
An Analysis of Parameters of irace

L. Pérez, M. López-Ibáñez, and T. Stützle

IRIDIA – Technical Report Series

Technical Report No.

TR/IRIDIA/2013-014

November 2013
Last revision: November 2013



IRIDIA – Technical Report Series
ISSN 1781-3794

Published by:

IRIDIA, Institut de Recherches Interdisciplinaires

et de Développements en Intelligence Artificielle

Université Libre de Bruxelles
Av F. D. Roosevelt 50, CP 194/6
1050 Bruxelles, Belgium

Technical report number TR/IRIDIA/2013-014

Revision history:

TR/IRIDIA/2013-014.001 November 2013
TR/IRIDIA/2013-014.002 November 2013

The information provided is the sole responsibility of the authors and does not necessarily
reflect the opinion of the members of IRIDIA. The authors take full responsibility for
any copyright breaches that may result from publication of this paper in the IRIDIA –
Technical Report Series. IRIDIA is not responsible for any use that might be made of
data appearing in this publication.



An Analysis of Parameters of irace

Leslie Pérez Cáceres, Manuel López-Ibáñez, and Thomas Stützle

leslie.perez.caceres@ulb.ac.be, manuel.lopez-ibanez@ulb.ac.be,

stuetzle@ulb.ac.be,
IRIDIA, CoDE, Université libre de Bruxelles,

50 Avenue F. Roosevelt, CP 194/6, 1050 Brussels, Belgium

Abstract. The irace package implements a flexible tool for the au-
tomatic configuration of algorithms. However, irace itself has specific
parameters that enable the customization of the search process accord-
ing to the tuning scenario. In this paper, we analyze five parameters of
irace: the number of iterations, the number of instances seen before the
first elimination test, the maximum number of elite configurations, the
statistical test and the confidence level of the statistical test. These pa-
rameters define some key aspects of the way irace searches and identifies
good configurations. Originally, their values have been set based on rules
of thumb and an intuitive understanding of the configuration process.
This work aims at giving insights about the sensitivity of irace to these
parameters in order to provide guidance for their settings and possible
further improvements of irace.

1 Introduction

Algorithm configuration [5, 9] is the task of finding a setting of the categori-
cal, ordinal, and numerical parameters of a target algorithm that exhibit good
empirical performance on a class of problem instances. Currently, few tools are
available for configuring algorithms automatically [1, 4, 10–12, 14]. The irace
package [12] implements an iterated racing framework for the automatic config-
uration of algorithms. The main concept behind this package was proposed by
Balaprakash, Birattari and Stützle [3] and refined later [6]. irace is currently
available as an R package and the details of its implementation and a tutorial
on how to use it can be found in [12].

The implementation of irace is highly flexible allowing the user to adjust
the configuration process according to the configuration scenario at hand. Being
irace a flexible tool, it has parameters itself. The default parameter settings
of irace have been defined by rules of thumb based on intuition of how the
configuration process may work [3, 6, 12]. So far experimental analysis of these
parameters have focused on a single race, studying the effect of the number of
initial configurations, the particular statistical test or the confidence level [5,7].
This paper is the first to empirically study the impact that specific settings of
irace parameters have on the effectiveness of the configuration process. Section 2
describes details of irace and its default settings, Sec. 3 explains the configu-
ration scenarios and our experimental setup. Section 4 presents the experiments
results, while Sec. 5 gives some final remarks.



2

2 The irace procedure

Automatic algorithm configuration tools, henceforth called configurators, are al-
gorithms that tackle expensive, stochastic nonlinear mixed-variable optimization
problems. The problem tackled by a configurator is called a configuration sce-
nario and it is given as a target algorithm to be configured, a set of training
instances representative of the problem to be solved by the target algorithm,
and the configuration budget, which is the maximum computational effort (e.g.,
number of runs of the target algorithm) that the configurator has available. In
addition, configurators have parameters themselves that affect their search.

