Theory of incompatible substructure problem

From IridiaWiki
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Schedule

  • SWARM2015 paper: camera ready version submitted on 1st September, 2015.
  • Submit extended version by December 2015.

Todo

  • Increase number of trials to 40.

Parameters

  • Components
    • Radius of each component: 25 mm
    • Thickness of each component: 8 mm
    • Radius of magnet: 1.5 mm
    • Strength of magnet: N48
    • Polyamide
  • Container
    • Radius of container: 125 mm
    • Depth of container: 9 mm
    • Material: Acrylic
  • Shaker
    • Mode: Orbital shaking
    • Speed: 300 rpm
    • Duration for shaking: until stable structures are formed

Variable(s)

  • Number of components used in each experiment

Experiments

  • Simulated experiments
    • Probability of the formation of all substructures, and all target structures for increasing number of components
  • Physical experiments
    • Probability of the formation of all substructures, and all target structures for increasing number of components

Particulars of simulation experiments (10000 trials each)

  • Probability of the formation of all target structures and substructures in experiments with increasing number of components from 8 - 40

Particulars of physical experiments (40 trials each)

  • Photos of initial condition and final condition
  • Assembly of one target structure
    • Data to be collected: number of targets and number of incompatible substructures, time for steady state
  • Assembly of two target structures
    • Data to be collected: number of targets and number of incompatible substructures, time for steady state
  • Assembly of three target structures
    • Data to be collected: number of targets and number of incompatible substructures, time for steady state
  • Assembly of four target structures
    • Data to be collected: number of targets and number of incompatible substructures, time for steady state
  • Assembly of five target structures
    • Data to be collected: number of targets and number of incompatible substructures, time for steady state
  • Results to show
    • The simulated probability of the formation of all substructures and target structures in self-assembly experiments
    • Comparison of simulated probability vs. probability achieved in physical experiments
    • Reasons for similarities and/or differences between simulated probability vs. probability of physical experiments

Open problems

Using the model of Hosokawa 1995. The system starts as a set of n components. Then the following step is repeated until no longer possible: pick a random pair of structures with total size at most the size of a target structure. Combine them. The process stops when no such pair exists, i.e. when the two smallest structures have total size more than the size of a target structure.

Consider a system of n components that form target structures of size k. Let f(n, k, i) be the probability that i target substructures form.

  • Probabilities of yields.
    • f(n, k, 1) + f(n, k, 2) + ...: What is the probability that at least one target structure forms?
    • f(n, k, floor(n/k)): What is the probability that the maximum number of target substructures form?
    • f(n, k, 1) * 1 + f(n, k, 2) * 2 + ...: What is the average number of target substructures that form?
    • General closed form for f(n, k, i): what is the probability that i substructures form for some fixed i?
  • Unexpected behavior.
    • Prove that f(n, k, m) is non-increasing as a function of n.

What to include in the extended version of the paper

  • More (40) trials
  • Details of the model
  • Geometry calculations
  • Master equation
  • More pictures
  • Video in multimedia section
  • Geometry of the parts

Meeting points

  • In the case of the experiment where 24 components are used, if 2 target structures are formed (16 components consumed), then the third target structure will always form. This means that if the experiment is continued till the system reaches a steady state, then in the experiment with 24 components, there will never be a case where 2 target structures are formed.
    • Doesn't this skew the probability graph? Also, how would this be reflected in the analysis?
    • Obviously, this applies to the cases of 2, 4, 5 target structures (16, 32, 40 components) as well.