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Abstract

Tterated Greedy (IG) algorithms are based on a very simple principle, are easy to imple-
ment and can show excellent performance. In this paper, we propose two new IG algorithms
for a complex flowshop problem that results from the consideration of sequence dependent
setup times on machines, a characteristic that is often found in industrial settings. We pro-
pose two IG algorithms; the first is a straightforward adaption of the IG principle, while the
second incorporates a simple descent local search. Furthermore, we consider two different
optimization objectives, the minimization of the maximum completion time or makespan and
the minimization of the total weighted tardiness. Extensive experiments and statistical anal-
yses demonstrate that, despite their simplicity, the IG algorithms are for both objectives new
state-of-the-art algorithms.

Keywords: Iterated Greedy, Flowshop Scheduling, Sequence Dependent Setup Times, Makespan,
Weighted Tardiness, Stochastic Local Search, Metaheuristics.

1 Introduction

In the flowshop problem we have a set N = {1,...,n} of n independent jobs that have to be
processed on a set M = {My,..., M, } of m machines. Without loss of generality, the machines
are arranged in order so that all jobs are processed sequentially, i.e., first on machine 1, then on
machine 2 and so on until the last machine m, which gives a total of n - m operations. Each
operation requires a known, fixed amount of time that is commonly denoted as p;;, ¢ € M, j € N.

In the flowshop literature, one can find an overwhelming number of papers for the regular
flowshop problem with the objective of minimizing the maximum completion time across all jobs
(also called makespan or denoted by C),4.) as well as for most variants like no-wait, limited buffer
and so on. However, the sequence dependent flowshop problem (SDST flowshop) has attracted
much less attention. Specific to the SDST flowshop are the setup times. Setup times involve
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operations that have to be performed on machines and that are not part of the processing times.
This includes cleaning, fixing or releasing parts to machines, adjustments to machines, etc. The
most complex situation is when the setup times are separable from the processing time (i.e.,
the setup operations can be done before the product arrives to the machine) and when they
are sequence dependent (i.e., the amount of setup time depends on the machine, on the job
that the machine was processing and on the job that comes next). An example for the SDST
flowshop comes from the paint industry; after producing a black paint, substantial cleaning must
be performed if one intends to produce white paint, while less cleaning is necessary if a batch of
dark grey paint is to be produced. In this paper, we will consider this last type of setup times
and denote by S;;i the known, fixed and non-negative setup time on machine ¢ when producing
job k, k € N, after having produced job j.

The objective in flowshop scheduling problems is to find a sequence for processing the jobs on
the machines so that a given criterion is optimized. This yields a total of n! possible orderings
of the operations on each machine and a total of (n!)™ possible processing sequences. Usually,
as also done here, only the so-called permutation sequences are considered, where the processing
order of operations is the same for all machines. In this paper, we will consider two independent
objectives, namely the minimization of the makespan and the minimization of the total weighted
tardiness. According to Pinedo (2002), the two problems are denoted as F/S;jk, prmu/Craa
and F'/ S, prmu/ Z?Zl w;Tj, respectively; in the following, we will refer to these two problems
as SDST-FSP-C),4, and SDST-FSP-WT, respectively. Makespan is one of the most commonly
tackled objectives. In the flowshop context, minimizing the maximum completion time is equal to
minimizing the idle time of machines. This objective is also closely related to the maximization of
the throughput, which is very important in production environments where machines are expen-
sive to purchase and operate. However, the best sequence with respect to makespan minimization
might have a large number of jobs being completed after their due dates. Hence, we also consider
the minimization of the weighted tardiness. With this second, independent objective, every job
has a weight or priority that indicates its relative importance. This priority is multiplied by
the amount of time the job is completed after its due date. Weighted tardiness minimization
is of uttermost importance in make-to-order or just-in-time environments, where due dates are
typically set by clients.

As regards the computational complexity, the SDST flowshop with the C),,, objective has
been shown to be N'P-hard by Gupta (1986) even when m = 1 and also when m = 2 and setups
are present only on the first or second machine (see Gupta and Darrow, 1986). Based on the
complexity hierarchies for scheduling problems from Pinedo (2002), we can deduce that also the
SDST flowshop with total weighted tardiness objective is N'P-hard.

Recently, a rather new heuristic method, called Iterated Greedy (IG), has shown state-of-the-
art performance for the permutation flowshop scheduling problem where the goal is to minimize
the makespan (FSP-C),,,) Ruiz and Stiitzle (2006). This is rather noteworthy since a large
number of often rather complex and very fine-tuned algorithms have been proposed for the FSP-
Ciaz (Ruiz and Maroto, 2005) and the IG method is remarkably simple. IG for the FSP-C,,4,
works by iteratively applying two phases; in a destruction phase, some jobs are eliminated from
the current solution, and in the construction phase the eliminated jobs are reinserted into the
sequence using a greedy construction heuristic. To these two phases, an additional local search
phase can be added in a straightforward way.

The main goal of this article is an experimental study as to whether the high performance of
IG for the PFSP is transferable also to other, more complex flowshop environments, in particular
SDST flowshop problems. In fact, the results obtained with the proposed IG algorithms show
that the excellent performance on the PFSP also is transferable to these, more complex scheduling



environments and our proposed IG algorithms can be identified as new state-of-the-art algorithms
for the SDST-FSP-C,,4, and the SDST-FSP-WT.

The remainder of the paper is organized as follows: Section 2 reviews the literature on the
two problems considered here. In Section 3, we introduce the two IG algorithms proposed in this
paper. A full experimental evaluation and comparison of the proposed methods is shown, along
with statistical analyses, in Section 4. Finally, Section 5 closes this study with some conclusions
and future research directions.

2 Literature review

Compared to the regular flowshop, on which hundreds of papers have been published, the lit-
erature on the SDST counterpart is scarce. In a recent article, Ruiz et al. (2005) carried out
an extensive literature survey about this problem and here we summarize the most important
aspects.

Exact techniques for the SDST flowshop have shown rather limited results. The works of Cor-
win and Esogbue (1974) on dynamic programming or Srikar and Ghosh (1986), Stafford and Tseng
(1990) and Tseng and Stafford (2001) on integer programming or the papers of Rios-Mercado and
Bard (1998a) and Rios-Mercado and Bard (1999a) on branch and bound methods allow to solve
optimally problem instances with only about 10 jobs in general and in most cases only the C,q.
objective is considered. Some heuristics and applications of stochastic local search algorithms to
the SDST-FSP-C),,,, have also been proposed. Simons (1992) proposed two general heuristics for
the SDST flowshop, named TOTAL and SETUP. Das et al. (1995) proposed a heuristic method
based on a savings index. Rios-Mercado and Bard (1998b) proposed a modification of the well
known NEH heuristic for the regular flowshop from Nawaz et al. (1983) that considered setup
times and that they called NEH RMB; in the same article they proposed a GRASP algorithm.
In a later work, the same authors proposed a modification of the heuristics of Simons (1992)
resulting in a new heuristic called HYBRID (Rios-Mercado and Bard, 1999b). Recently, Ruiz
et al. (2005) proposed a genetic and a memetic algorithm for the SDST-FSP-C,,,4,. They carried
out an extensive experimental study and compared these two algorithms to all aforementioned
algorithms as well as to many adaptations of other methods that were proposed for the FSP-
Cinaz- The result was that both algorithms, especially the memetic, are clearly superior to all
other alternatives.

