Difference between revisions of "Plan Max Manfrin"

From IridiaWiki
Jump to navigationJump to search
 
(263 intermediate revisions by the same user not shown)
Line 4: Line 4:
   
 
= Plan (future work) =
 
= Plan (future work) =
* Investigate the effect of parallelization on Ant Colony Optimization algorithms
 
   
  +
== Milestone I: Jan - Mar 2006==
  +
  +
  +
* Acquire practical experience in explicit parallelization on ACO algorithms
  +
** Start from sequential ACOTSP and implement various MPI variants
  +
*** Sync
  +
**** Multicolony - fully-connected
  +
***** colony 0 identifies the best colony; best colony broadcast its bsf solution
  +
***** colony 0 identifies the best colony and the worst colony; best colony send its bsf solution to worst colony
  +
**** Multicolony - ring
  +
***** unidirectional ring
  +
**** Multicolony - hypercube
  +
***** 3D hypercube
  +
**** Single colony, multi local search
  +
*** Async
  +
**** Multicolony - completly-connected
  +
***** colony 0 identifies the best colony; best colony broadcast its bsf solution
  +
***** colony 0 identifies the best colony and the worst colony; best colony send its bsf solution to worst colony
  +
**** Multicolony - ring
  +
***** unidirectional ring
  +
**** Multicolony - hypercube
  +
***** 3D hypercube
  +
* Paper submission to ANTS 2006 of "explicit parallelization of ACOTSP"
  +
* By end of March decision if and how to extend the paper for possible Journal article
  +
* By end of March decision if proceed with MPI version of ILK-H + ACOTSP
  +
* Find the sentence that explain what the PhD thesis is about (what is the contribution of this thesis?)
  +
** 1. Parallelization of ACO on multi-core architectures ?
  +
** 2. Parallelization of ACO on collection of interesting problems?
  +
  +
  +
==Milestone II: Apr - Jun 2006==
  +
  +
  +
* Development and empirical test of different communication schemes among colonies
  +
<pre>
  +
The i.a.k identify how often we do communication among colonies.
  +
  +
The law used to generate the periods is SQRT[(10)^(i+1)], so
  +
i = 1 --> T = 10
  +
i = 2 --> T = 31
  +
i = 3 --> T = 100
  +
i = 4 --> T = 316
  +
i = 5 --> T = 1000
  +
i = 6 --> T = 3162
  +
i = 7 --> T = 10000
  +
i = 8 --> T = 31622
  +
i = 9 --> T = 100000
  +
  +
The jth exchange happens at iteration
  +
  +
  +
T * (1 - 0.a^j)/(1 - 0.a) IF (int)[x_j - x_(j-1)] > k
  +
x_j =
  +
k OTHERWISE
  +
</pre>
  +
* Start from sequential ACOTSP and implement various MPI variants
  +
** Sync
  +
*** Multicolony - ring
  +
**** unidirectional ring
  +
***** 4.8.10
  +
***** 4.9.10
  +
***** 5.8.10
  +
***** 5.9.10
  +
***** 6.8.10
  +
***** 6.9.10
  +
***** 7.6.10
  +
***** 7.7.10
  +
* Transfer the knowledge and experience on TSP to other problems
  +
** Collaboration with Marco Caserta on parallel ACO for Set Covering Problem
  +
*** he doesn't use ACO for SCP, but I've helped him anyway to parallelize his own primal-dual algorithm
  +
** Collaboration with Daniele Catanzaro on parallel ACO for phylogeny reconstruction
  +
*** Start from sequential ACO algorithm and implemented MPI variant
  +
**** Sync
  +
***** Multicolony - fully-connected
  +
****** colony 0 identifies the best colony; best colony broadcast its bsf solution
  +
** Identify possible problems for which IRIDIA has expertise and state-of-the-art ACO algo as starting points (Scheduling: Blum, QAP: Thomas)
  +
*** QAP: start from sequential MMASQAP and implement various MPI variants (in total we consider 72 algo)
  +
**** Factor 1: Connection topology
  +
***** Multicolony - fully-connected
  +
****** colony 0 identifies the best colony; best colony broadcast its bsf solution
  +
****** colony 0 identifies the best colony and the worst colony; best colony send its bsf solution to worst colony
  +
***** Multicolony - ring
  +
****** unidirectional ring
  +
***** Multicolony - hypercube
  +
****** 3D hypercube
  +
**** Factor 2: Communication schema
  +
***** Sync
  +
****** 1.x.10 (constant gap of 10 iterations)
  +
****** 2.9.10
  +
****** 2.8.10
  +
****** 2.7.10
  +
****** 2.6.10
  +
****** 3.9.10
  +
****** 3.8.10
  +
****** 3.7.10
  +
****** 3.6.10
  +
**** Factor 3: Local Search
  +
***** 2-opt
  +
***** tabu search
  +
  +
==Milestone III: Jul - Sep 2006==
  +
  +
  +
* Tech Report on TSP and QAP experiments
  +
** decision if and how to extend the paper for possible journal article
  +
* Literature survey on parallel ACO algorithms (version 3)
  +
* Acquire practical experience in implicit parallelization on ACO algorithms
  +
** Start from sequential ACOTSP and implement various OpenMP variants
  +
*** Sync ( i.e. implicit barrier in for directives)
  +
*** Async (i.e use of the nowait clause)
  +
* ? Paper on "implicit vs explicit parallelization of ACOTSP"
  +
  +
==Milestone IV: Oct - Dec 2006==
  +
  +
  +
==Milestone V: Jan - Mar 2007==
  +
  +
  +
==Milestone VI: Apr - Jun 2007==
  +
  +
  +
==Milestone VII: Jul - Sep 2007==
  +
* Write PhD thesis
   