The search of irace consists of a number of iterations. In each iteration, a set
of candidate algorithm configurations is generated and the best configurations of
the iteration are identified by racing. Within a race, configurations are tested on
a sequence of problem instances and, at each step, all surviving configurations
are tested on a new instance. Candidate configurations are eliminated from the
race if they are found to be poor performing according to some criterion. In
irace, this criterion is implemented by means of statistical testing. For irace a
minimum number of iterations (N iter) is defined as

N iter = ⌊2 + log2(N
param)⌋ (1)

where Nparam is the number of parameters of the target algorithm. The effective
number of iterations at the end of the configuration process can, however, be
greater due to budget saved in some iterations. The user-defined budget (B,
given as a maximum number of target algorithm runs) is distributed across the
iterations by setting the budget Bi available for iteration i to

Bi =
(B −Bused

i )

N iter − i+ 1
(2)

where Bused
i is the budget that has already been used before iteration i. An

iteration is stopped as soon as the budget is spent or the number of candidates
in the race reaches Nmax, where

Nmax = ⌊2 + log2(N
param)⌋. (3)

If an iteration is stopped due to this latter condition, the iteration budget
may not be used completely, and thus there may be enough budget to do more
than N iter iterations. Each iteration starts with a set of Ci configurations, where

Ci =

⌊
Bi

µ+min(5, i)

⌋
(4)

and µ is a parameter of the algorithm set to five by default. Using this setting,
the number of candidates sampled decreases with the iteration number. This was
done to account for the effect that the candidate configurations become more
similar as the configuration process progresses and more problem instances are
needed to discriminate between them.

In the first iteration of irace, an initial set of candidate configurations may
be specified, the other candidates are generated uniformly at random. In the



3

following iterations, the set of candidates is formed by the best candidates of
the previous iteration and by new candidates that are sampled around these
candidates. For numerical (integer or continuous) parameters a truncated nor-
mal distribution is used and for categorical a discrete one. Ordinal parameters
are treated as integers. These distributions are updated every iteration, biasing
the sampling towards the parameter values of the best candidates found. Each
race evaluates the current set of candidates on a sequence of problem instances.
Candidates are discarded from the race as soon as they show statistically worse
performance than the best candidate so far. In the current irace implemen-
tation, either the Friedman test with its associated post-test [8] or a Student
t-test can be used as statistical test. The first statistical test of an iteration is
performed after seeing T first instances (T first = 5, by default). The survivors are
evaluated on the next instances and every T each instances a statistical test is
applied (T each = 1, by default). A race finishes when at most Nmax survivors
remain in the race or the available budget Bi is exhausted. At the end of every
iteration, the best candidates are selected from the survivors, these candidates
are called elite candidates. The number of elite candidates in an iteration is
given by Nelite

i = min{N surv
i , Nmax}, where N surv

i is the number of candidates
that remain in the race when iteration i is finished. The selection of the elite
candidates is done by ranking them (according to the sum of ranks in the case
of the Friedman test or the mean quality in the case of the t-test), and select-
ing from the lowest ranked. The elite candidates are then used to generate new
candidates, to do so they are selected to become parents with probability

pz =
Nelite

i − rz + 1

Nelite
i · (Nelite

i + 1)/2
(5)

where Nelite
i is the actual number of elite candidates in iteration i and rz is

the ranking of elite candidate z. The new candidates are sampled according to
the distribution associated to each parameter in the selected parent. Once Ci

candidates are obtained (including the Nelite
i ones and newly sampled ones), a

new race begins. irace terminates when the total budget is exhausted or when
the remaining budget is not enough to perform a new iteration. Finally, the best
configuration found is returned.

3 Experimental setup

In this section, we detail the configuration scenarios used for analyzing irace.
Each scenario has a target algorithm, a set of training and test instances and a
budget. The data of the configuration scenarios and more information is available
at the supplementary information page1 provided for this paper.

3.1 Configuration scenarios

ACOTSP is a software package that implements various ant colony optimiza-
tion (ACO) algorithms [18] for solving the Traveling Salesman Problem (TSP).