On the SDST-FSP-WT, little has been published. In two similar articles (Parthasarathy
and Rajendran, 1997a, Parthasarathy and Rajendran, 1997b), a Simulated Annealing heuristic
was proposed for the SDST flowshop problem with the objectives of minimizing the maximum
weighted tardiness and the total weighted tardiness. In a more recent work, Rajendran and
Ziegler (2003) introduced a new heuristic paired with a local search improvement scheme for a
combined objective of total weighted flow-time and tardiness. Another similar work is Rajendran
and Ziegler (1997) were only weighted flow-time is considered.

Although the existing methods for the SDST-FSP-C,,,,, have been comparatively studied in
Ruiz et al. (2005), no similar comparison has been done with other objectives.

3 1IG for the SDST Flowshop

Iterated Greedy algorithms start from some initial solution and then iterate through a main
loop in which first a partial candidate solution s, is obtained by removing a number of solution
components from a complete candidate solution s and next a complete solution s’ is re-constructed



procedure Ilterated  Greedy
sg := GeneratelnitialSolution;
s := LocalSearch(so); %optional
repeat
sp := Destruction(s)
s" := Construction(s,)
s’ := LocalSearch(s’) %optional
s := AcceptanceCriterion(s, s’)
until termination condition met
end

Figure 1: General outline of an Iterated Greedy algorithm.

starting with s,,. Before continuing with the next loop, an acceptance criterion decides whether s’
becomes the new incumbent solution. This process is repeated until some stopping criterion like
a maximum number of iterations or a computation time limit is met. It is also straightforward to
add an optional local search phase for improving the re-constructed solution s’ before applying
the acceptance test. An outline of a generic IG algorithm is given in Figure 1.

IG is related to other Stochastic Local Search (SLS) methods (see Hoos and Stiitzle, 2004),
and especially to Iterated Local Search (ILS) (see Lourenco et al., 2003). The applications of
the IG method are, for the moment rather limited. Jacobs and Brusco (1995) and Marchiori
and Steenbeek (2000) applied IG algorithms to Set Covering problems and recently, Ruiz and
Stiitzle (2006) applied a simple IG method with and without the optional local search phase to
the FSP-C),4. In this latter work, the simple IG algorithm yielded results far better than several
other, much more complex approaches. Therefore, in the following we provide the description of
a new IG algorithm version that we apply to the more realistic SDST flowshop variant under the
two already mentioned objectives.

Before entering into more detail, we give additional notation and describe how to calculate
the Cjuee and Z?Zl w;T}; objectives of a given sequence. For every job j, j € N we have a due
date denoted as d; and a weight w;. We denote with C; ; the completion time of job j on machine
i. The completion time of job j at the last stage m is C,, ;j or C; in short. The lateness of job j
is defined as L; = C; — d;. Note that L; can be positive or negative and, hence, the tardiness of
a job j is defined as Tj; = max{L;,0}.

Let m be a permutation or sequence of the n jobs. The job in position j of the sequence
is denoted as 7(j). The completion times for the jobs on the machines are calculated with the
formula:

Cin(jy = max{C; ;1) + Si,ﬂ'(jfl),ﬂ'(j); Ci17()} + Pix(y) (1)

where, Co ;) = 0, Siox(j) = 0 and Cio = 0, for all © € M,j € N. With this we have that
Cmaz = Cr(n) and with the completion times on the last machine for all jobs we can calculate
the total weighted tardiness objective as 27:1 w;T}.

3.1 Algorithm initialization

The initial solution for IG is ideally generated by a high performance construction heuristic. For
the SDST-FSP-C),,4:, we used the NEH RMB heuristic proposed by Rios-Mercado and Bard



(1998b); it is an extension of the well-known NEH heuristic from Nawaz et al. (1983), which still
can be considered as the best construction heuristic for the FSP-C),4:, as shown in Ruiz and
Maroto (2005). It is noteworthy that NEH RMB has a computational complexity of O(n?m),
since for the SDST-FSP-C),,, the same speed-ups as proposed by Taillard (1990) for the basic
NEH can be applied. Recall that the NEH is an insertion heuristic, where at each step the next
unscheduled job is inserted in each possible position of some partial solution. The job is then
inserted in the position where the scheduling criterion takes the lowest value. For executing such
an insertion heuristic, first the jobs have to be ordered in some way.

For the SDST-FSP-WT, the situation is rather different, since there are no known high per-
forming construction heuristics available. Hence, we extended the original NEH, which has been
widely used for many other scheduling problems, to this second problem, resulting in a heuristic
we call NEH EWDD. However, the accelerations proposed by Taillard (1990) are not transfer-
able for objectives other than C,,q, and, hence, the complexity of NEH_EWDD is O(n3m), the
same as that of the original NEH. In NEH EWDD we consider the existence of weights and
due dates for defining an initial order in which the jobs are considered for insertion. The initial
order in NEH EWDD is based on the Earliest Weighted Due Date dispatching rule (EWDD)
that arranges jobs in ascending order of their weighted due dates, i.e., d;/w;.

3.2 Destruction, construction and acceptance criterion

As said above, once the initial sequence has been obtained, the destruction step is applied. Let
the initial sequence be 7. In this step, a given number d of jobs, chosen at random and without
repetition, are removed from the sequence. This creates two subsequences, the first one of size d
is called mr and contains the removed jobs in the order in which they were removed. The second,
of size n — d, is the original one without the removed jobs, that we call 7p.

After the two subsequences are created, the construction step is applied. Here, all jobs in 7
are reinserted in 7p by applying the NEH heuristic, i.e., the first job of mg (7g(1)) is inserted
in all possible n — d + 1 positions of mp generating n — d + 1 partial sequences that include job
TRr(1)- The sequence with the best objective value is kept for the following iteration. The process
ends when 7g is empty and therefore mp is again of size n. It has to be noted that for the
SDST-FSP-C4, we use in this construction phase the speedier NEH RMB heuristic.

Another step in the Iterated Greedy algorithm is to decide whether the reconstructed sequence
is accepted or not as the incumbent solution for the next iteration. A pure descent criterion
would be to accept solutions with better objective function values. However, this acceptance
criterion is prone to stagnation. As an alternative we can consider a simple simulated annealing-
like acceptance criterion with constant temperature. This has been used in other works like in
Osman and Potts (1989), Stiitzle (1998) or Ruiz and Stiitzle (2006). The constant Temperature
depends on the processing times, the number of jobs and machines, and an adjustable parameter

T: " "
Dic Zj:l Dij

Temperature =T -
P n-m-10

(2)
We denote by O(incumbent) and O() the respective objective function values of the incumbent
sequence and the reconstructed sequence. If O(w) > O(incumbent), 7 is accepted as the new
incumbent if:

random < exp{O(m) — O(incumbent)/Temperature}

where random is a random number uniformly distributed in [0, 1].



procedure LocalSearch Insertion ()
improve := true;
while (improve = true) do
improve := false;
for i :=1tondo
remove a job k at random from 7 (without repetition)
7' := best permutation obtained by inserting k in any possible positions of 7;
if O(7’') < O(7) then

