What I did in the past two months

- New simulator
 - Getting started with twodee
 - Extension (proximity, camera, leds, collisions...)
 - Implementation of chaining behaviour
- Preparation of experiments
 - Parameter landscape for various situations
- Some reading on sensor networks
- Excellent holiday

Experiments

• Objectives:

- Find optimal parameters for given task
- Understand impact of parameters

• Sources of variation:

- Two probability parameters: 0, 2^-10,2^-9,..2^0
- Number of sbots: 10, 20
- Arena size: (5x5)m²
- Number of preys: 0, 1, 2, 4
- Distance to prey: 60, 120, 180, 240, 300 cm

Experiments (cont.)

• Measures:

- Percentage arena explored
- Time until nest found by n-th sbot
- Time until n-th prey found
- Chain length (max/dynamic)
- State dynamics

Experiments (cont.)

• Procedure:

- Sbots are placed at random positions
- Finished without prey: 3h
- Finished with prey: min(t(success),3h)
- Prey removed after connected for certain amount of time
 - --> Problem: chain stays, robots are recruited to prey
 - --> Possible solution: include assembly and retrieval

Experiments (cont.)

- Anticipated results:
 - Optimal parameter set depends on task
 - --> Possibility for adaptive controller
 - Linear relationship between time to find prey and number of preys
 - Quadratic relationship between time to find prey and distance to prey

Future works

- Implement gripping and retrieval on twodee
- Some more reading on sensor networks
- "Spreading algorithm" where the robots spread in the environment. Similar to chains, but more random and less structured
 - --> Better scalability
 - --> Easy to deduce a macroscopic model

- prey of different weight
- --> task allocation