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Statistical inference is inference from statistics (functions 
on  samples  like        ) to parameters (functions on 
populations like                  ).

Need to focus on relationship between the number of data in a 
sample, the variance of the data, and our confidence in 
conclusions.

Hypothesis Testing
Answer a yes-or-no question about a population and assess 
the probability that the answer is wrong.

Parameter Estimation
Estimate the true value of a parameter given a statistic.

3Sec 4.1

µx,σ2,σ
x̄, s2, s
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Estimate the true value of a parameter given a statistic.

Hypothesis Testing

How likely is a 
sample result given 
an assumption about 
the population?

Parameter
Estimation

What is the most 
likely value of a 
parameter, and what 
are likely bounds on 
the value of a 
parameter given a 
statistic?
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The question of interest is simplified into two competing 
claims / hypothesis (the hypothesis are often statements about population 

parameters): the null hypothesis, denoted H0 and the alternative 
hypothesis, denoted H1.

Special consideration is given to H0 because it relates to the 
statement being tested, whereas H1 relates to the statement 
to be accepted if/when H0 is rejected.

Statistical hypothesis testing doesn’t prove H0  true or false; it 
bounds the probability of incorrectly asserting - based on a 
sample result - that H0 is false.

Hypothesis Testing
How likely is a sample 
re su l t g i ve n an 
assumption about the 
population?

The difficult part is establishing the probability 
of incorrectly rejecting H0. 

5Sec 4.2
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Hypothesis Testing
How likely is a sample 
re su l t g i ve n an 
assumption about the 
population?

7Sec 4.3.1

A sampling distribution is the distribution of a statistic 
calculated from all possible samples of a given size, drawn 
from a given population.

Most sampling distribution are estimated or determined 
analytically, not constructed, because the population from 
which samples are drawn are very large or infinite.

If one draws many samples of a given size from a population 
and calculate a statistic, then the resulting empirical 
sampling distribution of the statistic will probably be quite 
similar to the theoretical sampling distribution.
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Classical statistical methods calculate sampling distribution 
exactly or estimate them analytically.

Exact Sampling Distribution: 
The sampling distribution of the proportion can be calculated 
exactly (e.g. tossing a coin. Is the coin fair?)

All possible proportions are: 

The probability distribution over these values is the binomial 
distribution. The probability of a particular sample 
proportion is:

where N is the number of tosses, r is the probability that a 
single toss will land head, and i is the number of heads 
observed.

8Sec 4.3.2
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C on t i nuo us prob ab i l i t y 
distributions

While discrete probability 
d i s t r i b u t i o n s p r o v i d e 
probabilities for  exact 
outcomes, continuous prob. 
distr. provide probabilities 
for ranges of outcomes.

In cont. distr. the prob. of a 
particular outcome is zero.
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Estimated Sampling Distribution: 
The sampling distribution of the mean can be estimated

Central Limit Theorem
The sampling distribution of the mean of samples of size N approaches a 
normal distribution as N increase. If the samples are drawn from a 
population with mean µ and a standard deviation σ, then the mean of the 
sampling distribution is µ and its standard deviation is σ/√N.
These statements hold irrespective of the shape of the population 
distribution from which the samples are drawn.

If you draw samples from any population you like, and 
provided the samples are large (usually means N ≥ 30), the 
sampling distribution of the sample mean is normal.

9Sec 4.3.2

Sampling distribution demo: 
http://www.ruf.rice.edu/~lane/stat_sim/sampling_dist/index.html
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The Standard Error of the Mean : the standard deviation of 
the sampling distribution of the mean; is denoted

The standard deviation of the sampling distribution 
represents uncertainty about µ. Formally

where σ is the population standard deviation.

According to the central limit theorem, the mean of the 
sampling distribution approaches the population mean µ as N 
increases.

Standard errors of almost all statistics are hard to calculate 
or have no closed form expression.

10Sec 4.3.2

σx̄

σx̄ =
σ√
N
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12Sec 4.4

Z Test: take a sample, and transform it into Z score

Z score transformation does not change the underlying 
distribution, just the scale.

This does allow for certain useful operations: comparison of 
relative position in different samples, combination of scores 
on different scales.

Essentialy it asks: Given a population with a certain mean, 
how likely is it I could draw a sample with my given sample 
mean?