=
improve := true;
endif
endfor
endwhile
return 7w

end

Figure 2: Descent local search procedure based on the insertion neighborhood

3.3 Hybridization with local search

To further improve the performance of the basic IG algorithm, Ruiz and Stiitzle (2006) added a
simple descent local search phase after after the NEH initialization and after each sequence re-
construction. In fact, such a hybridization of construction heuristics with local search is common
practice in stochastic local search. We apply a local search based on the insertion neighborhood.
This neighborhood has been regarded as superior to the swap or exchange neighborhoods in
flowshop scheduling by many authors (see Osman and Potts, 1989, Taillard, 1990, Stiitzle, 1998
or Ruiz et al. (2005) among many others). The insertion neighborhood of a sequence comprises all
those sequences that can be obtained by removing some job and inserting it in another position.
We implemented a local search algorithm that searches this neighborhood in a particular way: In
each local search step, a job is removed from the sequence (at random and without repetition) and
then inserted in all possible n positions. The current sequence 7 is replaced by the best sequence
among the n possible ones, only if an improvement of 7 can be obtained. The procedure ends
when no further improvements are found, i.e., when the sequence is a local optimum with respect
to the insertion neighborhood. The pseudocode of this procedure is shown in Figure 2.
With this optional local search step, the proposed IG algorithm is depicted in Figure 3.

4 Experimental evaluation

For the proposed, basic IG algorithm, which we refer to as IG_RS, we set the temperature
parameter 7" to 0.5 and the number of jobs that are extracted from the sequence at each iteration,
(d) to 4. This follows the extensive experimental study carried out in Ruiz and Stiitzle (2006).
In some short trial runs, we tested other values for these two parameters with no apparent
improvement. Therefore, we keep the original values as stated.

If we use the optional local search, we refer to the resulting algorithm as IG__RSyg. In the
following, we present the results of both algorithms compared to other existing methods for each
of the two objectives separately.



procedure IlteratedGreedy for SDST flowshop
7 :=NEH_RMB or NEH_ EWDD; % Initialization
7 = LocalSearch_ Insertion(m);
Ty = T
while (termination criterion not satisfied) do
7= % Destruction phase
fori:=1to ddo

;L . , . - r
7' :=remove one job at random from 7’ and insert it in 7p;

endfor
for i :=1 to ddo % Construction phase
7' := best permutation obtained by inserting job TR, in all possible positions of 7/;
endfor
7" := LocalSearch_ Insertion(n’); ~ % Local Search
if O(n") < O(w) then % Acceptance Criterion
mi=n";
if O(r) < O(mp,) then % check if new best permutation
Ty = T
endif
elseif (random < exp{—(O(7") — O(w))/ Temperature}) then
mi=7";
endif
endwhile
return m,

end

Figure 3: Tterated Greedy algorithm with the optional local search phase.

4.1 Experimental results for the SDST-FSP-C,,..

Ruiz et al. (2005) generated four instance sets for testing algorithms for the SDST-FSP-C),4.
Each set is based on the original 120 instances of Taillard (1993), which are organized in 12 groups
with 10 instances each. The groups contain different combinations of the number of jobs n and the
number of machines m. The combinations are: {20,50,100} x {5, 10,20}, 200 x {10, 20} and 500 x
20. The processing times (p;;) in Taillard’s instances are generated from a uniform distribution
in the range [1,99]. To generate the four instance sets for the SDST-FSP-C,,,4., the ratios of the
setup times to the processing times were changed such that the sequence dependent setup times
are at most 10%, 50%, 100% or 125%, respectively, of the maximum possible processing times of
Taillard’s original instances. This results in the four sets called SDST10, SDST50, SDST100, and
SDST125 that have the setup times uniformly distributed in the range [1,9], [1,49], [1,99] and
[1,124], respectively. Thus, we have a total of 480 different instances, which can be downloaded
from http://www.upv.es/gio/rruiz.

We are going to test a total of six algorithms. The first two are the proposed IG_RS and
IG_RSyg algorithms. We will also test the genetic and memetic algorithms of Ruiz et al. (2005).
We refer to the genetic algorithm as GA. The memetic algorithm in the original work used a
curtailed local search to supposedly improve the speed of the algorithm. In this article, we
propose a modified version that uses the same local search as IG_RSpg in the local search



phase of the memetic algorithm. We refer to the original memetic algorithm as MA and to the
modified memetic algorithm as MAg. The last algorithm that we test is the PACO ant colony
optimization algorithm from Rajendran and Ziegler (2004). PACO was adapted to the SDST-
FSP-C},4, and the initialization was changed from the original NEH to NEH RMB. It has to
be noted that we could have tested also other SLS algorithms that were proposed for the SDST
flowshop (see Section 2 for details). However, from the extensive comparison in Ruiz et al. (2005),
which tested a total of 14 methods, including many SDST flowshop specific methods as well as
regular flowshop adapted algorithms, the memetic algorithm (denoted here as MA) resulted to
be clearly superior to all others. Consequently, here we will mainly compare to that algorithm.

For the experiments we use a PC/AT computer with an Athlon XP 1600+ processor (1400
MHz) and 512 MBytes of main memory. Every algorithm is run 10 independent times with a
stopping criterion based on an elapsed CPU time given by the formula (n -m/2) - ¢ milliseconds.
This allows for more time as the number of jobs n and the number of machines m grows. We
will carry out three different experiments setting ¢ to 30, 60 and 90. So, for example, for the
largest instances (500 x 20) and for ¢ = 90 we will have that each of the 10 repetitions of each
algorithm takes (500-20/2)-90 = 450, 000 milliseconds or 7.5 minutes. The response variable for
each repetition and each of the 480 instances is the relative percentage deviation over the best
known solution and it is calculated as follows:

Someg, — Bestgg

Relative Percentage Deviation (RPD) = Bost
€8lso]

100, (3)

where Someg,; is the solution returned for a given instance and Best,; is the best known solution
for the same instance. The best known solutions for the four instance sets can be downloaded from
http://www.upv.es/gio/rruiz. The results for instance sets SDST10 and SDST50 are shown
in Table 1 and for instance sets SDST100 and SDST125 in Table 2. For each combination of n
and m, these results are averaged across the 10 instances and across all repetitions. Therefore, in
each cell of the tables we show the results for each value of ¢ across 10 - 10 = 100 different values.

As it can be seen, for all algorithms the average relative percentage deviations (AVRPD)
increase as the ratio of setup times to processing time increases; for example, in the SDST10 set
the highest AVRPD is 1.39 for the GA and ¢ = 30, whereas in SDST125 the highest AVRPD is
3.97. The same can be said about the lowest AVRPD. Additionally, we see that as t increases,
the benefits in SDST10 are not as marked as are in SDST100 or SDST125. An interpretation
of this fact is that the problems may become increasingly difficult as the ratio of setup times to
processing time increases.

From the cross averages in the tables (last line for each instance set), we can see that GA
is overall the worst performer, followed by IG RS, which is second worst. Both algorithms do
not incorporate local search but IG_ RS is much simpler and easier to implement than the GA—
hence, IG_RS is preferable to GA and, hence, the best performing algorithm that does not use
an explicit local search.

