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Abstract

Iterated local search is a stochastic local search (SLS) method that combines a perturba-
tion step with an embedded local search algorithm. In this article, we propose a new way of
hybridizing iterated local search. It consists in using an iterated local search as the embedded
local search algorithm inside another iterated local search. This nesting of local searches and
iterated local searches can be further iterated, leading to a hierarchy of iterated local searches.
In this paper, we experimentally examine this idea applying it to the quadratic assignment
problem. Experimental results on large, structured instances show that the hierarchical iter-
ated local search can offer advantages over using a “flat” iterated local search and make it a
promising technique to be further considered for other applications.

1 Introduction

Hybrid stochastic local search (SLS) algorithm are those that combine various other SLS strategies
into one more complex SLS algorithm [9]. In this sense, iterated local search (ILS) is such a hybrid
SLS method since it combines local search (one strategy) with perturbations (another strategy)
that are typically of a different nature than the modifications applied in the local search [10].
Following another nomenclature, ILS is also classified as being one (typically non-hybrid) meta-
heuristic. One goal of the research area of hybrid metaheuristics is to study high-level strategies
that combine different metaheuristics into a new metaheuristic [3]. If, hence, the goal is to propose
a hybrid metaheuristic, in the case of ILS this is a rather trivial undertaking. If we use inside
ILS instead of an iterative improvement local search a tabu search or a simulated annealing, two
examples of other metaheuristics, we already have a hybrid metaheuristic. In fact, such proposals
have studied [15, 5, 12, 13]. Recently, also hybrids between ILS and evolutionary algorithms have
been considered, where the evolutionary algorithm plays the role of the perturbation operator in
ILS [11].

In this article, we propose a new way of generating a hybrid “metaheuristic”: we hybridize
a metaheuristic with itself! To be more concrete, here we propose to hybridize ILS with ILS.
In fact, this is can be accomplished by using inside one ILS algorithm a local search procedure
that is another ILS algorithm. Such a type of hybridization can actually make sense. In fact,
many hybrid algorithms are obtained by using some higher level “perturbation mechanism” and
combining this with a local search type algorithm. This is the case, for example, for hybrid
algorithms that combine evolutionary algorithms with local search algorithms (resulting in so
called memetic algorithms) or that combine ant colony optimization with local search algorithms.
Note that in these cases, the local search part is usually taken by iterative improvement algorithms
but also many examples exist of using tabu search, simulated annealing or even iterated local search
[7]. In our proposed ILS-ILS hybrid, the outer ILS algorithm plays this role of the perturbation
mechanism while the inner ILS algorithm plays the role of the local search.

Interestingly, this idea of nesting iterated local searches can be further iterated, by hybridizing
ILS with an ILS-ILS hybrid and so on. Hence, we can define a hierarchy of nested ILS algorithms.
Given this possibility, we have denoted this class of hybrids as hierarchical ILS (HILS). In fact,
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Algorithm 1 Iterated Local Search

procedure ILS(s0)
input: s0 % initial solution
s∗ = Local Search(s0)
while termination condition is not met do

s′ = Perturbation(s∗, history)
s∗′ = Local Search(s′)
s∗ = Acceptance Criterion(s∗, s∗′, history)

end while

return s∗b % best solution found in the search process
end Iterated Local Search

the ILS-ILS hybrid is simply the first level of this hierarchy with one ILS on top and one in the
next lower level; therefore, we denote this hybrid as HILS(2); HILS(1) is a flat ILS without any
nested ILS process.

In this paper, we explore this idea of hierarchical ILS applying it to the quadratic assignment
problem (QAP). In particular, we build an HILS(2) algorithm using two particular ILS algorithms
as the underlying building blocks. The computational results obtained with the resulting HILS(2)
algorithm are very promising. On a number of instances, a tuned version of HILS(2) performs sig-
nificantly better than tuned versions of the underlying ILS algorithms. Some limited experiments
with an untuned HILS(3) algorithm show that the consideration of further levels of this hierarchy
may be interesting for QAP instances with a particular structure.

