Universite Libre de Bruxelles

Institut de Recherches Interdisciplinaires
IRIDIANN ot de Développements en Intelligence Artificielle

The Role of Explicit Alignment in
Self-organized Flocking

Eliseo Ferrante, Ali Emre Turgut, Nithin Mathews,
Mauro Birattari and Marco Dorigo

4 N
IRIDIA — Technical Report Series

Technical Report No.
TR/IRIDIA /2010-014

11/05/2010




IRIDIA - Technical Report Series
ISSN 1781-3794

Published by:
IRIDIA, Institut de Recherches Interdisciplinaires
et de Développements en Intelligence Artificielle
UNIVERSITE LIBRE DE BRUXELLES
Av F. D. Roosevelt 50, CP 194/6
1050 Bruxelles, Belgium

Technical report number TR/IRIDIA/2010-014

The information provided is the sole responsibility of the authors and does not necessarily reflect the opinion
of the members of IRIDIA. The authors take full responsibility for any copyright breaches that may result from
publication of this paper in the IRIDIA — Technical Report Series. IRIDIA is not responsible for any use that
might be made of data appearing in this publication.



The Role of Explicit Alignment in Self-organized Flocking

Eliseo Ferrante, Ali Emre Turgut, Nithin Mathews, Mauro Birattari and Marco Dorigo
IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
{eferrante, aturgut, nmathews, mbiro, mdorigo} @ulb.ac.be

Abstract—Flocking is an self-organized behavior that is
widely observed in nature from simple organisms such as
crickets and locusts to more complex ones such as birds
and quadruplets. It can be defined as the coherent and
aligned motion of a group of animals at a certain direction.
Coherence is the tendency of the individuals to stay together
and alignment is a consequence of minimizing collisions at
the individual level. In this paper, we study the alignment
component of the flocking behavior in a swarm of robots.
We implemented two different controllers: one with only a
cohesion behavior, namely the no-alignment controller, and
the other with both cohesion and alignment behaviors, namely
the alignment-enabled controller. In both controllers, only a
proportion of robots, called informed robots, are provided with
the desired goal direction. In particular, we study the effect of
three different parameters on flocking performances. The three
parameters are the size of the swarm, noise in the cohesion
behavior and the proportion of informed robots. Under the
effect of these parameters, we perform a comparative study of
the two controllers.

We perform simulation-based experiments and evaluate the
accuracy of the flock to move in a desired goal direction. The
experiments are conducted in stationary and non-stationary
environments: in the stationary environment, the goal direction
and the informed robots do not change during the experiment,
whereas in the non-stationary environment, both the goal
direction and the informed robots change over time.

The results show that i) the alignment behavior results in
a more aligned motion in larger swarms; ii) smaller swarms
without an alignment behavior can follow the goal direction
more accurately; iii) noise in the no-alignment controller helps
to achieve a more aligned motion in large swarms and iv) the
swarm needs enough informed robots to follow accurately the
goal direction and to adapt to non-stationary environments.

Keywords-flocking; self-organization; swarm robotics; swarm
intelligence

I. INTRODUCTION

Coordinated motion is a widely observed phenomena
in animals that are living in groups [1] such as insects
like crickets [2] or locusts [3] or vertabrates like birds [4]
or human beings [5]. It can be defined as the coherent
and aligned motion of the individuals towards a common
direction.

Although, coordinated motion had been studied in biol-
ogy, Reynolds [4] was the first to implement flocking in
artificial systems. In his work, he proposed a behavior-based
controller utilizing only local information based on individ-
ual perception. The behaviors he proposed are: separation
- tendency of individuals to avoid collisions, cohesion -

tendency of individuals to stay together, and alignment -
tendency of individuals to head in the same direction. His
flocking algorithm resulted in realistic-looking animations
of bird flocks in computer.