Another salient conclusion from the experiments comes after the comparison of the algorithms
MA s and MA: the MA s memetic algorithm with the more intensive local search performs much
better than MA as it obtains better results by a considerably margin. This observation can be
substantiated by statistical tests, as we show below. As a matter of fact, considering all 120
instances for each of the four groups, the three values of ¢t and the 10 repetitions carried out
(14400 values), MAyg improved the results of MA in 7,591 occasions, while both algorithms
yielded the same solution in 1,394 cases and only in 5,415 cases MA was better, and even in these
latter cases the differences between MA and MA g were rather minor.

PACO has a peculiar profile. While in SDST10 it yields on average better solutions than GA,



Instance

GA

MA

MALs

PACO

IG_RS

IG_RSrs

SDST10 Instances

20 x 5
20 x 10
20 x 20
50 x 5
50 x 10
50 x 20
100 x 5
100 x 10
100 x 20
200 x 10
200 x 20
500 x 20

0.43/0.46/0.41
0.59/0.57/0.56
0.44/0.37/0.39
1.04/0.93/0.92
2.10/2.07/2.01
2.23/2.18/2.10
1.28/1.10/1.03
1.48/1.39/1.33
2.07/1.93/1.83
1.63/1.42/1.32
2.00/1.79/1.71
1.38/1.31/1.27

0.49/0.90/0.70
0.55/0.28/0.36
0.59/0.52/0.56
0.77/0.57/0.77
1.21/1.38/1.26
1.38/1.21/1.28
0.76/0.70/0.63
0.91/0.81/0.90
1.49/1.11/1.06
0.81/0.73/0.65
1.14/0.93/0.87
0.74/0.54/0.48

0.12/0.10/0.08
0.13/0.13/0.13
0.14/0.09/0.10
0.43/0.31/0.30
1.12/0.83/0.81
1.16/0.96/0.82
0.54/0.40/0.31
0.78/0.60,0.48
1.27/0.97/0.82
0.79/0.61/0.48
1.11/0.87/0.76
0.69/0.54/0.43

0.18/0.21/0.18
0.33/0.26/0.22
0.20/0.16/0.12
0.53/0.44/0.42
1.23/1.02/1.06
1.27/1.06/1.01
0.87/0.80/0.76
0.99/0.84/0.77
1.49/1.25/1.12
1.04/0.94/0.85
1.31/1.10/0.95
0.82/0.69/0.61

0.21/0.19/0.14
0.28/0.22/0.24
0.30/0.22/0.19
1.00/0.88/0.84
1.58/1.58/1.43
1.85/1.70/1.54
1.44/1.36/1.34
1.49/1.37/1.32
1.75/1.48/1.47
1.50/1.39/1.33
1.45/1.25/1.12
1.01/0.88/0.82

0.08/0.05/0.04
0.08/0.05,/0.04
0.07/0.05,/0.04
0.37/0.32/0.27
0.76,/0.60/0.53
0.91/0.64/0.60
0.43/0.38/0.33
0.61,/0.44/0.38
0.88/0.71/0.54
0.58/0.43/0.32
0.79/0.53/0.38
0.46/0.31/0.21

Average

1.39/1.29/1.24

0.90/0.81/0.79

0.69/0.53/0.46

0.86/0.73/0.67

1.16/1.04/0.98

0.50/0.38/0.31

SDST50 Instances

20 x5
20 x 10
20 x 20
50 x 5
50 x 10
50 x 20
100 x 5
100 x 10
100 x 20
200 x 10
200 x 20
500 x 20

1.34/1.30/1.15
1.21/1.16/1.17
0.57/0.57/0.49
3.85/3.57/3.43
3.24/3.15/3.01
2.57/2.49/2.43
4.64/4.06/3.98
3.61/3.24/3.07
2.96/2.71/2.51
3.95/3.64/3.49
3.04/2.82/2.67
2.14/2.09/2.07

0.44/1.21/1.50
0.92/0.87/0.77
0.87/0.23/0.78
2.27/1.65/2.18
1.81/1.96,/1.68
1.93/1.61/1.69
2.64/2.35/2.34
2.20/1.82/1.52
2.00/1.66/1.54
1.98/1.71/1.35
1.62/1.34/1.19
1.29/0.99/0.76

0.37/0.35/0.30
0.41/0.31/0.32
0.20/0.16,/0.16
1.79/1.39/1.13
1.49/1.24/1.08
1.33/1.07/0.89
2.23/1.72/1.38
1.84/1.53/1.21
1.73/1.35/1.03
1.88/1.43/1.21
1.61/1.17/1.02
1.23/0.96/0.79

0.58/0.53/0.51
0.49/0.43/0.44
0.35/0.32/0.25
2.52/2.05/1.98
2.15/1.81/1.62
1.65/1.42/1.28
4.37/4.11/3.95
3.44/3.19/3.10
2.87/2.66/2.45
3.62/3.48/3.37
2.89/2.78/2.64
2.00/2.00/2.00

0.83/0.69/0.58
0.66/0.62/0.58
0.60/0.41/0.37
2.99/2.61/2.42
2.44/2.23/2.12
2.34/2.06/2.03
2.93/2.67/2.33
2.69/2.23/2.13
2.38/2.01/1.82
2.59/2.19/1.90
2.07/1.77/1.51
1.79/1.47/1.28

0.26/0.18/0.10
0.28/0.20/0.19
0.10/0.09/0.07
1.41/1.13/1.04
1.33/1.17/0.92
1.16/0.93/0.82
1.51/1.27/1.09
1.37/1.04/0.88
1.29/0.96/0.81
1.33/0.88/0.63
1.10/0.74/0.53
0.86/0.50,0.31

Average

2.76/2.57/2.46

1.66/1.45/1.44

1.34/1.06/0.88

2.24/2.06/1.97

2.03/1.75/1.59

1.00/0.76,/0.62

Table 1: Average relative percentage deviation from the best known solutions for the algorithms
for the SDST-FSP-C,,,4, on instance sets SDST10 and SDST50 with the termination criteria set
at (n-m/2) -t milliseconds maximum CPU time where ¢ = 30,60 and 90, respectively.

IG_RS and MA, its performance deteriorates much more rapidly than all other algorithms as
the ratio of setup times to processing times increases. In SDST125, the performance of PACO
is worse than IG RS which is much simpler and does not incorporate any kind of local search
as PACO does. This behavior may be due to the type of information used when constructing
solutions in PACO. Essentially, PACO exploits the information at which position a job is in a
good sequence, while it does not consider the successor / predecessor relationship between jobs.
However, as the relative influence of the setup times increases, this latter information becomes
probably more important, which explains also the relatively poor performance of PACO.

Finally, we can see from the tables that IG_RSyg gives results that are far better than all
other algorithms, including the improved MAg. For t = 90 we have that the overall AVRPD for
SDST10 and for the algorithms MA, MA;gs and IG_RSyg are 0.79, 0.46 and 0.31 respectively,
which means that IG_RSpg gives results which are 155% better than MA, which was shown in
Ruiz et al. (2005) to be far better than the previous state-of-the-art at that time. Also, IG_RSrg
gives results that are 48% better than the much improved MAg. Hence, the proposed IG_RSyg
algorithm can be regarded as the best performer for the considered problem and, at the same
time, it is, except for IG RS, the simplest and easiest to code of those compared.

