Robots & Simulation

Anders Lyhne Christensen
IRIDIA’s weekly robotics meeting
January 25" 2006

Why use simulation?

A fast experimentation platform
No damage to hardware

Simulation can provide more robots, different
sensors, new objects and environments that are
not available in the real world

Simulation and reality can be mixed (RAVE)

For all but the simplest tasks, simulation is a
necessity for evolutionary robotics

lssues

« Simulators take time to build

* No simulation is 100% accurate (the
SCEUWACET)
— Controllers may not transfer
— Solutions may not transfer

« Simulators often fail to take individual
differences between robots into account

omplex simulators

* Dynamics
— objects, collision

spaces, joints and
motors...

« Demonstration
* Dynamics is not going
to save the world...

Try to simulate this (accurately)

Complex simulators

« Complexity and dynamics does not mean
real.

— The world has to be modelled using primitives
such as cylinders, spheres, boxes, etc.

— Dynamics require discrete updates

— The time and space complexity puts a limit to
the accuratecy

Simple simulators

« Some simple sims. rely on kinematics

 Jacobi takes a different approach:

Model a base set of aspects accurately, and
ensure that controllers are base set exclusive.

Noise during trails to ensure that controllers
cannot rely on implementation aspects.

No simulator can model anything accurately:
Controllers must be base set robust.

Noise between trails to ensure that controllers
are base set robust.

Jacobi’s minimal T-maze simulation

300 lines of C code and a bunch
of look-up tables to simulate the
T-maze.

Figure 3: The task in the real world. Figure 4: The task in simulation.

Strategies for crossing the Reality Gap

Minimal Complex

(e.g. look-up tables) (e.g. dynamics)

High-level features Low-level features
< >
Fast Slow

In almost all simulations noise Is added

Where is TwoDee?

Around here

Minimal / Complex,

(e.g. look-up tables) (e.g. dynamics)

| 2 |
| W, |

« Computations are done in 2D
— But could be done in 3D

« High-level models and no general dynamics

« General architecture, e.g. environment, sensors,
actuators and so on can easily be changed

Consequences

Pros: Cons:
Speed

Models can be
changed easily

Special cases can be
treated individually

Flexible within
limitations

Simulators also evolve

« Research and evolutionary robotics require flexibility:
— The software should be constructed with this in mind.

— Making components explicit through interfaces
* Not just the Common Interface!

« External flexibility: User interface
— Demonstration

« Internal flexibility: Classes and interfaces
— The simulator should grow and not change
— Demonstration

Coding an Experiment

* Experiments can be programmed too:

— Get a simulator
« Get and arena

» Get swarm-bots
— Get s-bots
» (Get sensors
» Get actuators
» Get controller

* Get a fitness function

That’s all folks

- Thanks for listening -