The goal of this paper is to perform an analysis to
understand under which condition an alignment behavior
is needed to achieve flocking to a given goal direction.
Although, it is known that some animals use visual cog-
nition [6] and others such as fish use a special organ [7] to
sense the headings of their group-mates, it is still unknown
whether the same happens for insects. This rises the question
on whether there exists an explicit alignment behavior for
coordinated motion in simple organisms like insects or it
is just a consequencee of their tendency to stay together
and to move towards a certain direction. A recent study
in robotics [6] suggested that alignment at a group level
could emerge from local interaction of the robots without
an explicit alignment behavior at the individual level when
special behaviors for coherence are used. In this paper, we
approach the problem in a more general way, i.e. without
the use of special coherence behaviors, and try answer the
question by analyzing the effect of alignment behavior on
the dynamics of the coordinated motion using a swarm of
robots.

Furthermore, a study regarding the systematic analysis
of the alignment behavior has never been performed in
literature up to now. Hence, in our study, we make a
comparative study of the alignment behavior using two
different controllers in order to understand its effects on
the performance of flocking. Specifically, we implement two
controllers; one with only proximal control behavior and
the other with both proximal control and heading alignment
behaviors. In both of the controllers, we inform some of the
individuals about a goal direction as suggested in [8] and
compare the performance of the two behaviors by varying
the swarm size, noise in proximal control behavior and the
proportion of informed individuals.

II. RELATED WORK

In statistical physics, Vicsek et al. [9] were the first to
study the effect of actuation noise on the emergence of the
aligned motion in biological swarms. In their study, they
utilized a particle-based model having only an alignment
term and figured out that the particles undergo an aligned
motion below a certain noise threshold. They also performed



scalability experiments, and showed that the same result
holds regardless of the system size. Gregoire et al. [10]
studied the effect of sensing noise using an extended version
of the Vicsek model. They added an attraction/repulsion
(cohesion/seperation) term to the orignal model and ob-
served that aligned and cohesive motion could still be
achieved below a noise value regardless of the system size.
In a recent study, Turgut et al. [11], using an extended
version of a network-based model [12], modeled the flocking
behavior in robot swarms and showed that robots undergo a
transition from unaligned to aligned motion under varying
levels of sensing noise. In [8], Couzin et al. using a simple
mathematical model studied the information transfer mech-
anisms in animals. They performed systematic experiments
and showed that a small proportion of individuals that are
informed about a goal direction can guide a large swarm to
this direction.

In robotics, flocking has also attracted a lot of attention
after Reynolds’ seminal work. The main scope of these
studies is to implement flocking on robots with limited
sensing capabilities.

One of the earliest studies is due to Matari¢ [13]. Matari¢
utilized a set of “basis behaviors”: safe-wandering, aggre-
gation, dispersion and homing to implement flocking in a
group of robots. The robots are able to sense obstacles
in the environment, localize themselves with respect to
a set of stationary beacons and broadcast their position.
With the proposed set of behaviors, robots are able to
move cohesively towards a homing direction known a priori
while avoiding their neighbors and obstacles. Kelley and
Keating [14] following a behavior-based approach utilized
a leader-following behavior to implement flocking in con-
strained environments. Robots move cohesively following
a dynamically elected leader avoiding collisions between
themselves and the obstacles. They used a custom-made
active infra-red sensing system to sense the range and
bearing of robots and radio-frequency system for dynamic
leader election. Hayes et al. [15] proposed a flocking algo-
rithm based on collision avoidance and velocity matching
flock centering behaviors based on local range and bear-
ing measurements. These measurements are emulated and
broadcasted to the robots. Robots based on this information
compute the local center-of-mass of their neighbors for
cohesion and the change in the local center-of-mass for
alignment. Holland et al. [16] proposed a flocking algorithm
for unmanned ground vehicles based on separation, cohesion
and alignment behaviors. All the sensory information (range,
bearing and heading of robots neighbors) is emulated and
broadcasted to each robot individually.

Spears et al. [17] implemented flocking using their frame-
work of artificial physics based on attraction/repulsion and
viscous forces. The robots first form a regular lattice struc-
ture using the range and bearing measurement of their neigh-
bors and then move towards a homing direction realized

by a light source in the environment. In a recent study,
Moeslinger et al. [6] proposed a flocking algorithm based on
attraction and repulsion forces. The algorithm is specifically
designed for robots with limited sensing capabilities. It
is based on setting different threshold levels for different
attraction/repulsion zones situated around the robot. By
adjusting these threshold levels, they achieved flocking with
a small group in a constrained environment.