While a considerable amount of testing has been carried out, comparing algorithms on the



Instance

GA

MA

MALs

PACO

IG_RS

IG_RSrs

SDST100 Instances

20 x 5
20 x 10
20 x 20
50 x 5
50 x 10
50 x 20
100 x 5
100 x 10
100 x 20
200 x 10
200 x 20
500 x 20

2.01/1.88/1.82
1.48/1.26/1.27
1.08/1.00/0.94
5.00/5.35/5.26
4.19/4.21/4.18
3.39/3.23/3.11
6.49/5.99/6.00
4.58/4.39/4.15
3.73/3.67/3.49
5.12/4.95/4.71
3.59/3.65/3.48
2.50/2.66,2.64

1.29/1.73/1.43
0.87/0.88/1.09
0.62/0.28/1.14
3.12/2.65/3.02
2.59/2.72/2.55
1.78/2.11/1.77
3.63/3.50/3.04
3.03/2.67/2.45
2.37/2.31/2.39
2.56/2.31/2.19
1.99/1.81/1.68
1.53/1.44/1.16

0.43/0.37/0.39
0.31/0.28/0.29
0.29/0.26/0.17
2.37/2.24/1.99
1.98/1.66/1.50
1.66/1.35/1.18
3.20/2.69/2.16
2.26/2.01/1.61
2.12/2.03/1.53
2.53/2.19/1.77
1.93/1.68/1.40
1.53/1.35/1.14

0.82/0.71/0.61
0.66/0.47/0.48
0.52/0.41,/0.48
3.79/3.40/3.31
3.05/2.73/2.49
2.51/2.14/1.98
6.86/6.89/6.65
5.14/4.96/4.89
4.04/4.04/3.91
5.48/5.62/5.53
3.70/3.87/3.82
2.50/2.75/2.75

1.53/1.48/1.24
1.42/1.01/1.03
0.95,/0.92/0.74
3.83/3.89/3.70
3.10/3.09/2.99
2.76/2.58,/2.40
3.93/3.82/3.48
3.28/2.95/2.77
2.76/2.65,/2.46
2.98/2.86/2.49
2.27/2.08/1.92
1.87/1.70/1.50

0.30/0.25/0.17
0.35/0.25/0.18
0.27/0.18/0.17
1.95/1.95/1.82
1.57/1.48/1.30
1.41/1.28/1.11
2.16/1.95/1.63
1.61/1.44/1.02
1.41/1.35/1.05
1.67/1.25/0.92
1.26/0.93/0.76
0.96/0.73/0.46

Average

3.60/3.52/3.42

2.11/2.03/1.99

1.72/1.51/1.26

3.26/3.17/3.07

2.56/2.42/2.23

1.24/1.09/0.88

SDST125 Instances

20 x5
20 x 10
20 x 20
50 x 5
50 x 10
50 x 20
100 x 5
100 x 10
100 x 20
200 x 10
200 x 20
500 x 20

2.06,/1.80,/1.90
1.74/1.66,/1.52
1.06,/0.97/0.95
6.09/5.83/5.63
4.64/4.73/4.59
3.32/3.41/3.25
7.33/6.86/6.82
5.33/5.14/4.80
3.99/3.79/3.50
5.53/5.65/5.37
3.86,/3.88/3.69
2.71/2.89/2.83

1.69/2.05/1.40
1.02/1.48/1.24
1.37/0.96/1.21
3.71/3.97/3.48
3.14/2.13/3.35
2.16/2.50/1.63
4.38/4.45/3.65
3.24/3.10/2.84
2.56/2.40/2.16
2.81/2.76/2.63
2.08/1.94/1.69
1.71/1.66/1.36

0.67/0.34/0.32
0.51/0.42/0.37
0.28/0.22/0.24
2.97/2.47/1.97
2.07/1.78/1.50
1.59/1.43/1.26
3.55/3.02/2.52
2.78/2.37/1.94
2.31/1.80/1.50
2.73/2.51/2.14
2.04/1.74/1.49
1.70/1.53/1.23

0.88/0.64/0.65
0.85/0.68/0.56
0.47/0.39/0.39
4.59/4.07/3.67
3.60/3.16/2.96
2.55/2.43/2.06
8.19/7.89/7.75
6.02/5.89/5.61
4.37/4.32/4.15
5.80/6.27/6.20
3.93/4.20/4.16
2.77/3.03/3.02

1.96/1.40/1.24
1.62/1.39/1.44
0.94/0.84/0.81
4.57/4.25/4.00
3.95/3.60,/3.47
2.77/2.71/2.59
4.70/4.58/4.14
3.66/3.43/3.26
2.91/2.69/2.60
3.33/3.17/2.94
2.51/2.40/2.24
2.13/1.91/1.64

0.46/0.35/0.30
0.53/0.41/0.36
0.26/0.22/0.19
2.37/2.18/2.01
1.94/1.67/1.54
1.42/1.45/1.18
2.41/2.27/1.91
2.07/1.65/1.34
1.52/1.22/1.00
1.79/1.60/1.17
1.38/1.06/0.76
1.08/0.83/0.52

Average

3.97/3.88/3.74

2.49/2.45/2.22

1.93/1.64/1.37

3.67/3.58/3.43

2.92/2.70/2.53

1.44/1.24/1.02

Table 2: Average relative percentage deviation from the best known solutions for the algorithms
for the SDST-FSP-C,,,,, on instance sets SDST100 and SDST125 with the termination criteria
set at (n-m/2) - ¢ milliseconds maximum CPU time where ¢ = 30,60 and 90, respectively.

basis of means is rather weak. Hence, we have carried out an analysis of experiments using
the ANOVA technique. In fact, we did four analyses, one for each instance set (SDSTI0, ...,
SDST125), where the controlled factors are the type of instance, the algorithm applied and ¢. For
each such experiment we consider all algorithms, values of ¢, instance types (we have 12 types, one
for each combination of n and m, i.e., 1: 20 x 5,...,12: 500 x 20) and repetitions. The response
variable is the relative percentage deviation or RPD. For each experiment all three hypotheses
of the ANOVA technique (normality, homocedasticity and independence of the residuals) where
checked and accepted. In these experiments, of particular interest is the interaction between
the algorithm and ¢ factors. The means plot along with the Least Significant Difference (LSD)
confidence intervals (at the 95% confidence level) are given in Figure 4 for experiment SDST10.

As we can see, for all algorithms, increasing the value of t results in better performance
although for ¢ = 60 and ¢ = 90 the differences are very small and even not statistically significant
for MA. We can confirm also the previous observation that GA is statistically worse than all other
algorithms (recall that overlapping LSD intervals means no statistically significant differences at
the 95% confidence). We also observe that MA g is statistically better than MA. Furthermore,
MA s with ¢t = 30 is better than MA with ¢ = 90 which is a rather impressing result. From the
plot it is also clear than IG RS is better than GA and also in this case we have that IG_RS
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Figure 4: Plot of the average percentage deviation from best known solutions for the interaction
between the type of algorithm and the different values of ¢ for the stopping criterion. Instance
set SDST10 and makespan criterion.

with ¢ = 30 yields better results than GA with ¢ = 90. PACO in this experiment is comparable
or marginally better than MA but the improved version MA ¢ yields better results than PACO.
Lastly, from the plot it is clear that IG_RSrg is by far the highest performing algorithm and
it beats MArg by a considerable margin. We can even see than IG_RSpg with t = 60 gives
statistically better results than MA g with ¢ = 90.