This article is structured as follows. In the next section, we give an overview of ILS, introduce
the hierarchical ILS approach in more detail, and illustrate in Section 3 its adaptation to the QAP.
In Section 4 we introduce the benchmark instances used in this article. Experimental results with
the hierarchical ILS are given in Section 5 and we conclude in Section 6.

2 Hierarchical iterated local search

Iterated Local Search (ILS) iterates over a heuristic, in the following called local search, by building
a chain of local optima. It builds this chain by perturbing at each iteration a current local optimum;
this results in an intermediate solution, which is the starting solution of the next local search. Once
the local search terminates, the new local optimum is accepted depending on some acceptance test.
An algorithmic outline of ILS is given in Algorithm 1. ILS starts building this chain of solutions
using some initial solution and applying a local search to it. The goal of the perturbation is
to modify a current local optimum to generate a good new starting solution for a local search.
The perturbation should not be too strong, since otherwise the perturbation is close to a random
restart; but also not too weak, since otherwise the following local search could simply undo the
changes and return to the previous local optimum. The acceptance criterion decisively determines
how greedy the search is. For a more detailed discussion of ILS we refer to [10].

The role of the Local Search procedure can be played by any heuristic that takes as input some
solutions s ∈ S, where S is the space of all candidate solutions for the problem under concern,
and outputs an improved solution s∗. In fact, for the following discussion only this input–output
behavior is important, that is, we can see local search as a function Local Search : S 7→ S∗; we call
S∗ ⊆ S, for simplicity, the space of “local optima”. If the local search is an iterative improvement
algorithm, S∗ is the space of local optima w.r.t. the neighborhood structure used in the local
search; if the local search is a tabu search, then S∗ is the set of the best solutions found by a tabu
search execution of a specific search length and using a specific s as input. This point of view
results in the interpretation of ILS as being a stochastic search in the space of local optima, the
space of “local optima” being defined by the output behavior of the embedded heuristic.

The underlying idea of the hierarchical ILS is to use two (or more) nested iterated local searches.
The first level of this hierarchy is obtained by replacing the procedure Local Search in Algorithm 1
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Algorithm 2 Hierarchical Iterated Local Search; level 2

procedure Iterated Local Search
s0 = Generate Initial Solution
s∗∗ = ILS (s0)
while termination condition is not met do

s′ = Perturbation(s∗∗, history)
s∗∗′ = ILS(s′)
s∗∗ = Acceptance Criterion(s∗∗, s∗∗′, history)

end while

return s∗∗b , the best solution found by HILS
end Iterated Local Search

by an ILS algorithm. This results in an HILS(2) that is outlined in Algorithm 2. This outline
corresponds to the first hierarchy level of HILS and it will be denoted by HILS(2), since it consists
of two nested ILS algorithms.

When applying the above interpretation of ILS as searching the space of local optima of
Local Search to HILS(2), we get the following relationship. The procedure ILS can be interpreted
as a function ILS : S∗ 7→ S∗∗, that is, it is simply defining a mapping from the space of local optima
S∗ to a smaller space S∗∗. We have that S∗∗ ⊆ S∗ and it can be interpreted as the set of possible
outputs of the inner ILS, that is, it is the set of local optima that correspond to the potential best
solutions that are found by the inner ILS. The “outer” ILS is, hence, doing a stochastic search
in a potentially even smaller space than S∗. Clearly, this hierarchy could be further extended by
considering further levels, leading to an interpretation of HILS as searching in S∗, S∗∗, S∗∗∗, and
so on, depending on the number of nested iterated local searches. In this article, we examine in
some more detail an HILS(2) algorithm; in addition, we provide some evidence that at least for
some class of QAPLIB instances an HILS(3) algorithm shows very good performance.

