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I. THE BEST SOLUTIONS FOUND BY ACOMV IN THE ENGINEERING OPTIMIZATION PROBLEMS

A. Welded beam design problem case A

Please see Table I.

B. Pressure vessel design problem case A, B, C

Please see Table II.

C. Pressure vessel design problem case D

Please see Table III.

D. Coil spring design problem

Please see Table IV.

E. Thermal insulation systems design problem

Please see Table V.

F. Welded beam design problem case B

Please see Table VI.

II. CPU TIMING EXPERIMENT OF ACOMV IN THE ENGINEERING OPTIMIZATION PROBLEMS

We run ACOMV on each engineering optimization problem until 1000 function evaluations have passed. These

experiments were conducted with Pentium(R) Dual-Core CPU E6300(2.80 GHz) on Linux (kernel 2.6.32). Over

five independent runs, we compute the average CPU time per function evaluation on each engineering optimization

problem. Please see Table VII.
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III. THE COMPARATIVE STUDIES ABOUT TWO ACOMV VARIANTS WITH EQUATION (9) AND (10) THAT

DIRECTLY USE THE FINE-TUNED PARAMETER VALUES OF ACOMV WITH EQUATION (6)

The comparative studies about two ACOMV variants with Equation (9) and (10) that directly use the fine-tuned

parameter values of ACOMV with Equation (6). See Fig. 1 and 2.

IV. THE COMPARATIVE STUDIES ABOUT FIVE DIFFERENT SCALES OF q VALUES IN EQUATION (6)

The comparative studies about five different scales of q values in Equation (6). See Fig. 3
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TABLE I

THE BEST SOLUTIONS FOR WELDED BEAM DESIGN PROBLEM CASE A

Methods x1(h) x2(l) x3(t) x4(b) f(x)

GA1 [1] 0.208800 3.420500 8.997500 0.210000 1.748309

GA2 [2] 0.205986 3.471328 9.020224 0.206480 1.728226

EP [3] 0.205700 3.470500 9.036600 0.205700 1.724852

(µ+ λ)ES [4] 0.205730 3.470489 9.036624 0.205729 1.724852

CPSO [5] 0.202369 3.544214 9.048210 0.205723 1.728024

HPSO [6] 0.205730 3.470489 9.033624 0.205730 1.724852

CLPSO [7] 0.205730 3.470489 9.033624 0.205730 1.724852

DELC [8] 0.205730 3.470489 9.033624 0.205730 1.724852

ABC [9] 0.205730 3.470489 9.033624 0.205730 1.724852

ACOMV 0.205729 3.470489 9.033624 0.205730 1.724852

TABLE II

THE BEST SOLUTIONS FOR PRESSURE VESSEL DESIGN PROBLEM CASE A, B AND C

Methods x1(Ts) x2(Th) x3(R) x4(L) f(x)

In case A: DE [10] 1.100 0.600 56.9948 51.0013 7019.031

In case A: ACOMV 1.100 0.600 56.9948 51.0013 7019.031

In case B: DE [10] 1.125 0.625 58.2902 43.6927 7197.729

In case B: ACOMV 1.125 0.625 58.2902 43.6927 7197.729

In case C: DE [10] 1.000 0.625 51.8135 84.5785 7006.358

In case C: ACOMV 1.000 0.625 51.8135 84.5785 7006.358

TABLE III

THE BEST SOLUTIONS FOR PRESSURE VESSELDESIGN PROBLEM CASE D

Methods x1(Ts) x2(Th) x3(R) x4(L) f(x)

GA1 [1] 0.8125 0.4375 40.3239 200.0000 6288.7445

GA2 [2] 0.8125 0.4375 42.0974 176.6540 6059.9463

(µ+ λ)ES [4] 0.8125 0.4375 42.0984 176.6366 6059.7143

CPSO [5] 0.8125 0.4375 42.0913 176.7465 6061.0777

HPSO [6] 0.8125 0.4375 42.0984 176.6366 6059.7143

RSPSO [11] 0.8125 0.4375 42.0984 176.6366 6059.7143

CLPSO [7] 0.8125 0.4375 42.0984 176.6366 6059.7143

DELC [8] 0.8125 0.4375 42.0984 176.6366 6059.7143

ABC [9] 0.8125 0.4375 42.0984 176.6366 6059.7143

ACOMV 0.8125 0.4375 42.0984 176.6366 6059.7143
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TABLE IV