In the previous analysis, we observed the results averaged across all instance types, but it is
also possible to do a more in-depth analysis. In Figure 5 we see for instance set SDST10 the
interaction between the type of instance and the algorithm factors after having fixed ¢ to 90.

a Interactions and 95.0 Percent LSD Intervals

R
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Figure 5: Plot of the average percentage deviation from best known solutions for the interaction
between the type of algorithm and the type of instance. Instance set SDST10, ¢ = 90 and
makespan criterion.

In this plot, we see that in the easiest instances the algorithm’s performances are closer
together than in the hardest instances. According to the results, the instances with the largest
deviations from the best known solutions are types 5, 6, 9 and 11, which correspond to 50 x 10,
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50 x 20, 100 x 20 and 200 x 20. In these types, the differences among algorithms are much more
acute. In all these cases we can see a clear lead for IG_RS; g followed by MA g and sometimes
by MA or PACO.

More or less the same conclusions as for instance set SDST10 can be drawn for the other 3

experiments with some minor exceptions. In Figure 6 we show the interaction between the factors
algorithm and t for SDST125.

Interactions and 95.0 Percent LSD Intervals

4.1 4 ¢
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25
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Figure 6: Plot of the average percentage deviation from best known solutions for the interaction
between the type of algorithm and the different values of ¢ for the stopping criterion. Instance
set SDST125 and makespan criterion.

As it has been mentioned, the differences among the different values of ¢ are more marked on
this set (note that although in the graph the three lines appear to be closer together, the y-axis
shows that the differences in the AVRPD values are greater than in the SDST10 experiment). Two
striking differences from the SDST10 experiment can be pointed out. First IG RS’s performance
is considerably better and almost comparable to that of MA. From the plot it seems that IG_RS
with £ = 90 is comparable to MA with ¢ = 60. The second striking fact is the acute deterioration
of the PACO algorithm, which in this case is far worse than all algorithms except GA. This
experiment also indicates that a more in-depth adaptation of PACO to the SDST-FSP-C),4.
would be required.

As a first important observation we can say that the Iterated Greedy algorithms, especially
the version with local search, are very robust since they resulted to be the best algorithms for
the SDST-FSP-C,,,, in all four instance sets and they were also state-of-the-art algorithms for
the regular flowshop problem (see Ruiz and Stiitzle 2006). Note that the adaptations needed for
the SDST flowshop are small and even in this case the performance is still top notch.

4.2 Experimental results for the SDST-FSP-WT

Now we proceed to test the proposed algorithms as well as other existing methods for the total
weighted tardiness objective. As in the previous section, we first need a benchmark set. We
have chosen to take the already described SDST10,...,SDST125 sets and to augment them by
including weights and due dates. The four new benchmark sets will be called DD _SDST10, ...,
DD_SDST125. The weights for all n jobs (w;) are drawn from a uniform U[1,10] distribution,
which is also done for other benchmark sets for scheduling problems involving tardiness objectives
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(Congram et al., 2002). For obtaining the due dates we use a similar approach to that of Hasija and
Rajendran (2004). In that work, the authors consider the regular flowshop with total tardiness
objective and they assign tight due dates in their experiments. In order to determine the due
dates with sequence dependent setup times, we follow the following steps:

1. Calculate the total processing time on all the m machines for each job:

m
Vj,j €N, P =) pi
=1

2. Calculate the average setup time for all possible following jobs and sum it for all machines:

n
> Sigk
k=1k#j
n—1

Vi, €N, 8=

i=1
3. Assign due date for each job:

Vj,j €N, d;j =(P;j+8S;) x (14 random - 3)

where random is a real random number uniformly distributed in [0, 1].

This method of generating due dates results in very tight to relatively tight due dates depend-
ing on the actual value of random for each job, i.e., if random is close to 0, then the due date of
the job is going to be really tight as it would be more or less the sum of its processing times and
average setup times on each machine. As a result, the job will have to be sequenced very early
to avoid any tardiness. These 480 augmented instances as well as the best known solutions can
be downloaded from http://www.upv.es/gio/rruiz.

As said in Section 2, we are only aware of three existing algorithms for the SDST-FSP-W'T.
We test the simulated annealing of Parthasarathy and Rajendran (1997a) and Parthasarathy and
Rajendran (1997b) which we refer to as SA_PR and the heuristic as well as the version with
the improvement scheme proposed of Rajendran and Ziegler (1997) and Rajendran and Ziegler
(2003). We will refer to these two latter algorithms as HA and HA _IS2. We also test the proposed
IG_RS and IG_RSyg algorithms as well as the previously tested genetic algorithms GA, MA
and the new MApg. We have refrained from including other existing methods as, for example,
PACO since it was proposed for a different objective. Therefore, comparing such an algorithm
would be unfair since probably a totally reworked method, and not just an adaptation, should
be compared.

It has to be mentioned that, for IG_RS, IG_RSrg, GA, MA and MA[g the initialization
procedure is changed from NEH RMB to NEH EWDD. In order to validate this decision, we
carry out an experiment in which the original NEH and the NEH EWDD are compared. We
also test the heuristic method HA. The results for all instance sets can be seen in Table 3.

We can see that the AVRPD values are very large for all heuristics, instance sets and sizes.
From the results, the heuristic HA, specifically designed for this problem and this objective,
yields across all instances the worst results in most of the cases. When compared to the original
NEH, HA obtains slightly better results only in instance sets DD _SDST100 and DD _SDST125.
However, this poor performance of HA compared to NEH is mainly due to its very poor perfor-
mance on the instances of size 20 x 20, while on the other instance sizes it is occasionally slightly
better than NEH. In any case, the modified NEH EWDD gives much better results than either
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Instance HA NEH NEH_EWDD HA NEH NEH EWDD

DD SDST10 Instances DD _SDST50 Instances
20 x 5 78.72 83.00 25.53 55.31 47.74 22.51
20 x 10 676.49  650.10 218.41 454.86  486.43 169.72
20x20 1532.80 736.68 492.98 1571.25 1048.81 483.75
50 x 5 20.36 26.00 8.99 19.37 23.96 13.29
50 x 10 52.04 51.97 22.02 39.15 34.66 17.48
50 x 20 218.85  222.13 93.04 78.37 78.90 32.26
100 x 5 12.46 14.86 6.82 11.95 14.67 8.93
100 x 10 20.93 23.04 9.89 18.12 17.89 10.56
100 x 20 47.46 47.72 19.78 28.12 30.25 13.92
200 x 10 11.15 11.11 4.83 8.36 9.84 4.91
200 x 20  18.10 16.59 6.48 11.03 11.50 5.37
500 x 20  9.33 5.87 1.37 5.77 5.14 1.93
Average  224.89  157.42 75.84 191.80  150.82 65.39