1 http://iridia.ulb.ac.be/supp/IridiaSupp2013-008/



4

The ACOTSP scenario requires the configuration of 11 parameters of ACOTSP,
three categorical, four integer and four continuous. The training set is composed
of ten random Euclidean TSP instances of each of 1000, 1500, 2000, 2500 and
3000 cities; the test set has 50 instances of each of the previous sizes. All in-
stances and their optimal solutions are available from the supplementary pages.
The goal is to minimize tour length. The maximum execution time of a run of
ACOTSP is set to 20 seconds and the total configuration budget to 5000 runs.

SPEAR is a tree search solver for SAT problems [2]. The SPEAR scenario
requires the configuration of 26 parameters of SPEAR, all of them categorical.
The training and the test set are composed of 302 SAT instances each, which be-
long to the SAT configuration benchmark “Spear-swv”. The goal is to minimize
mean algorithm runtime. The maximum execution time for each run of SPEAR
is set to 300 seconds and the total configuration budget is 10000 runs.

MOACO is a framework of multi-objective ACO algorithms [13]. The MOACO
scenario requires the configuration of 16 parameters: 11 categorical, one integer
and four real. The training and the test set are composed each of 10 instances
of 500, 600, 700, 800, 900, 1000 cities. The goal is to optimize the quality of
the Pareto-front approximation as measured by the hypervolume quality mea-
sure [19]. The hypervolume is to be maximized, however, for consistency with
the other scenarios, we plot the negative normalized hypervolume, which is to
be minimized. The maximum execution time of each run of MOACO is defined
by 4 · (instance size/100)2. The total configuration budget is 5000 runs.

3.2 Training set analysis

The homogeneity of the training set with respect to algorithm performance is
conjectured to have a high impact on the configuration process and possibly also
on the parameter settings of configurators. Homogeneity refers to the correla-
tion between algorithm performance across instance sets: highly homogeneous
instance sets w.r.t. algorithm performance maintain the same relative ranking of
algorithms; highly heterogeneous instance sets lead to strongly different rankings
depending on the particular problem instance to be tackled. Hence, highly het-
erogeneous sets difficult the progress of the configuration process as candidate
algorithm configurations may have inconsistent performance. A parametric mea-
sure of instance set homogeneity was earlier proposed in [15], who also suggested
that the statistic of the Friedman test may be useful. However, as this latter
statistic is not normalized and, thus, depends on the number of instances and
configurations, here we use instead the Kendall concordance coefficient (W ) [16],
which is a normalization of the Friedman test statistic. For each training set we
generate 100 candidates uniformly distributed in the configuration parameter
space. These candidates are then evaluated on the instance set and Kendall’s W
statistic is calculated considering instances as blocks and candidates as groups.
The statistic of this test can be interpreted as a measure of how similar is the
relative performance of candidates (that is, their ranking) across the instance
set, which is related to homogeneity. A value close to one indicates high homo-
geneity, a value close to zero high heterogeneity. We performed the test using
the complete instance sets and subsets grouped by instance size (ACOTSP and



5

Table 1. Kendall’s W statistic measured across 100 algorithm configurations on the
training sets (all) and subsets grouped by size or type. The Set column is the set or
subset of instances, the Size column is the number of instances in the set.

ACOTSP SPEAR MOACO

Set Size W Set Size W Set Size W

all 50 0.96974 all 302 0.16017 all 60 0.99049
1000 10 0.98227 dspam 49 0.15446 500 10 0.99152
1500 10 0.98125 gzip 37 0.38442 600 10 0.99206
2000 10 0.98250 hsat 148 0.15510 700 10 0.99322
2500 10 0.98493 itox 26 0.61934 800 10 0.99256
3000 10 0.98089 winedump 17 0.29974 900 10 0.99311

winegcc 22 0.62083 1000 10 0.99096
xinetd 3 0.35308

MOACO) or instance type (SPEAR). As shown by Table 1, the instances used
in the ACOTSP and MOACO scenarios are much more homogeneous than the
ones used in the SPEAR scenario.