Z score falls in the lower or upper 5% of the sampling distribution, it’s considered 
adequate evidence against H0.
Z score falls in the lower or upper 2.5% of the sampling distribution, it’s considered 
good evidence against H0.
Z score falls in the lower or upper 0.5% of the sampling distribution, it’s considered 
strong evidence against H0.

zi =
xi − x̄

s

Z =
x̄− µ

σx̄
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Z Test

- It estimates the sampling distribution 

of the mean.

- It transforms the sampling distribution 

into a standard normal distribution.

- It expresses the sample mean as Z 

standard deviations distance from its 

expectation under the null hypothesis.

12



13Sec 4.4

Critical value: the value corresponding to a given 
significance level. This cutoff value determines the boundary 
between those samples resulting in a test statistic that leads 
to rejecting H0 and those that lead to a decision not to reject 
H0.

p value: the probability of obtaining a particular sample 
result given the null hypothesis.
(By convention, one usually doesn’t reject the null hypothesis unless p < 0.05. This 
is the largest bound on p that most researchers will call statistically significant.)

An exact value for p is not the exact probability of the sample 
result under H0 unless the sampling distribution is discrete.
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14Sec 4.4

When σ is unknown: it’s rarely the case that we know the 
population standard deviation, so we have to estimate it from 
the sample standard deviation:

Similarly, the standard error is estimated as follows:

Z Test can be run as:

σ̂ = s

σ̂x̄ = σ̂√
N

= s√
N

Z = x̄−µ
σ̂x̄

= x̄−µ
s√
N
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15Sec 4.4

When all population parameters are unknown: a common 
tactic is to compare a sample to an imagined null hypothesis 
distribution.

‘Suppose a population does exist and its mean is x; could my 
sample have come from it?’

In practice we use s, the sampled standard deviation, to 
estimate σ and         and to run the test as before.σx̄
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16Sec 4.4

If N ≥ 30, we can be sure that the sampling distribution is 
normal. But what about smaller samples, like N=20, N=10 or 
even N=5 ?

t distribution: the sampling distribution of the mean for 
small N; it looks a lot like the normal distribution, but more of 
the mass of the distribution is in the tails.

A sample results that’s highly improbable when matched to a 
normal distribution is more likely when matched to the t 
distribution.

t test can be run as:

the same as Z test, except that you compare a t score  to the t 
distribution. There is a t distribution for each N.

t = x̄−µ
σ̂x̄

= x̄−µ
s√
N
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t Test

it depends on one important 

assumption: The distribution from 

which the sample is drawn is normal.

Whether the data points are 

normally distributed can be assessed 

by a normality test, such as 

Kolmogorov-Smimov or Shapiro-Wilk.
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17Sec 4.4

Three types of t tests are commonly run on means:

One-sample t Test: assess whether a sample was drawn from 
a population with known mean µ.

One-sample t Test: assess whether a hypothetical µ could be 
the mean of the population from which a sample was drawn.

Two-sample t Test: assess whether the means of two 
normally distributed populations are equal.
(we compare the means of two samples to see whether they could have been drawn 
from populations with equal means).

There are different versions of the t Test depending on 
whether the two samples are independent of each other or 
paired, so that each member of one sample has a unique 
relationship with a particular member of the other sample.
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Linear correlations between 1000 pairs of numbers. The data are graphed on 
the lower left and their correlation coefficients listed on the upper right. Each 
square in the upper right corresponds to its mirror-image square in the lower 
left, the "mirror" being the diagonal of the whole array. Each set of points 
correlates maximally with itself, as shown on the diagonal (all correlations = 
+1).

Sec 4.5 19
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We might believe, on the basis of a low correlation, that two 
variables are independent. To be more certain, we want to 
test the hypothesis that their correlation is zero.

To do so, we need the sampling distribution of the correlation 
coefficient, which is complicated.

We can transform the correlation into another form that has a 
nicer sampling distribution.
Fisher’s r to z transform: produces a statistic, the sampling 
distribution of which is approximately normal under the 
assumption that the variables are normally distributed.

The statistic is:                                      

The mean of the sampling distribution is:  

The estimated standard error is: 

z(r) = 0.5 ln 1+r
1−r

z(ρ) = 0.5 ln 1+ρ
1−ρ

σ̂z(r) = 1√
n−3

Sec 4.5 20
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Fisher’s r to z transform

After the transformation we 

can run a Z test of the null 

h y p o t h e s i s t h a t t h e 

correlation of two variables is 

some number.
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End of part 1
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