 8
       end
       if $ improves over s* then
 9
          s^* = \hat{s};
10
11
       end
       if temperature length is reached then
12
          update temperature according to cooling scheme;
13
       end
14
       if temperature has to be reset then
15
           reset temperature according to temperature restart
16
          scheme:
       end
17
       i = i + 1;
18
19 end
20 return s<sup>*</sup>:
```

Old and popular SLS algorithm, with many variants. We compare:

1) traditional SA with geometric cooling scheme (SA)


2) fixed temperature variant (FTA)

We use AutoAI methods to generate "optimal" SAs and FTAs for three problems and different instance classes.


Results (the lower the boxplots, the better)

PFSP-MS

PFSP-TCT

QAP

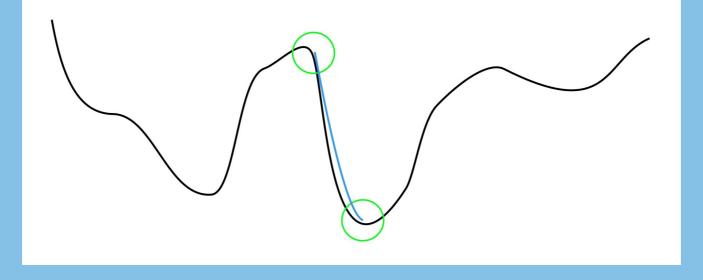
Which features for SA/FTA?

We look for features that represent what the algorithm sees during the search. But the space of possible algorithms is huge (# parameters).

SA can be considered a hill climbing with a diversification mechanism, so we use a First- and a Best-Improvement to approximate what a SA/FTA sees during the search.

Which features for SA/FTA?

- I Average number of moves to local optimum
- 2 Standard Deviation of number of moves to local optimum
- 3 Average number of moves to local optimum, rescaled by instance size
- 4 Standard Deviation of number of moves to local optimum, rescaled by instance size
- 5 Average number of moves to local optimum, rescaled by neighbourhood size
- 6 Standard Deviation of number of moves to local optimum, rescaled by neighbourhood size
- 7 Average R^2 of a linear model fit on the solution values
- 8 Average R^2 of a linear model fit on the solution values normalized in [0,1]
- 9 Average R^2 of an exponential model fit on the solution values
- 10 Average R^2 of an exponential model fit on the solution values normalized in [0, 1]


- 11 Average R^2 of a linear model fit on the number of improving moves in the sequence of neighbourhoods traversed
- 12 Average proportion of neutral moves in the neighbourhoods traversed
- 13 Number of neutral last moves
- 14 Difference of features 7 and 9
- 15 Difference of features 8 and 10
- 16 Average slope of the sequence of differences between best and average solution in a neighbourhood
- 17 Standard deviation of the slopes of the sequence of differences between best and average solution in a neighbourhood
- 18 Average of the standard deviation of the sequence of differences between best and average solution in a neighbourhood
- 19 Standard deviation of the standard deviation of the sequence of differences between best and average solution in a neighbourhood

Features importance analysis

We compute the features with 30 independent runs for each instance, analyze their importance.

Results consistent across problems: the most important features measure the change in the landscape observed:

- error when fitting a linear or exponential model with solution values
- sequence of differences between best and average solutions in the neighbourhoods traversed

Conclusions: SA vs FTA

Observations consistent across problems:

If the neighbourhood structures traversed by the algorithm are similar across the search space, FT works well.

SA is better if the landscape changes shape as the search progresses.

Conclusions: algorithmic features

Problem-independent, algorithmic-specific features that capture the integraction between a SLS algorithm and a solution space enable a further step in the analysis and the understanding of the behaviour of optimization algorithms.

Work from A. Franzin, T. Stützle "A Landscape-based Analysis of Fixed Temperature and Simulated Annealing", under review. https://iridia.ulb.ac.be/IridiaTrSeries/link/IridiaTr2021-005.pdf