3.3 Experimental setup

In the following sections, each experiment consists of 20 trials of irace, resulting
in 20 final best configurations for each configuration scenario and each parameter
setting of irace. For each configuration obtained, the average performance on
the test set is computed. We repeat each experiment using, for the elimination
test, either the F-test (and its associated post-hoc tests) or the Student t-test
without multiple test correction.2 The experiments were executed on a cluster
running Cluster Rocks GNU/Linux 6.0. The experiments involving the ACOTSP
scenario were executed in an AMD Opteron 6128 with 8 cores of 2GHz and 16GB
RAM. The ones involving the SPEAR and MOACO scenarios were executed in
an AMD Opteron 6272 with 16 cores of 2.1GHz and 64GB RAM.

4 Experiments

In this section, we examine the impact of five parameters of irace on the per-
formance of the final algorithm configuration found in the configuration process.

Number of iterations The number of iterations (N iter) strongly modifies the
search behavior of irace. With more iterations, fewer configurations are used
at each iteration. The number of newly sampled configurations is also reduced
as the number of elite configurations remains the same. Overall, this leads to an
intensification of the search by splitting the budget in short races. Less iterations,

2 Using multiple test corrections in the Student t-test results in a search process that
does not effectively eliminate poor candidates [5]. Avoiding multiple test corrections
makes the process more heuristic, but proves to be effective.



6

0.0055

0.0060

0.0065

0.0070

0.0075

0.0080
ACOTSP

%
 d

ev
ia

tio
n 

fr
om

 o
pt

.

i=1 i=3 i=5 i=8

10
20
30
40
50
60

SPEAR

M
ea

n 
ru

nt
im

e

i=1 i=3 i=6 i=11

−1.055

−1.050

−1.045

−1.040

−1.035

−1.030
MOACO

M
ea

n 
hy

pe
rv

ol
um

e

i=1 i=3 i=6 i=10
(a) F-test

0.006

0.007

0.008

0.009
ACOTSP

%
 d

ev
ia

tio
n 

fr
om

 o
pt

.

i=1 i=3 i=5 i=8
0

10

20

30

40

50

SPEAR
M

ea
n 

ru
nt

im
e

i=1 i=3 i=6 i=11

−1.055

−1.050

−1.045

−1.040

−1.035

−1.030
MOACO

M
ea

n 
hy

pe
rv

ol
um

e

i=1 i=3 i=6 i=10
(b) t-test

Fig. 1. Box plots of the mean performace over the test instances of 20 configurations
obtained by irace using N iter ∈ {1, 3,default, large}.

Table 2. Wilcoxon test p-values comparing the mean performance over the test in-
stances of configurations obtained by irace using N iter ∈ {1, 3, default, large}.

default vs. large default vs. 3 default vs. 1

ACOTSP SPEAR MOACO ACOTSP SPEAR MOACO ACOTSP SPEAR MOACO
F-test 0.33 0.4304 0.8695 0.7562 0.7562 0.0003948 1.907e−5 0.7285 1.907e−6

t-test 0.2943 0.498 0.0007076 0.7285 0.4304 1.907e−6 0.0002098 0.5459 1.907e−6

on the other hand, lead to a stronger diversification of the search. The default
number of iterations of irace depends on the number of parameters (Eq. 1). We
increase this value to N iter = ⌊2 + 2 · log2(Nparam)⌋ and we refer to this setting
as “large” in the following. Additionally, we use two fixed settings: N iter = 3 and
N iter = 1. The latter actually corresponds to a single race using configurations
sampled uniformly at random [3]. In Fig. 1, we present the results of the 20
independent executions of irace on the three configuration scenarios and the
results of the Wilcoxon test are shown in Table 2.

In the SPEAR scenario, none of the differences is statistically significant,
confirming the observation from the box-plots that no clear differences arise.
Surprisingly, even a race based on a single random sample of configurations
(N iter = 1) obtains here reasonable performance. This is different from the
MOACO and ACOTSP scenarios, where irace with N iter = 1 performs sig-
nificantly worse than the other settings, confirming earlier results [6]. Other
differences in the ACOTSP scenario are, however, not statistically significant.
In the MOACO scenario, the default setting performs significantly better than
N iter = 3, while the large setting performs significantly worse than the default
only when using t-test. The results indicate that the default setting is overall
reasonably robust. Nonetheless, the number of iterations has an impact on the