 
= Goals =
 
= Goals =
  +
* Investigate the effect of parallelization on Ant Colony Optimization algorithms
 
* Acquire practical experience in parallelization on ACO algorithms (both explicit and implicit parallelism)
 
* Acquire practical experience in parallelization on ACO algorithms (both explicit and implicit parallelism)
  +
* Implicit parallelism is the new trend (multi core CPUs), not much work has been done on them yet
* Submit paper to ANTS 2006 (on explicit parallelism - MPI)
 
  +
   
 
= Things to do =
 
= Things to do =
   
 
{| border=1 cellspacing=0 cellpadding=2
 
{| border=1 cellspacing=0 cellpadding=2
! Description !! Start date !! Deadline !! Time required !! status !! Real deadline
+
! Description !! Start date !! Deadline !! Time required !! status
 
|-
 
|-
| Study MPI || Nov 14, 2005 || || ongoing process || In progress ||
+
| Study OpenMP || Jan 9, 2005 || || ongoing process || In progress
 
|-
 
|-
| '''Process-level parallelization of ACOTSP using OpenMPI''' || Nov 14, 2005 || Jan 8, 2006 || ~9 weeks || Finished || Jan 24, 2006
+
| '''Implicit parallelization of ACOTSP using OpenMP''' || - || - || - || Need a compiler
|-
 
| Single-colony multi-LS (3-opt or Iterated Helsgaun) || Nov 14, 2005 || Dec 5, 2005 || ~26 days || Finished ||
 
|-
 
| Multi-colony || Dec 10, 2005 || Dec 22, 2005 || ~13 days || Finished ||
 
 
|-
 
|-
| Experiments on large TSP instances || Dec 23, 2005 || Jan 8, 2006 || ~2 weeks || To Do ||
+
| Parallel ACO survey v3 || Jul 1, 2006 || Aug 31, 2006 || ||
 
|-
 
|-
 
|}
 
|}
   
  +
  +
== Weekly planning ==
   
 
{| border=1 cellspacing=0 cellpadding=2
 
{| border=1 cellspacing=0 cellpadding=2
! Description !! Start date !! Deadline !! Time required !! status
+
! Description !! Start date !! Deadline !! Completion date !! status !! Note
|-
 
| Study OpenMP || Jan 9, 2005 || || ongoing process || In progress
 
|-
 
| '''Thread-level parallelization of ACOTSP using OpenMP''' || Jan 9, 2006 || Feb 19, 2006 || ~6 weeks || Need a compiler
 
|-
 
| Single-colony multi-LS (3-opt or Iterated Helsgaun) || Jan 9, 2006 || Jan 29, 2005 || ~21 days || Need a compiler
 
|-
 
| Multi colony || Jan 30, 2005 || Feb 5, 2006 || ~12 days || Need a compiler
 
 
|-
 
|-
| Experiments on large TSP instances || Feb 5, 2006 || Feb 19, 2006 || ~2 weeks ||
 
 
|}
 
|}
   
Line 48: Line 161:
 