In [18], Tanner et al. proposed an algorithm based on at-
traction/repulsion and alignment behaviors to perform flock-
ing with a leader. Robots are able to measure their position
and orientation with a GPS and transmit this information to
their neighbors via high speed communication link. In this
way, each robot has the exact absolute position and velocity
information of the other robots and the virtual leader. Campo
et al. studied collective transport of a heavy object to a nest
location in [19]. Each robot equipped with an LED ring
and omni-directional camera estimates the nest location and
signal their estimates to its neighbors by forming a specific
pattern in their LED ring. Robots perceive the estimation of
their neighbors via their cameras and align to the common
estimation of the nest.

Turgut et al. [20] inspired by Reynolds’ work proposed
a behavior based on seperation/cohesion (will be called as
proximal control) and heading alignment behaviors. They
implemented this behavior in robots with limited sensing
capabilities and made a systematic study on the effect of
sensing noise in heading measurement on flocking. The
robots are equipped with proximity sensors for obsta-
cle/robot detection and a virtual heading sensor for head-
ing measurement. Each robot measures its heading using
a digital compass and broadcasts it periodically using a
wireless communication unit so that the heading is sensed
“virtually” by its neighbors. This strategy resulted in scalable
flocking to a random direction with a small and a large
group. In a follow-up study, Gokce and Sahin [21] intro-
duced a homing behavior and studied the effect of noise in
sensing the homing direction on the long-range movement
of robot swarms. Celikkanat et al. [22] extended the flocking
behavior by informing some of the robots about a goal
direction. They observed that a group can be guided by a few
informed individuals where informed individual proportion
is dependent on the group size. Recently, following the same
approach in [20], Ferrante et al. improved the performance
of flocking by introducing a communication strategy for the
alignment behavior based on local line-of-sight communi-
cation [23]. The simulation-based experiments showed that
the new strategy outperforms the performance of the one
in [20] in both stationary and non-stationary environments,
and scales well with respect to the swarm size and is robust
with respect to noise in alignment behavior.



III. METHODOLOGY

We used a design methodology based on artificial
physics [17]. At each control step, a virtual force vector
is computed as:

f=ap+ph+ng.

p is the proximal control vector; h is the alignment vector; g
is the vector that indicates the goal direction. The vectors p
and h are calculated by the proximal control and alignment
behaviors. These two behaviors are explained in the next
two sections. The heading direction h is available to the
robots only when the alignment behavior is used. When the
alignment behavior is not used, h = 0. The goal direction
g is available to some robots, namely the informed robots,
whereas for the other robots g = 0. The weights «, § and
~ define the relative contribution of the different vectors. In
this paper, we do not tune these parameters for obtaining
optimal performance. Instead, we set themto « =1, 3 =5
and v = 10 to reflect our prior knowledge on the relative
importance of the three components.

A. Proximal control behavior

The proximal control behavior assumes that a robot
perceives the relative position (range and bearing) of the
neighbors in its close proximity. This is achieved using LEDs
and an omni-directional camera as in [19].

Let k£ denote the number of neighbors of a given robot
r at a given time, d; and ¢; denote the range and bearing
measurements, respectively concerning the " neighbor. The
proximal control vector p is given by:

k
p= Zpiejd”-
=i

p; is calculated as a function of d; using a force function
p(d) as in [24]. p; is repulsive when d; is smaller than the
desired distance (d4.s) and it is attractive when d; is greater
than dg4.,. The function is:

2d> 2
d) = — des =
p(d) BT

B. Alignment behavior

The alignment behavior assumes that a robot r measures
its heading 6, using an on-board light sensor with respect
to a light source. The robot continuously sends the angle
6, using its local communication unit. At the same time, it
receives an angle ; from its i'” neighbor which represent
the i*" neighbor heading measurament. It transforms this
angle into its body-fixed reference frame!. In this way, we

Tn our study, we define two reference frames. One is the reference frame
common to all of the robots, which is available thanks to the light source.
The other is the body-fixed reference frame specific to each robot. The
body-fixed reference frame is fixed to the center of a robot: its x — axis
is coincident with the rotation axis of the wheels and its y — azis points
to the front of the robot.

are able to simulate a robot “measuring”, or “observing”,
the heading of its neighbors. Having received £ angles from
its k neighbors, it calculates the average heading vector as:

Zf:l el%

- ki’
1225 %l
where || - || denotes the norm of a vector.