7

0.0055

0.0060

0.0065

0.0070

0.0075

ACOTSP

%
 d

ev
ia

tio
n 

fr
om

 o
pt

.

f=2 f=5

10

20

30

40

SPEAR

M
ea

n 
ru

nt
im

e

f=2 f=5
−1.054
−1.052
−1.050
−1.048
−1.046
−1.044
−1.042

MOACO

M
ea

n 
hy

pe
rv

ol
um

e

f=2 f=5
(a) F-test

0.0055

0.0060

0.0065

0.0070

0.0075
ACOTSP

%
 d

ev
ia

tio
n 

fr
om

 o
pt

.

f=2 f=5

10

20

30

40
SPEAR

M
ea

n 
ru

nt
im

e

f=2 f=5

−1.056

−1.054

−1.052

−1.050

−1.048
MOACO

M
ea

n 
hy

pe
rv

ol
um

e

f=2 f=5
(b) t-test

Fig. 2. Box plots of the mean performace over the test instances of 20 configurations
obtained by irace using T first ∈ {2, 5}.

Table 3. Wilcoxon test p-values comparing the mean performance over the test in-
stances of configurations obtained by irace using T first = 2 vs. T first = 5.

ACOTSP SPEAR MOACO

F-test 0.01362 0.1231 0.1231
t-test 0.03623 0.5958 0.6477

quality of the final configurations and the adaptation of the number of iterations
to the configuration scenario may be useful to improve irace performance.

First elimination test The elimination of candidates during the race allows
irace to focus the search around the best configurations. Here, we analyze the
sensibility of irace to the number of instances evaluated before performing the
first elimination test (T first). We performed experiments using the default set-
ting of (T first = 5) and a reduced value of T first = 2. Reducing the value of T first

allows irace to more aggressively eliminate configurations. The budget saved in
this way may be used later to sample a higher number of configurations. How-
ever, good configurations may erroneously be lost more easily. The experimental
results are shown in Fig. 2. In the ACOTSP scenario a setting of T first = 2
seems to worsen performance, while on the SPEAR and MOACO scenarios no
clear differences are visible. The Wilcoxon paired test in Table 3 supports this
analysis.

Our hypothesis was that with a setting of T first = 2, poor candidates are
eliminated earlier and in later iterations more candidates may be sampled. In
order to corroborate this hypothesis, we plot the development of the number of



8
0

50
10

0
15

0

Number of survivors Acotsp trial 12

Number of training instances seen

f=5
f=2

0
50

10
0

15
0

N
um

be
r 

of
 s

ur
vi

vo
rs

 in
 e

xe
cu

tio
n

0
50

15
0

25
0

Number of survivors Spear trial 16

Number of training instances seen

f=5
f=2

0
50

15
0

25
0

N
um

be
r 

of
 s

ur
vi

vo
rs

 in
 e

xe
cu

tio
n

0
50

15
0

25
0

35
0 Number of survivors Moaco trial 9

Number of training instances seen

f=5
f=2

0
50

15
0

25
0

35
0

N
um

be
r 

of
 s

ur
vi

vo
rs

 in
 e

xe
cu

tio
n

Fig. 3. Number of surviving candidates in irace using T first ∈ {2, 5} and F-test.

surviving configurations during the search process of irace (Fig. 3). The plots
show one run of irace that is representative for the general behavior.

Maximum number of elite configurations The maximum number of elite
configurations (Nmax) influences the exploration / exploitation trade-off in the
search process. In the extreme case of Nmax = 1, irace samples new configu-
rations only around the best configuration found so far. A larger value of Nmax

(potentially) induces a more diverse search. On the other hand, Nmax = 1 may
force each individual race to consume more budget trying to identify a single
best configuration, while with larger values of Nmax, each race can terminate
earlier. In this section, we examine the possible differences that are incurred by
setting Nmax = 1 and compare it to the default setting. The results of these ex-
periments are shown in Fig. 4 and the Wilcoxon test p-values in Table 4. While
in the ACOTSP scenario using only one elite configuration worsens significantly
performance, in the MOACO and SPEAR scenarios performance is not signif-
icantly worse. Intensifying the search by strongly reducing the number of elite
candidates does not seem to improve the performance of the final configurations
in any of the configuration scenarios. These results indicate that the default
setting is reasonably adequate.