DD SDST100 Instances DD SDST125 Instances
20 x 5 52.77 63.97 20.34 48.52 56.46 20.08
20 x 10 166.49  184.10 60.89 99.97 88.01 40.09
20x20  1130.55 1518.88 396.33 1522.99 1503.37 741.14
50 x 5 20.87 25.51 15.95 19.49 28.10 19.20
50 x 10 23.43 29.30 17.29 22.13 29.95 18.54
50 x 20 54.65 73.44 26.83 47.98 49.78 24.43
100 x 5 11.74 16.48 11.04 10.95 17.88 10.21
100 x 10 12.56 16.14 10.63 11.08 17.67 10.43
100 x 20  19.82 24.77 12.25 18.58 20.72 11.81
200 x 10 5.38 9.04 5.07 5.12 11.23 6.52
200 x 20 7.35 10.17 4.89 6.41 9.15 4.18
500 x 20 2.96 5.22 2.40 2.62 6.25 3.86
Average  125.72  164.75 48.66 151.32  153.21 75.87

Table 3: Average percentage increase over the best known solutions for the heuristic algorithms
on the SDST-FSP-WT for all four instance sets.

of HA or NEH. As a matter of fact, over the 480 instances, NEH EWDD gives better result
than HA in 420 cases and better results than the original NEH in 470 cases. Hence, there is no
need of an statistical analysis to ascertain that NEH EWDD is the best heuristic among these
three. However, this performance comes at a computational cost. The CPU times measured on
an Athlon XP 1600+ with 512 MBytes of main memory, given in Table 4, needed by NEH and
NEH_ EWDD are very large compared to those of HA. (Since the computation times do not
depend on the relative duration of the setups to processing times and they are similar for the
four groups of instances, Table 4 gives only the times for set DD _SDST125.)

As shown, HA is a very fast method, while both, NEH and NEH_ EWDD, have very large
CPU times especially for the largest instances. Given these CPU times, we might expect a
degradation of performance for the algorithms on the 500 x 20 instances. For the remaining
cases, especially for cases where n < 100, the clear advantage of NEH EWDD over HA would
most probably prove beneficial since the CPU times needed for these cases are very small.

For testing the algorithms we use the same computer and methodology for the experiments
as in the tests carried out for the SDST-FSP-C,,.,. In this case, every algorithm is run 10
independent times for a maximum CPU time given by (n-m/2)-180. As commented previously,
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Instance HA NEH NEH_EWDD

20 x 5 0.00 0.00 0.00
20 x 10  0.00 0.00 0.00
20x20  0.00 0.00 0.00
50 x 5 0.00 0.01 0.01
50 x 10  0.00 0.02 0.02
50x20 0.00 0.04 0.04
100 x5 0.00 0.08 0.08
100 x 10 0.01  0.16 0.17
100 x 20 0.01  0.32 0.34
200 x 10 0.03  1.59 1.60
200 x 20 0.04 6.52 6.56
500 x 20 0.34 172.39 172.46
Average 0.04 15.09 15.11

Table 4: Average CPU times (in seconds) for the heuristic algorithms on the SDST-FSP-WT for
instance set DD SDST125.

calculating the total weighted tardiness objective is much more expensive than the C,,,, objective.
Additionally, the initialization procedure needs a large CPU time for the large instances and hence
this longer CPU time stopping criterion.

The results for instance sets DD _SDST10 and DD _SDST50 are in Table 5, those for the sets
DD _SDST100 and DD__SDST125 in Table 6.

These results show that the previous existing, SDST-FSP-WT specific algorithms SA PR and
HA IS2 yield the worst solution qualities. In some cases, like instance sizes 20 x 20 for group
DD SDST125, SA PR gives an AVRPD of more than 40%. Considering that all compared
methods run for the same CPU time, SA PR and HA IS2 are clearly not the best options.
However, it is worth mentioning that HA IS2 gives the best results in all instance sets for the
largest instances of 500 x 20. The previous analysis of the heuristics indicates that HA IS2
benefits in this case from the fast HA initialization.

Overall, the third worst performing algorithm is GA, although in most cases it provides better
results than HA IS2, which uses an intensive form of local search. Interestingly, the performance
of MA is in some cases considerably worse than that of the GA method, as, for example, in the
instances 20 x 20 in the group DD _SDST50. While this result might seem counter-intuitive, it is
clear that the hybridization with the curtailed local search in the MA algorithm is not effective
enough. MA s provides results that are considerably better than those of MA. This demonstrates
the usefulness of the local search used in our work.

Among the two, newly proposed methods, IG_RS shows very good performance, in some
cases even better than MA;g. On most instances, however, IG_RSyg is the best performing
algorithm. On average, and depending on the instance group, it gives AVRPD values that are
between 9.3% and 27% lower than the second best algorithm MA g.

We again carry out four analyses of experiments with the ANOVA technique in the same
way as described before. However, in this case we control only two factors, namely the type of
algorithm and the type of instance, since the parameter ¢ is not used to vary the computation
times. As for the SDST-FSP-C,,4., also for the SDST-FSP-WT the overall results of the four
experiments are rather similar and, hence, we illustrate the main findings giving some example
results. Figure 7 shows the LSD means plot for the factor type of algorithm in the experiment
DD _SDST100.
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Instance GA MA MA;s IG_RS IG_RS;s SA PR HA IS2
DD SDST10 Instances

20 x5 092 216  0.00 0.00 0.00 3.53 4.61
20x10 1.60 834  0.00 0.00 0.00 9.90 6.43
20x20 1.88 0.00 0.00 0.00 0.00 22.45 8.09
50 X 5 283 144 117 2.70 0.77 5.17 4.56
50x10 539 1.99 1.63 3.62 1.22 8.13 7.88
50 x 20  10.80 4.28  2.60 8.54 1.51 16.37 20.79
100x5 283 240 195 3.52 1.39 4.37 3.04
100 x 10  3.91  2.80 2.50 4.17 2.12 5.93 4.93
100 x 20 6.44  4.23 3.84 5.95 3.41 7.72 8.38
200 x 10 194 2.61 1.86 2.29 1.35 3.50 1.35
200 x 20 2.06 4.90 3.47 2.29 2.30 3.44 2.34
500 x 20 0.78 1.37  0.80 0.58 0.66 2.76 0.11
Average  3.45  3.04 1.65 2.80 1.23 7.74 6.04
DD_SDST50 Instances
20 x5 145 6.96  0.00 0.02 0.00 5.92 7.20
20x 10 528 13.87  0.09 0.15 0.15 12.58 24.90
20x20 043 30.78 0.00 0.00 0.00 4.79 1.68
50 X 5 542 219  2.00 3.77 1.79 7.59 7.31
50 x 10 5.83  2.02 2.24 3.79 241 8.42 9.13
50 x 20  6.75  2.53  2.08 4.69 2.80 10.95 12.97
100 x 5 447 314 2.66 4.82 2.14 6.70 4.19
100 x 10 4.65 3.09 261 4.59 2.51 6.65 6.25
100 x 20 542 339 3.5 5.22 3.29 7.12 6.06
200 x 10 195 256 1.71 2.37 1.07 3.65 1.12
200 x 20 1.61 4.10 2.70 1.95 1.61 3.10 1.51
500 x 20 1.43 1.93 142 1.04 0.95 3.76 0.00
Average 3.72  6.38 1.72 2.70 1.56 6.77 6.86