C. Motion control

The computed virtual force vector f is mapped into
rotational speed of the wheels. We first use Newton’s second
law of motion to compute the target velocity of the robot

utm‘get:

fAt

__ 44t
Utgrget = U + s
m

where At is the control-step size, m is the mass of the robot,
u! is the current velocity of the robot. The target velocity is
then mapped into the robot’s forward velocity u**!, whose
direction points forward (Zu**! = 5) and its magnitude
u = |[uTt|| is set to:

( Utarget u’

arget ] ||uf\|)umu;c,

0, otherwise.

: t .
u = if utarget -u Z O,

In our experiments, the maximum magnitude w,,,, of the
forward velocity is set to 0.036.

The angular velocity w of the robot is determined by a
proportional controller calculating the deviation of the target
angle from the current heading of the robot:

w = K,({Wgrget — /ut),

where K, is a proportionality constant whose value is set
to 0.5. Finally, the rotation speeds of the left (V) and right
(Ng) motors are set to:

- ()’
V- (-3

where [ is the distance between the wheels and r is their
radius.

IV. EXPERIMENTS

In this section, we first introduce the metrics and the
experimental setup used to evaluate the proposed method-
ology. We then present the results in both stationary and
non-stationary environments.

A. Metrics

In flocking, we are interested in having a group of robots
that move compactly, coherently and without any collisions.
Furthermore, the group should be aligned and move towards
a common direction (in our case the goal direction). In this
paper, we used two metrics: order and accuracy.



1) Order: The order metric 1 [25] is used to measure
the angular order of the robots. ¢ ~ 1 when the group has a
common heading and ¢ < 1 when each robot is pointing in
a different, random different direction. The order is defined
as:

1 R
v =ylal= ;:1 e,

where NN is the total number of robots in the experiment,
and a is the vectorial sum of the measured headings of the
N robots.

2) Accuracy: The accuracy metric § [8] is used to mea-
sure how accurately robots are moving towards the desired
goal direction. § ~ 1 when robots are perfectly aligned to the
same direction (which corresponds also to an high value for
the order metric ¢ = 1) and at the same time this direction
is the goal direction g . Accuracy can be defined as:

V2 (1 —vcos(/a— Lg))
— 5 ,
where /a is the direction of a and /g is the goal direction
with respect to the common reference frame.

0=1

B. The task and the experimental setup

In our experiments, N mobile robots are placed with
random positions and with random orientations in an empty
arena and we make sure that all robots can perceive each
other. Each robot is a realistic simulation of a foot-bot, in
development for the Swarmanoid project’. We utilized the
following sensors and actuators: i) A light sensor, that is
able to perceive a noisy light gradient around the robot.
It is used to measure 6,, the orientation of robot r with
respect to a common light source. ii) A range and bearing
communication system, with which a robot can send a
message to other robots that are within its line of sight [26]
(2 meters in our case). iii) Two wheels actuators, that are
used to control independently the left and right wheels speed
of the robot. iv) 24 LEDs actuators and a camera, which are
used to detect distance and bearing from other robots to
perform the proximal control behavior (see Section.

In our study, we analyze the effect of three different param-
eters: i) the swarm size NV; ii) noise in the proximal control
vector p and iii) the proportion of informed robots p.

We control the noise with a scaling parameter o € [0, 1].
Using o, we can compute the noisy proximal control vector
p: this vector has the same length as p but its direction is
perturbed by a uniformly distributed random direction /p =
/p+U(—027,4+02m).

For each experimental setting, we executed 100 repeti-
tions. The nominal parameter values in all experiments are:
N =100, p=0.5and 0 = 0.

We conducted experiments in two different environments.
One is a stationary environment, where robots do not need to

Zhttp://www.swarmanoid.org
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Figure 1. Alignment-enabled controller against no alignment controller in
the stationary environment: order metric.

adapt to changes; the other is a non-stationary environment,
in which we test the adaptation capabilities of flocking.
Below we describe the two environments.