3 Hierarchical ILS for the quadratic assignment problem

3.1 Quadratic assignment problem

The QAP is an NP-hard problem [14] that has attracted a large number of research efforts [2, 4].
It is an abstract model of many practical problems arising in applications such as hospital, factory
or keyboard layout. In the QAP, one is given two n × n matrices A and B, where aij gives the
distance between the pair of positions i and j; bkl gives the flow of, for example, patients or
material between units k and l. Assigning units k and l to positions i and j, respectively, incurs
a cost contribution of aij · bkl. The goal of the QAP is to assign units to positions such that the
sum of all cost contributions is minimized. A candidate solution for the QAP can be represented
as a permutation π, where π(i) is the unit that is assigned to position i. The objective function
of the QAP is

f(π) =

n
∑

i=1

n
∑

j=1

aij · bπ(i)π(j). (1)

Due to its difficulty for exact algorithms, currently SLS algorithms define the state-of-the-art
for the QAP [9]. ILS algorithms have shown very good performance on the QAP, some variants
reaching state-of-the-art performance [16].

3.2 Iterated local search for the quadratic assignment problem

Various ILS algorithms for the QAP have been studied in [16] and we describe here the main ILS
components taken from [16] for our study.
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Our ILS and HILS algorithms start from a randomly generated initial solution. As the local
search we consider an iterative improvement algorithm in the two-exchange neighborhood using a
first improvement pivoting rule. The two-exchange neighborhood N (π) of a solution π is given by
the set of permutations that can be obtained by exchanging units r and s at positions πr and πs.
As soon as an improving move is found during the exchange, it is immediately applied. To avoid
spending too much time during the search, the iterative improvement algorithm exploits the don’t
look bits technique to speed up the local search algorithm. If no improvement is found during the
neighborhood scan of an unit, the corresponding don’t look bit is turned on (that is, set to one)
and the unit is not considered as a starting unit for the next iteration. If an unit is involved in
a move and changes its position, its don’t look bit is turned off again (that is, set to zero). The
purpose of using don’t look bits is to restrict the attention to the most interesting part of the local
search.

The perturbation in ILS and HILS exchanges k randomly chosen units. We consider various
possibilities for defining the strength of the perturbation, that is, the number k of units exchanged
and consider two specific schemes: keeping the number k fixed or using a variable perturbation
strength, as done in Variable Neighborhood Search (VNS) [8].

The main differences among the ILS algorithms studied by Stützle [16] concerned the accep-
tance criteria. In particular, he studied the better acceptance criterion (Better), where a new
local optimum s∗′ is accepted if it is better than the incumbent one s∗, a random walk acceptance
criterion (RandomWalk), where a new local optimum s∗′ is accepted irrespective of its quality
(that is, always), and a restart acceptance criterion (Restart), which behaves like Better with one
exception: if for ir successive iterations no improved solution has been found, the ILS algorithm
is restarted from a new, randomly generated solution.

Note that in [16] an ILS algorithm based on a Simulated Annealing type acceptance criterion
(LSMC ) was also studied. We did not use this one here, mainly to simplify the construction of
an appropriate HILS algorithm by needing to adapt less parameters. Another reason is that for
most QAP instances, the best results of the ILS algorithms that use the Better, RandomWalk,
and Restart acceptance criteria are roughly on par or better than those of LSMC [16]. Similarly,
the two population-based ILS variants replace worst (RepWorst) and evolution strategies (ES )
are not considered as building blocks here, since the target here is an ILS variant that does not
use a population.

3.3 Hierarchical iterated local search

For defining an HILS(2) algorithm, we need to define the acceptance criteria and perturbations
used at each of the hierarchy levels—the local search algorithm is only used in the inner ILS.

The construction of the HILS(2) algorithm is based on the following main rationale. The inner
ILS should provide a fast search for good solutions in a confined area of the search space, while
the outer ILS loop is responsible for guiding the search towards appropriate regions of the search
space. We translate this into the outer ILS algorithm doing rather large jumps in the search
space, corresponding to large perturbations, while the inner ILS algorithm is only using small
perturbations.