Table 5: Average relative percentage deviation from the best known solutions for the algorithms
for the SDST-FSP-WT on instance sets DD_SDST10 and DD_SDST50 with the termination
criterion set at (n - m/2) - 180 milliseconds maximum CPU time.
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Instance GA MA MA;s IG_RS IG_RS;s SA_ PR HA 1IS2
DD SDST100 Instances

20 x5 399 289  0.07 0.07 0.40 8.24 9.77
20 x 10 2.67 6.53 0.09 0.11 0.10 13.21 18.28
20x20 2.80 249  0.00 0.00 0.00 18.17 40.94
50 X 5 757 3.89  3.38 5.83 3.46 11.46 10.75
50 <10 7.80 3.23  3.00 5.34 2.93 10.77 9.76
50 x 20  8.08 278  2.57 5.06 2.36 11.34 13.15
100x5 522 371 324 5.91 2.76 8.40 5.44
100 x 10 4.76 3.52  2.80 5.45 2.57 7.58 5.17
100 x 20 5.35 3.39  3.13 5.27 3.29 7.72 6.43
200 x 10 2.60 3.55  2.34 2.60 1.27 4.78 1.63
200 x20 1.96 4.42 3.20 2.33 1.60 3.77 1.61
500 x 20 2.38 2.89  2.37 2.26 0.63 6.38 0.14
Average 4.60 3.61 2.18 3.35 1.78 9.32 10.26
DD_SDST125 Instances
20 x5 3.68 554 041 0.15 0.40 10.22 14.82
20x10 391 6.28  0.10 0.00 0.04 10.80 15.12
20 x20 3.01 11.57  0.00 0.00 0.00 42.38 14.08
50 X 5 836 4.07 3.7 7.20 3.62 12.67 11.43
50 x 10  8.01 3.63  3.49 6.25 3.79 11.16 10.50
50 20 7.83 263 275 5.56 2.74 11.45 10.70
100 x5 5.01 3.73  2.87 5.58 2.01 9.27 4.78
100 x 10 4.69 3.38 281 5.30 2.52 7.88 5.35
100 x 20 4.68 3.07  2.61 4.64 2.79 6.97 5.97
200 x 10 3.10 4.38  2.97 3.46 0.99 6.00 1.23
200 x 20 2.08 3.48  3.10 1.84 1.17 4.10 1.35
500 x 20 3.20 3.86  3.16 3.13 0.45 7.43 0.32
Average 4.80 4.63  2.34 3.59 1.71 11.69 7.97

Table 6: Average relative percentage deviation from the best known solutions for the algorithms
for the SDST-FSP-WT on instance sets DD_SDST100 and DD__SDST125 with the termination
criterion set at (n - m/2) - 180 milliseconds maximum CPU time.
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Interactions and 95.0 Percent LSD Intervals
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Figure 7: Plot of the average percentage deviation from best known solutions for the type of
algorithm factor. Instance set SDST100 and total weighted tardiness criterion.

We see that there are statistically significant differences among all algorithms with the only
exception of MA and IG_RS that are, at the 95% confidence level, statistically equivalent. A
finer examination and a close look at Table 6 shows that there are differences depending on the
instance type. Figure 8 depicts a more precise example where we examine the differences among
the algorithms for a same instance group, here type 11, i.e., instances of size 200 x 20.

In this case, we have that the differences observed in the AVRPD values are statistically
significant with the only exception of IG_ RSpg and HA IS2, which from Table 6 have AVRPD
values of 1.60 and 1.61 respectively. Thanks to the number of replicates and the 480 total
instances, the LSD intervals that result from the experiments are fairly narrow, which indicates
that most of the observed differences in Tables 5 and 6 are statistically significant.

Similarly to the SDST-FSP-C),,, case, we have just examined the results averaged across all
instance types. Figure 9 shows, for set SDST10, the interaction between the type of instance and
algorithm factors. As shown in the results, the algorithms HA IS2 and SA PR show a poor
performance for the smaller instances with improving results as the size of the instances grows.

In summary, also for the SDST-FSP-WT, especially the proposed hybrid version of the it-
erated greedy appears to give excellent results. Only for the very largest instances, another
algorithm that is specifically designed for the SDST-FSP-WT gives slightly better results; how-
ever, this effect may be mainly due to the relatively slow initialization of our current algorithm
and IG_RSg is clearly the best algorithm on all the other instances.

5 Conclusion and future research

In this article, we have presented two new Iterated Greedy (IG) algorithms for SDST flowshop
problems that were tackled under two of the most widely used and relevant objective functions,
the minimization of the maximum completion time or makespan and the minimization of the
total weighted tardiness. The first algorithm, called IG_RS, works by iterating over greedy
construction heuristics, in this case based on the well known NEH heuristic from Nawaz et al.
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Figure 8: Plot of the average percentage deviation from best known solutions for the type of
algorithm factor. Instance set SDST100, instance type 11 (200 x 20) and total weighted tardiness
criterion.
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tardiness criterion.
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(1983), and by applying two phases, named destruction, where some jobs are removed from the
incumbent sequence, and construction, where the greedy heuristic is applied to reconstruct the
sequence and to reinsert the jobs that were previously removed. The second, IG_RS;g, is a
straightforward extension of IG_RS by including an additional local search phase, in which a
simple descent algorithm is applied. For both algorithms, extensive experiments and statistical
analyses have been carried out.

The experimental results establish IG_RS;s as a new state-of-the-art algorithm for the
scheduling problems tackled, while IG_RS was shown to be the best algorithm that does not use
an explicit local search phase. This excellent performance of the iterated greedy algorithms is
very noteworthy because of two main reasons. First and foremost, the iterated greedy algorithms
have a very simple structure, they are easy to understand, and also very easy to implement.
This makes them preferable over other, much more complex algorithms—even if the performance
would be the same. Additionally, the IG algorithms applied here were based on a successful IG
algorithm for the usual flowshop problem under the makespan criterion (PFSP) Ruiz and Stiitzle
(2006)—a first proof that IG algorithms may easily be extended to related problems maintain-
ing their high performance. Second, these results provide some first evidence that the Iterated
Greedy method is an excellent candidate for tackling complex scheduling environments as they
are encountered in real-world environments. In fact, the FFSP, to which IG was first applied
Ruiz and Stiitzle (2006), is considered as being a rather unrealistic environment concerning real
applications (Dudek et al., 1992).

There are mainly two interesting lines of future research, those concerning algorithmic issue
and more realistic scheduling environments, respectively. In the first direction, it would be in-
teresting to examine for which classes of combinatorial problems the IG method can be highly
competitive. Certainly, the availability of high-performing construction methods are an essential
ingredient, but also other factors may be central to the performance of IG algorithms. In the sec-
ond direction, we would like to test IG based algorithms on other features of flowshop scheduling
environments like no-wait, availability of parallel machines, other objectives etc. This direction
is important to identify with which characteristics of scheduling problems the IG algorithms can
deal effectively. The ultimate goal is to apply IG to more complex scheduling environments, both
with the consideration of more realistic constraints as well as with other objectives. Clear exam-
ples of this are flowshops or jobshops where the production floor is divided up into stages and at
each stage several identical or even unrelated parallel machines are present. These environments,
the so-called hybrid shops, are of great importance in practice and IG methods may be excellent
candidates for tackling them.
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