1) Stationary environment: In a stationary environment,
a proportion p of randomly selected robots are given the
information about the goal direction g. All the other robots
remains uninformed for the entire duration of the simulation.
In every run, we randomize g, as well as the selection of
robots that are informed. The duration of one run is 150
simulated seconds.

2) Non-stationary environment: A non-stationary envi-
ronment consists of four stationary phases. The proportion
of informed robots p is kept fixed during the entire run.
However, at the beginning of every stationary phase, the
robots that are informed are reselected at random. Also, the
goal direction g to be followed changes randomly from one
stationary phase to the next one. This type of environment
is used to test the adaptation capabilities of flocking. The
duration of one run is 250 simulated seconds.

C. Results for the stationary environment
Effect of alignment behavior

In our first set of experiments, we compare the alignment-
enabled controller with the no alignment controller under the
nominal parameter setting.

Figure 1 shows the order metric for the two con-
trollers. The alignment-enabled controller outperforms the
no-alignment controller with respect to this metric. This
is due to the alignment behavior, which enables robots to
negotiate explicitly and achieve consensus to a common
heading. In the no-alignment controller, this explicit negoti-
ation is missing, thus order can be obtained only implicitly
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Figure 2. Alignment-enabled controller against no alignment controller in
the stationary environment: accuracy metric.

by the fact that informed robots are “pushing” towards the
goal direction, whereas uninformed robots are only trying
to be proximally connected to their neighbors. Specifically,
uninformed robots that are close to informed robots will try
to stay close to them. Since informed robots are moving,
uninformed robots will move as well to stay close, thus
matching the heading of their neighbors. This also produces
a “cascading effect”, in the sense that uninformed robots
which are close to other uninformed robots will also move
towards the goal direction g.

Figure 2 shows the accuracy metric for the two controllers.
The plot reveals that the two behaviors perform almost the
same with respect to accuracy. This happens despite the fact
that order, which is an important component of the accuracy
metric, is higher for the alignment-enabled controller. This
hints to the fact that there is somewhere a loss of accuracy
for the alignment-enabled controller, i.e. the accuracy of
the alignment-enabled controller would be lower than the
accuracy of the no-alignment controller if the two controllers
performed in the same way with respect to the order metric.
This effect will become more clear in the next section, in
which we compare the two controller under the effect of
different swarm sizes.

Effect of the swarm size

Figure 3 and Figure 4 show the effect of the swarm size
on the order and on the accuracy respectively.

The order metric (Figure 3), is much higher when the
size of the swarm is small. With comparable level of order
in the two controllers, we now clearly see how the accuracy
(Figure 3) is lower for the alignment-enabled controller with
respect to the no-alignment controller.
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Figure 3. Alignment-enabled controller against no alignment controller in
the stationary environment under the effect of different swarm sizes: order
metric.
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Figure 4.  Alignment-enabled controller against no alignment controller

in the stationary environment under the effect of different swarm sizes:
accuracy metric

The explanation for this is the following. Turgut [20]
observed that, when using the alignment-enabled behavior
and when all of the robots are uninformed, they can achieve
flocking to a common random direction. In our setting,
however, a proportion of the robots is informed about the
goal direction g. This introduces a bias in the common
direction negotiated by the swarm. However, this bias is
not enough to compensate the bias corresponding to the
random contribution of the uninformed robots. As a result,
the swarm flock to a direction that is in between a totally
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Figure 5. Alignment-enabled controller against no alignment controller in
the stationary environment under the effect of noise in the proximal control
vector: order metric.

random direction and the correct goal direction g.

On the other hand, when the alignment behavior is
omitted, negotiation to a common direction is completely
absent and hence, when no robot were informed, the swarm
would not achieve flocking but would remain stationary
while keeping a formation due to the proximal control
behavior. When some (in this case 50%) of the individuals
are informed, they introduce a bias towards the goal direction
g which, although very small, is enough to achieve flocking
in that direction, with an higher level of accuracy.

The effect explained above is particularly valid for smaller
swarms. In large swarm, we observe lower accuracy levels,
which however are due to lower levels of order. In the next
section, while analyzing the effect of noise, we will also
discuss the reason why order is negatively affected in larger
swarm when using the no-alignment controller.