The only remaining component to be set is the acceptance criterion. In this article, we consider
for both hierarchy levels only two possibilities: either using Better or RandomWalk. This results
in a total of four possible combinations. We compare the HILS(2) algorithm also to ILS with
Restart acceptance criterion; note that this comparison is particularly interesting, since ILS with
restarts can be seen as an extreme case of HILS: it corresponds to an outer ILS loop that uses a
perturbation size equal to the instance size (that is, it generates a new random solution) and the
RandomWalk acceptance criterion.

Finally, note that in HILS(2) one additional parameter arises: the execution time given to
the inner ILS algorithm. In fact, this type of parameter arises in any similar hybrid where a
metaheuristic is used as an improvement method and we will set this parameter empirically.
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4 Benchmark Instances

While most of the studies of algorithms for the QAP are based on instances from QAPLIB, in
this study we use benchmark instances that we have randomly generated. There are a few reasons
for this. A first is that in this way we can systematically vary instance characteristics. Secondly,
in this way we can generate a larger set of reasonably uniform instances, which can be used, for
example, for automated tuning tools and allow for the comparison on test instances. Thirdly, this
allows also to study the algorithm behavior on larger instances, since most QAPLIB instances are
of rather small size.

In this study, we generated a new set of QAP instances similar to some types of instances
used in the research of the Metaheuristics Network [17]. These instances are generated such that
they have widely different distributions of the entries of the flow matrices. In particular, the flow
matrices are generated such that their entries are similar to the type of distributions found in
real-world QAP instances [19].

The distance matrices are generated using two possibilities: Euclidean distances and grid
distances.

Euclidean distances. Using this approach, the distance matrix entries are generated as the
pairwise Euclidean distances between n points in the plane:

1. each coordinate of each of n points is generated randomly according to a uniform
distribution in [0, k].

2. The Euclidean distance between each pair of two points is calculated, rounded to the
nearest integer, and returned as the distance matrix entry.

Grid distances. In this approach, the distance matrix corresponds to the Manhattan distance
between the points on a A × B grid.

Instances generated based on Euclidean distances will have most probably only one single
optimal solution, while instances generated based on Manhattan distances have at least four
optimal solutions, due to the symmetries in the distance matrix.

Flow matrix entries follow an exponential distribution, where a large number of entries have
small values, and very few are with large values. The flow matrices of all instances are symmetric
and have a null diagonal.

Structured flows. Instances with structured flows are generated as follows:

1. n points are generated randomly according to a uniform distribution in a square with
dimension 100 × 100.

2. If the distance between two points i and j is above a threshold value p, the flow is zero.

3. Otherwise, the flow is calculated as x = −1 · log(R), where R is a random number in
[0, · · · , 100], and flow = min

{

100 · x2.5, 10000
}

The numbers have been chosen in such a way that the objective values can still be represented
as unsigned integers on a 32-Bit system.

As a result, we have two different levels of distance matrices (Euclidean (ES) and grid dis-
tances (GS)). For our experiments, we have generated for each level of distance matrices three
different levels of flow matrices. Each of these three levels of flow matrices differs mainly in their
sparsity (defined as the percentage of zero entries) and the resulting flow dominance values (which
corresponds to the variation coefficient of the flow matrix entries multiplied by 100). Statistics on
these values (including also the distance dominance) for each resulting instance class are given in
Table 1. Of each of these classes, we have generated 100 instances for tuning and 100 for testing.
The statistics are given for two instance sizes.
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Table 1: Basic statistics on some instance classes of the benchmark instances. Given are the
distance dominance (dd), the flow dominance (fd), and the sparsity of the flow matrix (sp).