Statistical test The main difference between the F-test (plus post-test) and
the Student t-test is that the latter uses the raw quality values returned by the
target algorithm, while the former transforms the values into ranks. Hence, the
F-test can detect minimal but consistent differences between the performance of
the configurations but it is insensitive to large sporadic differences, whereas the
t-test is strongly influenced by such outliers. Figure 5 shows box-plots comparing
the configurations obtained using both statistical tests and Table 5 provides the
Wilcoxon test p-values. The first set of plots show the average performance of
the candidates on the test set and the second set of plots compares the average
performance of the candidates per instance. The results of the Wilcoxon test
indicate significant differences only for the MOACO case, where the usage of the
t-test leads to better performance.

It is interesting, however, to analyze in more detail the SPEAR configuration
scenario. While there is no significant difference w.r.t. to the average performance
(mean runtime), the F-test leads to shorter runtimes on more instances than the
t-test; however, the t-test performs much better than the configurations obtained



9

0.0055

0.0060

0.0065

0.0070

0.0075
ACOTSP

%
 d

ev
ia

tio
n 

fr
om

 o
pt

.

s=1 s=5

10
20
30
40
50
60
70

SPEAR

M
ea

n 
ru

nt
im

e

s=1 s=6

−1.060

−1.055

−1.050

−1.045
MOACO

M
ea

n 
hy

pe
rv

ol
um

e

s=1 s=6
(a) F-test

0.0055
0.0060
0.0065
0.0070
0.0075
0.0080

ACOTSP

%
 d

ev
ia

tio
n 

fr
om

 o
pt

.

s=1 s=5

5
10
15
20
25
30

SPEAR
M

ea
n 

ru
nt

im
e

s=1 s=6

−1.060
−1.058
−1.056
−1.054
−1.052
−1.050
−1.048

MOACO

M
ea

n 
hy

pe
rv

ol
um

e

s=1 s=6
(b) t-test

Fig. 4. Box plots of the mean performace over the test instances of 20 configurations
obtained by irace using Nmax ∈ {1, default}.

Table 4. Wilcoxon test p-values comparing the mean performance over the test in-
stances of configurations obtained by irace using the default setting of Nmax vs.
Nmax = 1.

ACOTSP SPEAR MOACO

F-test 3.624e−5 0.7285 0.4304
t-test 0.0005856 0.5958 0.4304

by the F-test on the subset of the hsat instances. Actually, the percentage of
instances on which the F-test configurations give shorter runtimes than those of
the t-test is statistically significantly larger; this corresponds to the fact that the
F-test prefers to improve the mean ranking by performing well on a majority of
instances while the t-test improves the mean performance and tends to reduce
worst case performance, which in the SPEAR configuration scenario corresponds
to very long runtimes. In this sense, these results confirm earlier observations
for different configurators [11, 17].

Statistical test confidence level The confidence level of the irace elimina-
tion test is set by default to 0.95. Larger values mean that the test is more strict,
so it takes more evaluations (or clearer differences) to eliminate configurations;
lower values allow eliminating configurations faster, save budget, but risk remov-
ing good configurations based on a few unlucky runs. We assess the effect of this
parameter on the configuration process by experimenting with confidence levels
∈ {0.75, 0.95, 0.99}. Results are summarized in Fig. 6 and Table 6.

For the ACOTSP configuration scenario, a setting of 0.99 is clearly worse
than the default setting. Even if on the MOACO configuration scenario the



10

0.0055

0.0060

0.0065

ACOTSP

%
 d

ev
ia

tio
n 

fr
om

 o
pt

.

F−test t−test

5
10
15
20
25
30

SPEAR

M
ea

n 
ru

nt
im

e

F−test t−test
−1.058
−1.056
−1.054
−1.052
−1.050
−1.048
−1.046

MOACO

M
ea

n 
hy

pe
rv

ol
um

e

F−test t−test
(a) Box plots of the mean performance over the test instances of 20 configurations ob-
tained by irace.