Effect of noise

The effect of noise on the order metric is shown in
Figure 5. Results reveal that, for the alignment-enabled
controller, noise has little or no effect on the order metric.
This is due to the fact that the negotiation process provided
by the alignment behavior compensates to the presence of
noise. However, when using the no-alignment controller,
results are surprising. In fact, order is positively affected
by noise in the proximal control vector. This result is true
particularly for large swarms.

By visual inpection of some simulation runs performed
with the no-alignment controller we came out with the
following explanation: When no noise is present in the prox-
imal control behavior, we observe that uninformed robots are
trying to stay close to the informed robots which are moving
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Figure 6. Alignment-enabled controller against no alignment controller in
the stationary environment under the effect of noise in the proximal control
vector: accuracy metric.

towards the goal direction g. In doing so, robots align well
to each other on the local scale, but with inaccuracies on
large scales. On the other hand, when noise is introduced,
large scale inaccuracies are compensated by noise uniformly
present in the entire swarm.

Figure 6 shows the effect of noise on the accuracy
metric. Due to higher levels of order, the noisy no-alignment
controller outperforms all the others. Hence, noise can help
to achieve higher level of order and, at the same time, a
more accurate flocking behavior due to the presence of only
one bias, the one of the informed robots.

Effect of the proportion of informed robots

Figure 7 shows the order metric when varying the number
of informed robots p. When p is too small, the goal direction
bias is not enough to move the robots when using the no-
alignment controller. Hence, robots cannot be lead towards
the goal direction, which in turn correspond to robots not
following each other and hence not maintaining a common
heading direction.

Figure 8 shows the accuracy metric when varying the
number of informed robots p. As expected, when using the
no-alignment controller, accuracy is also low because order
is low. The alignment-enabled controller is also affected
by a reduced proportion of informed individuals, although
accuracy is higher than the one corresponding to the no-
alignment controller. As a result, when few robots are
informed about the goal direction, alignment helps to reach
consensus to a direction which is close to the goal direction.



e |
—i
@ |
o
©
[
()
©
-
O «
he
o~ . .
Sl =<—..Alignment:  0.10 informed
---- No alignment: 0.10" informed
/ —— Alignment: 0.5 informed
g J — = No alignment: 0.5 informed
0 50 100 150

Time (s)

Figure 7.  Alignment-enabled controller against no alignment controller
under the effect of different proportions of informed individuals in the
stationary environment: order metric.
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Figure 8. Alignment-enabled controller against no alignment controller

under the effect of different proportions of informed individuals in the
stationary environment: accuracy metric.

D. Results for the non-stationary environment
Effect of the swarm size

Figure 9 and Figure 10 show the effect of the swarm size
on the order and on the accuracy respectively. Results in
both cases are consistent with the results in the stationary
environment. With 10 robots, order is very high with both
controllers, but the no-alignment controller outperforms the
alignment-enabled controller for what concerns the accuracy
metric. Results with a large swarm of 100 robots are also
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Figure 9. Alignment-enabled controller against no alignment controller in
the non-stationary environment under the effect of different swarm sizes:
order metric.
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Figure 10. Alignment-enabled controller against no alignment controller
in the non-stationary environment under the effect of different swarm sizes:
accuracy metric.

consistent with the ones in the stationary environment, with
the alignment-enabled controller dominating in accuracy
and both controller performing almost in the same way
with respect to accuracy. With 10 robots, we observe a
peculiar order (and consequently accuracy) drop in the the
fourth stationary phase when using the alignment-enabled
controller. This can be explained by the characteristics of
our experimental setup, which has the light at finite distance
from the robots. In some runs, robots might have reached
the light source (especially when the swarm is moving fast),
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Figure 11. Alignment-enabled controller against no alignment controller

in the non-stationary environment under the effect of noise in the proximal
control vector: order metric.
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Figure 12. Alignment-enabled controller against no alignment controller

in the non-stationary environment under the effect of noise in the proximal
control vector: accuracy metric.

and at the light source robots heading measurements have
no longer a semantics.