Class size dd fd sp Class size dd fd sp
ES.1 100 47.17 274.57 0.20 GS.1 100 69.31 275.37 0.21
ES.2 100 47.17 386.28 0.45 GS.2 100 69.31 385.57 0.43
ES.3 100 47.15 493.25 0.90 GS.3 100 69.31 492.93 0.89
ES.1 200 47.41 276.27 0.21 GS.1 200 68.98 276.42 0.20
ES.2 200 47.41 386.59 0.45 GS.2 200 68.98 386.26 0.42
ES.3 200 47.42 496.29 0.91 GS.3 200 68.98 494.12 0.92

5 Experimental Results

5.1 Experimental setup

All the experiments that we report here have been run on Intel Xeon 2.4 Ghz quad-core CPUs
with 6 MB cache and 8 GB of RAM running under Cluster Rocks Linux. Due to the sequential
implementation of the algorithms only a single core is used for computations. If nothing else is
said, the stopping criteria for the experiments on the various instance classes were based on the
CPU time that is taken by our reimplementation of the robust tabu search algorithm of Taillard
[18] to perform 1000 · n iterations. The algorithms are coded in C and compiled with gcc version
3.4.6.

5.2 Choice of local search

As a first step, we identified the most appropriate local search to be used in ILS and HILS(2). To
do so, we used a set of 30 instances of size 100 and we performed tests considering the following
four options:

1. first-improvement two-exchange local search without don’t look bits.

2. first-improvement two-exchange local search with don’t look bits.

3. first-improvement two-exchange local search with don’t look bits and resetting of don’t look
bits during perturbation.

4. best-improvement two-exchange local search.

Since ILS is the main part of HILS(2), the performance of local search was studied using
exclusively an ILS algorithm. A statistical analysis of the experimental results showed that the
third option was the most performing one. In this option, after a perturbation only the don’t look
bits of the units that have changed the position are reset to zero.

5.3 Experimental study of HILS combinations

As a next step, we generated systematically a number of HILS(2) variants. In total, eight variants
have been studied that were obtained by all possible combinations of the following settings. The
outer and the inner ILS can use the acceptance criteria Better or RandomWalk and the length of
the inner ILS is terminated after either n or 2n ILS iterations, where n is the instance size. The
perturbation sizes were set, following the rationale given in Section 3.3, as follows. The outer ILS
used variable perturbation sizes taken from the set {0.25n, 0.5n, 0.75n}, while the inner ILS varied
the perturbation size among the integers in the interval [3, 0.25n− 1]; in both cases, the changes
in the perturbation sizes follow the rules of the basic VNS [8].



IRIDIA – Technical Report Series: TR/IRIDIA/2009-021 7

Each of the resulting eight HILS(2) algorithms was applied to 100 instances of the above
mentioned benchmark set of sizes 100 and 300. The results of the experiments were analyzed using
pairwise Wilcoxon tests using Holm’s correction to identify the winning combinations. While we
expected to observe clear trends concerning the winning configurations, no fully conclusive results
were obtained. In fact, seven of the eight configurations have been among the best performing
configurations (taken into account statistically not significantly different performance). The only
slight trend appeared to be that on less sparse instances, for the outer ILS the Better acceptance
criterion appeared to be preferable, while for very sparse instances the randomWalk criterion gave
overall better performance.

5.4 Performance comparison of HILS and ILS variants

Given that no fully conclusive results were obtained in our previous analysis, as a next step,
we fine-tuned two ILS algorithms that were used as building blocks of HILS(2) (ILS with better
acceptance criterion (ILSb), ILS with random walk acceptance criterion (ILSrw)), as well as the
ILS algorithm with Restart acceptance criterion (ILSrr). For this task, we used F-race, a racing
algorithm based on the Friedman two-way analysis of variance [1]; for each tuning task a same
maximum number of 6 000 algorithm evaluations was given as the computational budget for F-race.

The tuning of ILSb, ILSrw, and ILSrr was considered to allow for a fair comparison. For the
first two variants, only one parameter was tuned; the perturbation scheme, while for ILSrr, an
additional parameter, the number of iterations without improvement before a random restart is
triggered (ir), also needs to be tuned. Perturbation schemes considered are a fixed perturbation
scheme and variable neighborhood search (VNS). For each scheme, several choices of perturbation
strength (k), step size (k+), and maximum perturbation strength (kmax) are available. The
winning configurations from F-Race are then used when comparing HILS(2) to the underlying ILS
variants. Table 2 shows the parameter settings selected by F-Race for the three basic ILS variants.