! Title !! Author !! Location !! Dates
 
! Title !! Author !! Location !! Dates
 
|-
 
|-
  +
| IRIDIA Optimization meeting ||Ch. 4 of the book to present || || Apr 27, 2006
| || || ||
 
  +
|-
 
|}
 
|}
 
   
 
= Events participation =
 
= Events participation =
Line 57: Line 170:
 
! Event !! Location !! Dates
 
! Event !! Location !! Dates
 
|-
 
|-
  +
| || ||
| Matinée Jeunes Chercheurs || Building U - Solbosch Campus || Feb 17, 2006 - from 10 to 14
 
 
|-
 
|-
 
|}
 
|}
Line 65: Line 178:
   
 
{| border=1 cellspacing=0 cellpadding=2
 
{| border=1 cellspacing=0 cellpadding=2
! Title !! Journal/Conference targeted !! Start date !! Submission deadline
+
! Title !! Journal/Conference targeted !! Submission deadline
 
|-
 
|-
| A Survey of Parallel ACO algorithms || N.A. || N.A. || N.A.
+
| A Survey of Parallel ACO algorithms || N.A. || N.A.
 
|-
 
|-
| Process-level parallelization of ACOTSP || Ants 2006 international workshop || N.A. || Mar 12, 2006
+
| Thread-level parallelization of ACOTSP || N.A. || N.A.
|-
 
| Thread-level parallelization of ACOTSP || Ants 2006 international workshop || N.A. || Mar 12, 2006
 
 
|}
 
|}
   
   
 
= Referee activities =
 
= Referee activities =
  +
   
 
== International journals ==
 
== International journals ==
Line 82: Line 194:
 
! Journal !! # papers !! paper received on !! review to submit before
 
! Journal !! # papers !! paper received on !! review to submit before
 
|-
 
|-
  +
| || || ||
| European Journal of Operational Research || 1 || Dec 21, 2005 || Jan 31, 2006
 
 
|-
 
|-
 
|}
 
|}
Line 92: Line 204:
 
! Conference !! # papers !! paper received on !! review to submit before
 
! Conference !! # papers !! paper received on !! review to submit before
 
|-
 
|-
  +
|
| GECCO 2006 || 5-6 (estimation) || Feb 2006 || 20 Mar 2006
 
  +
|-
  +
|}
  +
  +
= IRIDIA chores =
  +
  +
{| border=1 cellspacing=0 cellpadding=2
  +
! Chore !! assigned !! status
  +
|-
  +
| Update Dorigo website with Master, DEA, and PhD thesis data || Feb 2, 2006 || done
  +
|-
  +
| Create a Wiki page with list of all the software we have for the Mac with #licenses and where they are installed || Apr 21, 2006 ||
 
|-
 
|-
| WSC11 || 3-4 (estimation) || May/June 2006 || 30 Jun 2006
 
 
|}
 
|}

Latest revision as of 21:38, 6 July 2006

History (past work)

http://iridia.ulb.ac.be/wiki/index.php/History_Max_Manfrin


Plan (future work)

Milestone I: Jan - Mar 2006

  • Acquire practical experience in explicit parallelization on ACO algorithms
    • Start from sequential ACOTSP and implement various MPI variants
      • Sync
        • Multicolony - fully-connected
          • colony 0 identifies the best colony; best colony broadcast its bsf solution
          • colony 0 identifies the best colony and the worst colony; best colony send its bsf solution to worst colony
        • Multicolony - ring
          • unidirectional ring
        • Multicolony - hypercube
          • 3D hypercube
        • Single colony, multi local search
      • Async
        • Multicolony - completly-connected
          • colony 0 identifies the best colony; best colony broadcast its bsf solution
          • colony 0 identifies the best colony and the worst colony; best colony send its bsf solution to worst colony
        • Multicolony - ring
          • unidirectional ring
        • Multicolony - hypercube
          • 3D hypercube
  • Paper submission to ANTS 2006 of "explicit parallelization of ACOTSP"
  • By end of March decision if and how to extend the paper for possible Journal article
  • By end of March decision if proceed with MPI version of ILK-H + ACOTSP
  • Find the sentence that explain what the PhD thesis is about (what is the contribution of this thesis?)
    • 1. Parallelization of ACO on multi-core architectures ?
    • 2. Parallelization of ACO on collection of interesting problems?


Milestone II: Apr - Jun 2006

  • Development and empirical test of different communication schemes among colonies
The i.a.k identify how often we do communication among colonies. 