0.002

0.004

0.006

0.008

0.010

0.012
ACOTSP

1000
1500
2000
2500
3000

t−
te

st

F−test
0

50

100

150

SPEAR
dspam
gzip
hsat
itox
winedump
winegcc
xinetdt−

te
st

F−test
−1.07

−1.06

−1.05

−1.04

−1.03
MOACO

500
600
700
800
900
1000t−

te
st

F−test
(b) Scatter plots of the mean performace per instance over the 20 configurations
obtained by irace.

Fig. 5. Comparison of the mean performance over the test instances of 20 configura-
tions obtained by irace using F-test and t-test.

Table 5. Wilcoxon test p-values comparing the mean performance over the test in-
stances of configurations obtained by irace using F-test vs. t-test.

ACOTSP SPEAR MOACO

0.2943 0.5958 0.03277

0.99 confidence level is significantly better than the default 0.95, the absolute
difference is relatively small and we would tend to recommend rather the default
0.95 level than the 0.99 one. Considering a smaller confidence level such as 0.75
may be an option. In fact, in two cases this setting is statistically better than the
default setting while in one it is worse. However, the results also indicate that the
behavior of irace is affected differently by the confidence level used depending
on the statistical test used (see, e.g. MOACO configuration scenario). This is
different from the other experiments, where the impact of irace parameter
settings was similar for both elimination tests.

5 Final remarks and future work

In this paper, we analyse the impact of five irace parameters on the final con-
figuration performance. The experiments were performed on three configuration
scenarios. The ACOTSP and the MOACO configuration scenario show a fairly
homogeneous training set, while the SPEAR configuration scenario has a highly



11

0.006

0.007

0.008

0.009

ACOTSP

%
 d

ev
ia

tio
n 

fr
om

 o
pt

.

c=.75 c=.95 c=.99

10
20
30
40
50
60

SPEAR

M
ea

n 
ru

nt
im

e

c=.75 c=.95 c=.99

−1.060

−1.055

−1.050

−1.045
MOACO

M
ea

n 
hy

pe
rv

ol
um

e

c=.75 c=0.95 c=0.99
(a) F-test

0.0055
0.0060
0.0065
0.0070
0.0075
0.0080
0.0085

ACOTSP

%
 d

ev
ia

tio
n 

fr
om

 o
pt

.

c=.75 c=.95 c=.99
0

10

20

30

40

50
SPEAR

M
ea

n 
ru

nt
im

e

c=.75 c=.95 c=.99

−1.056

−1.054

−1.052

−1.050

−1.048

MOACO

M
ea

n 
hy

pe
rv

ol
um

e

c=.75 c=0.95 c=0.99
(b) t-test

Fig. 6. Box plots of the mean performace over the test instances of 20 configurations
obtained by irace using confidence level in {0.75, 0.95, 0.99}

Table 6. Wilcoxon test p-values comparing the mean performance over the test in-
stances of configurations obtained by irace using confidence level in {0.75, 0.95, 0.99}

0.75 vs. 0.95 0.99 vs. 0.95

ACOTSP SPEAR MOACO ACOTSP SPEAR MOACO

F-test 0.01531 0.4091 1.907e−6 1.907e−6 0.7841 0.002325
t-test 0.02148 0.9563 0.1429 1.907e−6 0.3683 0.2455

heterogeneous set of instances and a large variability of the quality values (run-
time), which makes the configuration process more variable.

The default settings of the number of iterations and the number of elite
configurations proved to be reasonably robust. Reducing the setting of the first
elimination test did not improve the performance of irace, although the results
obtained suggest that lower values for this parameter could be used with highly
homogeneous sets of instances. More extreme differences were observed when
altering the type of statistical test. However, in this case, what is the best setting
depends on what is the goal of the configuration process. If the goal should take
into account outliers, then irace should use the t-test rather than the F-test.
Finally, the confidence level had a strong effect on the results. Large values were
consistently worse, whereas lower values were sometimes better depending on the
scenario and type of statistical test. Further work will extend and complement
the current experimental analysis in order to account for more parameter settings
and their possible interactions. Additional scenarios may help to identify clearer
trends or use an automatic configuration process to configure improved default
settings of irace. Nonetheless, the insights obtained in this work are helping us
to design future improvements to irace.