THE BEST SOLUTIONS FOR THE COIL SPRING DESIGN PROBLEM

Algs
NLIDP GA GA DE HSIA DE

ACOMV
[12] [13] [14] [10] [15] [16]

N 10 9 9 9 9 9 9

D [inch] 1.180701 1.2287 1.227411 1.223041 1.223 1.223044 1.223041

d [inch] 0.283 0.283 0.283 0.283 0.283 0.283 0.283

SRfBest 2.7995 2.6709 2.6681 2.65856 2.659 2.658565 2.65856
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TABLE V

THE BEST SOLUTIONS FOR THE THERMAL INSULATION SYSTEMS

Solution information MVP [17] FMGPS [18] ACOMV

Continuous variable

xi(cm)

1 0.3125 4.5313 4.9506

2 5.4688 6.7188 7.9729

3 3.9062 4.8437 12.8448

4 6.5625 4.2188 17.07978

5 5.7812 7.3438 9.4420

6 5.1562 9.8438 10.1077

7 13.2812 24.948 0.02811

8 21.4062 12.135 7.3080

9 8.5938 7.5 11.9592

10 9.2188 6.4063 12.1872

11 20.3125 11.5105 6.1197

Ti(K)

1 4.2188 6.125 6.1003

2 7.3438 10.55 11.0841

3 10 14.35 21.2509

4 15 17.994 38.2608

5 20 24.969 51.8508

6 25 36.006 70.1000

7 40 71.094 71.0001

8 71.0938 116.88 99.4475

9 101.25 156.88 153.1701

10 146.25 198.44 236.8358

11 300 300 300

Categorical variable

Ii

1 N N N

2 N N N

3 N N N

4 N N N

5 N N T

6 N N E

7 N T T

8 E E E

9 E E E

10 E T T

11 T T T

Power(PL
A

( W
cm

)) 25.294 25.58 24.299
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TABLE VI

THE BEST SOLUTIONS FOR WELDED BEAMDESIGN DESIGN PROBLEM CASE B

Methods x1(h) x2(l) x3(t) x4(b) x5(M) x6(Joint) f(x)

GeneAS [19] 0.1875 1.6849 8.2500 0.2500 Steel 4-sided 1.9422

RSPSO [11] 0.1875 1.6842 8.2500 0.2500 Steel 4-sided 1.9421

PSOA[20] 0.2500 2.2219 8.2500 0.2500 Steel 2-sided 1.7631

CLPSO [7] 0.2500 1.1412 8.2500 0.2500 Steel 4-sided 1.5809

ACOMV 0.2250 1.2724 8.2500 0.2250 Steel 4-sided 1.5029

TABLE VII

SECONDS PER FUNCTION EVALUATION ON THE ENGINEERING OPTIMIZATION PROBLEMS

Welded beam design problem case A 4.94E−03

Pressure vessel design problem case A 4.69E−03

Pressure vessel design problem case B 4.96E−03

Pressure vessel design problem case C 4.81E−03

Pressure vessel design problem case D 5.00E−03

Coil spring design problem 1.32E−03

Thermal insulation systems design problem 3.73E−02

Welded beam design problem case B 5.74E−03
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Ackley− categorical variables
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Griewank− categorical variables
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Fig. 1. The RLDs obtained by the two ACOMV variants with Equation (6) and (9) in 50 independent runs. The solution quality threshold

is 1.00E−10. Dim indicates the dimensionality of the benchmark problem. Half of the dimensions are categorical variables and the other half

are continuous variables.
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Fig. 2. The RLDs obtained by the two ACOMV variants with Equation (6) and (10) in 50 independent runs. The solution quality threshold

is 1.00E−10. Dim indicates the dimensionality of the benchmark problem. Half of the dimensions are categorical variables and the other half

are continuous variables. The RLDs obtained by ACOMV with Equation (10) in dimensions two, six and ten are sequentially shown as the

increasing number of function evaluations to solve the problem at the first time.
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Ackley−Dim2−categorical variables
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Fig. 3. The RLDs obtained by ACOMV with five different scales of the q values in 50 independent runs. q = 0.05099 is the tuned value

used for ACOMV in the paper. The solution quality threshold is 1.00E−10. Dim indicates the dimensionality of the benchmark problem. Half

of the dimensions are categorical variables and the other half are continuous variables.
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