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Introduction

Foraging tasks in swarm intelligence

� traditional foraging means collecting objects

� multi-foraging -> several object types

� many possible applications :
I mine search and removal
I search and rescue
I collection of minerals (rover exploration)
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Introduction

Optimal foraging theory

� biologists hypothesized that natural selection shaped optimal foraging
behaviour

� this is called optimal foraging theory (OFT)

� many predator prey models were devised for OFT

� the models and conclusions can be partly reused for optimal foraging in
swarm intelligence
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Introduction

Macroscopic modelling

� models are useful to make faster studies, achieve mathematical analysis

� very employed in physics, biology

� many possible analytical models : rate equations models are simple and
efficient

� the latter require some assumptions : homogeneity of setup and dilute
events
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Introduction

Goal
� The goal of this work is to achieve a fully autonomous optimal behaviour

in a multi foraging task.

� Tools employed are macroscopic models and simulations.
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Experimental setup

Description
� Circular arena
� Central nest
� Robots are spread randomly in

the arena
� Prey are introduced at random

positions outside the nest

� There are two type of prey (differ-
ent characteristics)
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Experimental setup

Goal of the robots
� When retrieved to the nest, prey yield a reward

� When robots go outside the nest, they get a penalty (negative reward) for
usage

� The goal of the robots is to maximize their reward by choosing :

I Tg the proportion of time spent outside the nest

I C1 the probability to take a prey of type 1 when encountered
I C2 the probability to take a prey of type 2 when encountered
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Experimental setup

Nest
� Robots can rest at nest.
� Robots must drop retrieved prey inside the nest

� The nest has 3 specific marks (to avoid overcrowding)

I A first mark defines where robots can rest
I A second mark defines the place where robots can release the prey
I A last mark defines the boundary of the nest
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Experimental setup

Nest

Center of the nest

First mark
robots can rest

Second mark
robots can drop

Nest mark
the boundary of the nest

Prey

Prey
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Experimental setup

Prey

� A reward for retrieval is associated to each kind of prey

� Prey can have different frictions (hence retrieval times)

� When dropped in nest, they are removed by experimentator

� Prey have a constant probability per unit time to appear at a random
location at the periphery of the arena

� Prey have a lifetime.
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Experimental setup

Robots
� Can perceive the nest anywhere in the arena, thanks to a lamp

� Can grasp and retrieve prey

� Can perceive robots retrieving prey (green colour)

� The controller is a finite state machine (FSA)
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Experimental setup

Robots controllers
Description of the FSA used :

Optimal foraging theory applied to swarm robotics – p. 15/34



Experimental setup

Robots controllers
Description of the FSA used :

Optimal foraging theory applied to swarm robotics – p. 15/34



Experimental setup

Robots controllers
Description of the FSA used :

Optimal foraging theory applied to swarm robotics – p. 15/34



Analytical model

F Flow description

F Equations

F Measures and calibrations

F Three main cases

F Validation

Optimal foraging theory applied to swarm robotics – p. 16/34



Analytical model

Flow description
The design of the model can be summarized by a scheme of flows between
robots’ states :

Retrieve1

Retrieve2

Rest

Explore

Robots find preys

Robots give up retrieval

Robots achieve retrieval 

Robots stop resting�

Robots stops exploring
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Analytical model

Equations

∂F

∂t
= −βL + γI − C1FN1pe − C2FN2pe + µ1R1 + µ2R2 + εR1 + εR2

∂I

∂t
= +βL − γI

∂R1

∂t
= C1FN1pe − µ1R1 − εR1

∂R2

∂t
= C2FN2pe − µ2R2 − εR2

∂N1

∂t
= ϕ1 − C1FN1pe − ξ1N1 + εR1

∂N2

∂t
= ϕ2 − C2FN2pe − ξ2N2 + εR2

F : free robots
I : inactive robots
R1 : robots retrieving type 1
R2 : robots retrieving type 2
N1 : prey of type 1
N2 : prey of type 2
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Analytical model

Measures and calibrations
� Most of the constants were simply set in the program (eg incoming prey

rate, prey lifetime)

� The frictions of the prey were adjusted to match the retrieval probabilities
µ1 and µ2

� pe the probability to find a single prey for a single robot in the arena was
measured in a simulation of 100000 seconds
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Analytical model

Validation
� We generated 6000 different possible setups using parameters variations

Variable Range of values tested unit
R 1, 2, 3, 5, 10, 15 robot
N1 5 prey of type 1
N2 5 prey of type 2
Rw1 −1, 1, 10, 100, 1000 reward
Rw2 1 reward
Rg −0.001 reward
β
γ
giveup 0.0111 probability
pe 1/166.66 probability
µ1 1/90, 1/40, 1/30, 1/60 second−1

µ2 1/60 second−1

ϕ1 0.066, 0.033, 0.016, 0.00833, 0.0055 prey / second
ϕ2 0.0166 prey / second
ξ1 0.002 probability
ξ2 0.002 probability
C1

C2
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Analytical model

Validation
� We measure the comparison ability of the model :

� 88 % of good comparisons, noise included.

Simulation’s results R(A) < R(B) R(A) = R(B) R(A) > R(B)
Model’s predictions 0% 0% 6.1%
R(A) < R(B) 44.45 % 0% 0%
R(A) = R(B) 0% 0% 0%
R(A) > R(B) 6.05% 0% 43.22 %
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Analytical model

Validation
� We measure the predicted reward with respect to the outcome of

simulations
� The models overestimates the reward of about 13 % (+/- 18.63 sd)
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Autonomous behaviour & optimality

F Algorithm

F Comparison to optimal predictions
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Autonomous behaviour & optimality

Algorithm

� robots can perceive :

I other robots
I prey of type 1
I prey of type 2

� basic idea :
I robots discriminate which prey are rewarding
I they allocate one robot per rewarding prey
I if a prey is rewarding -> increase proba to take it, else decrease

proba

� the net reward is computed by :
Rewardnet = (findT ime + retrievalT ime) · penalty + reward
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Autonomous behaviour & optimality

Comparison to optimal predictions

� We measure the predicted optimal reward with respect to the outcome of
simulations

� The algorithm is perfectly centered (mean 1%) and the standard error is
about 15%
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Autonomous behaviour & optimality

Estimation of the reward rate
� Robots rely on an weighted regression to estimate the current reward

rate.
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Autonomous behaviour & optimality

Algorithm of convergence
Parameters are a discount factor γ, a step s, a latency l between 2 estimations
of the reward rate
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Autonomous behaviour & optimality

Algorithm of convergence
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Autonomous behaviour & optimality

Results - case C1 = 1, C2 = 1
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Autonomous behaviour & optimality

Results - case C1 = 1, C2 = 0
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Autonomous behaviour & optimality

Results - case C1 = 1, C2 = X
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Conclusions
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F Future work
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Conclusions

� We studied a general problem of task allocation from the point of view of
swarm intelligence -> many possible applications

� A model has been devised and validated in a simulated experiment using
the prey retrieval paradigm

� An algorithm was proposed that let robots converge fully autonomously
toward the best greedy behaviour

� With fixed length experiments a tradeoff between regeneration of the
resources and consumption before the end.
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Conclusions

Future work
� Simulations results have to be compared against real experiments

� Division of labour will to be studied (is present)

� Adaptivity of the collective will be studied

� Self-regulation of interference effects might be handled
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Questions ?

Thank you for your attention !
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