Four parameters were considered for tuning HILS(2); the perturbation scheme, the acceptance
criterion for the outer loop (Acco) and the inner loops (Acci), and the length of the inner loop (L) as
a multiple of the instance size. The perturbation scheme consists of several subsidiary parameters;
perturbation direction P, which controls how the perturbation size changes (increasing, decreasing,
or fix), minimum perturbation strength for the outer loop, kmin−o, change in perturbation strength
after every iteration k+, maximum perturbation strength for outer loop, kmax−o, and maximum
perturbation strength for inner loop, kmax−i. Acceptance criterion Acco and Acci consist each of
two choices as explained previously: Better (b) and RandomWalk (rw). The parameter settings
of HILS(2) chosen by F-Race is summarized in Table 3.

On most of ES instances, the fixed perturbation scheme was performing best, while for GS
instances, the VNS scheme seems to be the better choice. Intuitively, if a fixed perturbation
scheme is chosen, the perturbation strength has to be very large to allow stronger diversification
by the algorithm. Results from F-Race confirm this since the surviving perturbation strengths
for a fixed perturbation size are always large: 0.7n or 0.9n. For the VNS scheme, several kmin−o

values were considered during tuning, and all the values, n/6, n/5, and n/4 are chosen as good
parameter settings for respective instance class. F-Race suggests a long inner loop length for ES
instances, while for GS instances, a shorter inner loop length was chosen all the time.

The results of the comparison between HILS(2) and the three ILS algorithms are presented
next. For each combination of instance class and size, we first computed the average solution
quality across the 100 test instances and we used them as the basis of our comparison. The
percentage difference between these values and results obtained by other algorithms are then
computed. In Table 4 we give the results obtained by HILS(2) and the underlying ILS variants.
Pairwise Wilcoxon tests with Holm corrections for multiple comparisons were conducted to check
the statistical significance of our results. If the p-value is lower than our chosen level of α = 0.05,
the difference between the corresponding algorithms is deemed significant, and printed in italics.

The result of this experiment show very promising performance of HILS(2). HILS(2) has
obtained the lowest average for 11 out of 12 instance classes; in many cases the observed differences
are statistically significant. Only on dense ES instance set of size 100, the average obtained by
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Table 2: Tuned parameter settings for basic ILS variants. The two entries for each parameter
correspond to instances of size 100 and 200. See the text for more details.

Pert. kmin k+ kmax ir
Instances 100 200 100 200 100 200 100 200 100 200

ILSb
ES.1 fix fix 40 80 0 0 40 80 - -
ES.2 fix fix 40 80 0 0 40 80 - -
ES.3 VNS VNS 3 3 3 3 90 180 - -
GS.1 VNS VNS 3 3 3 1 90 180 - -
GS.2 VNS fix 3 20 1 0 90 20 - -
GS.3 VNS VNS 3 3 3 1 90 180 - -

ILSrw
ES.1 VNS VNS 3 3 3 3 90 180 - -
ES.2 VNS VNS 3 3 3 3 90 180 - -
ES.3 VNS fix 3 140 1 0 30 140 - -
GS.1 VNS fix 3 20 3 0 90 20 - -
GS.2 VNS fix 3 20 3 0 90 20 - -
GS.3 fix fix 40 140 0 0 40 140 - -

ILSrr
ES.1 fix fix 10 80 0 0 10 80 1 1
ES.2 fix fix 10 80 0 0 10 80 1 2
ES.3 VNS VNS 3 3 3 3 90 180 1 1
GS.1 VNS fix 3 80 3 0 90 80 1 1
GS.2 VNS VNS 3 3 3 1 90 90 1 1
GS.3 VNS VNS 3 3 1 1 90 90 10 2

ILSrw is very slightly less than that of HILS(2) (the truncation to two significant positions hides
this fact in the table), but not in a statistically significant way.