The law used to generate the periods is SQRT[(10)^(i+1)], so
i = 1 --> T = 10
i = 2 --> T = 31
i = 3 --> T = 100
i = 4 --> T = 316
i = 5 --> T = 1000
i = 6 --> T = 3162
i = 7 --> T = 10000
i = 8 --> T = 31622
i = 9 --> T = 100000

The jth exchange happens at iteration


      T * (1 - 0.a^j)/(1 - 0.a)  IF (int)[x_j - x_(j-1)] > k
x_j = 
      k                          OTHERWISE
  • Start from sequential ACOTSP and implement various MPI variants
    • Sync
      • Multicolony - ring
        • unidirectional ring
          • 4.8.10
          • 4.9.10
          • 5.8.10
          • 5.9.10
          • 6.8.10
          • 6.9.10
          • 7.6.10
          • 7.7.10
  • Transfer the knowledge and experience on TSP to other problems
    • Collaboration with Marco Caserta on parallel ACO for Set Covering Problem
      • he doesn't use ACO for SCP, but I've helped him anyway to parallelize his own primal-dual algorithm
    • Collaboration with Daniele Catanzaro on parallel ACO for phylogeny reconstruction
      • Start from sequential ACO algorithm and implemented MPI variant
        • Sync
          • Multicolony - fully-connected
            • colony 0 identifies the best colony; best colony broadcast its bsf solution
    • Identify possible problems for which IRIDIA has expertise and state-of-the-art ACO algo as starting points (Scheduling: Blum, QAP: Thomas)
      • QAP: start from sequential MMASQAP and implement various MPI variants (in total we consider 72 algo)
        • Factor 1: Connection topology
          • Multicolony - fully-connected
            • colony 0 identifies the best colony; best colony broadcast its bsf solution
            • colony 0 identifies the best colony and the worst colony; best colony send its bsf solution to worst colony
          • Multicolony - ring
            • unidirectional ring
          • Multicolony - hypercube
            • 3D hypercube
        • Factor 2: Communication schema
          • Sync
            • 1.x.10 (constant gap of 10 iterations)
            • 2.9.10
            • 2.8.10
            • 2.7.10
            • 2.6.10
            • 3.9.10
            • 3.8.10
            • 3.7.10
            • 3.6.10
        • Factor 3: Local Search
          • 2-opt
          • tabu search

Milestone III: Jul - Sep 2006

  • Tech Report on TSP and QAP experiments
    • decision if and how to extend the paper for possible journal article
  • Literature survey on parallel ACO algorithms (version 3)
  • Acquire practical experience in implicit parallelization on ACO algorithms
    • Start from sequential ACOTSP and implement various OpenMP variants
      • Sync ( i.e. implicit barrier in for directives)
      • Async (i.e use of the nowait clause)
  • ? Paper on "implicit vs explicit parallelization of ACOTSP"

Milestone IV: Oct - Dec 2006

Milestone V: Jan - Mar 2007

Milestone VI: Apr - Jun 2007

Milestone VII: Jul - Sep 2007

  • Write PhD thesis

Goals

  • Investigate the effect of parallelization on Ant Colony Optimization algorithms
  • Acquire practical experience in parallelization on ACO algorithms (both explicit and implicit parallelism)
  • Implicit parallelism is the new trend (multi core CPUs), not much work has been done on them yet


Things to do

Description Start date Deadline Time required status
Study OpenMP Jan 9, 2005 ongoing process In progress
Implicit parallelization of ACOTSP using OpenMP - - - Need a compiler
Parallel ACO survey v3 Jul 1, 2006 Aug 31, 2006


Weekly planning

Description Start date Deadline Completion date status Note

Seminars participation

Title Author Location Dates
IRIDIA Optimization meeting Ch. 4 of the book to present Apr 27, 2006

Events participation

Event Location Dates


Papers to write

Title Journal/Conference targeted Submission deadline
A Survey of Parallel ACO algorithms N.A. N.A.
Thread-level parallelization of ACOTSP N.A. N.A.


Referee activities

International journals

Journal # papers paper received on review to submit before


International conferences

Conference # papers paper received on review to submit before

IRIDIA chores

Chore assigned status
Update Dorigo website with Master, DEA, and PhD thesis data Feb 2, 2006 done
Create a Wiki page with list of all the software we have for the Mac with #licenses and where they are installed Apr 21, 2006