12

Acknowledgments This work received support from the META-X project, an Action

de Recherche Concertée funded by the Scientific Research Directorate of the French

Community of Belgium, the COMEX project within the Interuniversity Attraction

Poles Programme of the Belgian Science Policy Office, and the EU FP7 ICT Project

COLOMBO, Cooperative Self-Organizing System for Low Carbon Mobility at Low

Penetration Rates (agreement no. 318622). Manuel López-Ibáñez and Thomas Stützle

acknowledge support from the Belgian F.R.S.-FNRS, of which they are a postdoctoral

researcher and a senior research associate, respectively.

References

1. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for
the automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009, LNCS,
vol. 5732, pp. 142–157. Springer (2009)

2. Babić, D., Hutter, F.: Spear theorem prover. In: SAT’08: Proceedings of the SAT
2008 Race (2008)

3. Balaprakash, P., Birattari, M., Stützle, T.: Improvement strategies for the F-race
algorithm: Sampling design and iterative refinement. In: Bartz-Beielstein, T. et al.
(eds.) Hybrid Metaheuristics, LNCS, vol. 4771, pp. 108–122. Springer (2007)

4. Bartz-Beielstein, T., Lasarczyk, C., Preuss, M.: Sequential parameter optimization.
In: Proceedings of CEC 2005. pp. 773–780. IEEE Press (2005)

5. Birattari, M.: Tuning Metaheuristics: A Machine Learning Perspective, Studies in
Computational Intelligence, vol. 197. Springer (2009)

6. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and iterated F-race:
An overview. In: Bartz-Beielstein, T. et al. (eds.) Experimental Methods for the
Analysis of Optimization Algorithms, pp. 311–336. Springer (2010)

7. Branke, J., Elomari, J.: Racing with a fixed budget and a self-adaptive significance
level. In: LION 7, LNCS, vol. to appear. Springer (2013)

8. Conover, W.J.: Practical Nonparametric Statistics. John Wiley & Sons, (1999)
9. Hoos, H.H.: Automated algorithm configuration and parameter tuning. In:

Hamadi, Y. et al. (eds.) Autonomous Search, pp. 37–71. Springer (2012)
10. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization

for general algorithm configuration. In: Coello Coello, C.A. (ed.) LION 5, LNCS,
vol. 6683. Springer (2011)

11. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
algorithm configuration framework. Journal of Artificial Intelligence Research 36,
267–306 (2009)

12. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package,
iterated race for automatic algorithm configuration. Tech. Rep. TR/IRIDIA/2011-
004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)

13. López-Ibáñez, M., Stützle, T.: The automatic design of multi-objective ant colony
optimization algorithms. IEEE Transactions on Evolutionary Computation 16(6),
861–875 (2012)

14. Nannen, V., Eiben, A.E.: Relevance estimation and value calibration of evolution-
ary algorithm parameters. In: Veloso, M.M. (ed.) Proceedings of IJCAI-07, pp.
975–980. AAAI Press (2007)

15. Schneider, M., Hoos, H.H.: Quantifying homogeneity of instance sets for algorithm
configuration. In: Hamadi, Y. et al. (eds.) LION 6, LNCS, vol. 7219, pp. 190–204.
Springer (2012)

16. Siegel, S., Castellan, Jr, N.J.: Non Parametric Statistics for the Behavioral Sciences.
McGraw Hill, 2 edn. (1988)



13

17. Smit, S.K., Eiben, A.E.: Beating the ’world champion’ evolutionary algorithm via
REVAC tuning. In: Ishibuchi, H., et al. (eds.) Proceedings of CEC 2010, pp. 1–8.
IEEE Press (2010)

18. Stützle, T.: ACOTSP: A software package of various ant colony optimiza-
tion algorithms applied to the symmetric traveling salesman problem (2002),
http://www.aco-metaheuristic.org/aco-code/

19. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.:
Performance assessment of multiobjective optimizers: an analysis and review. IEEE
Transactions on Evolutionary Computation 7(2), 117–132 (2003)