Effect of noise

Figure 11 and Figure 12 show the effect of noise in the
proximal control vector on the order and on the accuracy
metric respectively. Also in this case, results are consisten
with the ones in the stationary environments: the order
metric is high for the alignment-enabled controller and for
the no-alignment controller with noise, whereas the accuracy
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Figure 13. Alignment-enabled controller against no alignment controller

in the non-stationary environment under the effect of different proportions
of informed individuals in the: order metric.
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Figure 14. Alignment-enabled controller against no alignment controller
in the non-stationary environment under the effect of different proportions
of informed individuals in the: accuracy metric.

metric is dominated by the no-alignment controller with
noise.

Effect of the proportion of informed robots

Figure 13 and Figure 14 show the effect of changing
the proportion of informed robots on the order and on
the accuracy metrics respectively. Results here reveal that
enough informed robots is needed to guarantee adaptation
to non-stationary environments. In fact, with 50% informed
robots, order and accuracy show that both controllers can



make the swarm adapt to changes in the environment.
On the other hand, with only 10% informed robots, the
alignment-enabled controller reaches an intermediate level
of order which remains the same regardless of changes
in the environment. This is translated in a complete lack
of adaptability, as shown by the accuracy metric. The no-
alignment controller here performs even worse, with both
order and accuracy assessing at very low levels.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we performed a comparative study of two
flocking controllers. In both controllers, we implemented a
proximal control behavior, to enable robots staying at an
optimal distance between each other. One of the controllers,
called alignment-enabled controller, was provided with an
alignment behavior, with which robots can send their own
measured heading and align to the average of the headings
received from their neighbors. In the other controller, called
no-alignment controller, only the proximal control behavior
is present, and the alignment behavior is neglected.

We executed simulation-based experiments under different
settings in order to compare the two controllers. In both
controllers, a proportion of robots, called informed robots,
are provided with information about the desired goal direc-
tion. Our goal was to understand under the effect of which
parameter a controller outperforms the other. To measure
performance, we implemented the order metric, which is
used to measure at what extent robots are aligned with
each other, and the accuracy metric, which measure how
accurately robots are moving towards the goal direction.

We executed experiments in a stationary and non-
stationary environment. In the stationary environment, the
goal direction and the informed robots do not change over
time. In the non-stationary environment, both the goal direc-
tion and the informed robots change over time. We study the
effect of three different parameters: the size of the swarm,
the noise in the proximal control behavior and the proportion
of informed robots. Results showed that:

1) The alignment behavior results in a more aligned
motion in larger swarms, whereas smaller swarms without
an alignment behavior can follow the goal direction more
accurately: In both stationary and non-stationary environ-
ments, and in a small swarm, the no-alignment controller
outperforms the alignment-enabled controller, due to the
fact that the goal direction alone biases the decision-making
mechanism of the swarm. This correspond to better decisions
made by the swarm. On the other hand, in large swarms, the
negotiation mechanism provided by the alignment behavior
helps to diffuse the information about the goal direction.
However, a random bias in the negotiation can make this
decision less accurate.

2) Noise in the no-alignment controller helps to achieve
a more aligned motion in large swarms: In both stationary
and non-stationary environments, the noise in the proximal

control behavior has an interesting and positive effect on
the order in large swarms when using the no-alignment
controller. In facts, it helps to reach, more aligned collective
movement, which otherwise would be affected by local
errors in the alignment. This increase in order results also
in better accuracy.

3) The swarm needs enough informed robots to follow
accurately the goal direction and to adapt to non-stationary
environments: In the stationary environment, we found that
the proportion of informed robots need to be high enough
in order for the no-alignment controller to work at an
acceptable level. On the other end, using the alignment-
enabled behavior, the information about the goal direction
can spread in the swarm even when only a small proportion
of robots is informed. On the other hand, in non-stationary
environments, too few informed robot are not enough for
achieving a sufficient level of adaptability.

The proposed study can be continued in many ways.
First, a more in-depth analysis is required to understand
exactly what is the effect of noise on the order in large
swarm and how exactly it is helping. Second, it would
interesting to understand whether the spatial distribution of
informed robots matters on the collective decision-making
of the swarm. Third, to have a better understanding of the
dynamics of the system, an analytical model needs to be
developed. Fourth and last, the proposed controllers can
be ported into real robots experiments with the foot-bot
platform, in order to validate our findings in a more concrete
and realistic setting.
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