5.5 Comparison of HILS, ILS-ES, ILSts, and RoTS

As a next step in our analysis, we compared the performance of HILS(2) to three well known
algorithms from literature. The first is robust tabu search (RoTS) by Taillard [18], an algorithm,
which is chosen as a baseline in many comparisons of SLS algorithms, iterated tabu search (ILSts),
variants of which have been discussed in several articles [15, 5, 12, 13], and a state-of-the-art
population-based ILS variant, the ILS-ES from [16]. All algorithms are re-implemented and run
for a same computation time. The results of the comparison are given in Table 5. As in the
previous comparison, we normalize the results w.r.t. the best performing algorithm and indicate

Table 3: Parameter settings for HILS(2). The two entries for each parameter correspond to
instances of size 100 and 200. See the text for more details and an explanation of the table entries.

P kmin−o k+ kmax−o kmax2 Acco Acci L

Instances 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200

ES.1 VNS fix 25 140 25 0 75 140 25 140 rw b rw rw 30 30

ES.2 fix fix 70 140 0 0 70 140 70 140 rw b rw rw 30 10

ES.3 fix fix 90 180 0 0 90 180 90 180 b b rw rw 10 2

GS.1 VNS VNS 17 34 17 34 83 167 17 34 b rw b rw 2 2

GS.2 VNS VNS 20 50 20 50 80 150 20 50 rw rw b rw 2 5

GS.3 VNS fix 17 180 17 0 83 180 17 180 b b b rw 2 5
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Table 4: Comparison between HILS, ILSb, ILSrw, and ILSrr. Given are the percentage deviations
from the best average across the 100 test instances. Statistically significant differences are indicated
in italics font. See the text for details.

Class Size t HILS ILSb ILSrw ILSrr
ES.1 100 54 0.00 0 .33 0.00 0.22
ES.2 100 54 0.00 0 .43 0 .06 0.21
ES.3 100 54 0.00 1 .07 0 .94 0.07
GS.1 100 54 0.00 0 .08 0 .02 0.01
GS.2 100 54 0.00 0 .11 0 .02 0.02
GS.3 100 54 0.00 0 .03 0 .26 0.02
ES.1 200 438 0.00 0 .26 0.02 0.23
ES.2 200 438 0.00 0 .27 0.00 0.24
ES.3 200 438 0.00 0 .38 0 .49 0.07
GS.1 200 438 0.00 0 .26 0 .08 0.14
GS.2 200 438 0.00 0 .45 0 .05 0.02
GS.3 200 438 0.00 0.02 0 .33 0.68

significantly worse performance according to the Wilcoxon test with Holm’s corrections for multiple
comparisons in italics font. On instance size 100, ILS-ES is clearly the best performing algorithm:
it obtains significantly better solutions on every instance class considered. For larger instances,
HILS(2) shows a particularly good performance on dense instances. Only on very sparse instances
(those with class identifier 3), ILS-ES shows (slightly) better average results. This behavior is true
on instance sizes 200, 300, and 500.

5.6 HILS(3)

As a final experiment, we conducted tests on structured Taillard’s instances (taiXXe instances) of
size 125, 175, and 343 [6]. These instances were designed to be hard for local search algorithms by
integrating some block structures in the flow and distance matrices. We selected one instance per
size and conducted 20 independent trials for each algorithm. Since we found rather poor behavior
of HILS(2) on this class of instances, on which it is known that large perturbations are needed,
we tested also an ad-hoc variant of an HILS(3) algorithm. This HILS(3) was using at each of
the three hierarchy levels a Better acceptance criterion. The perturbation size was at each level
modified in a VNS fashion using as possible perturbation strengths in the outermost ILS the set
{0.25n, 0.5n, 0.75n}, in the middle-level ILS the set {11, 12, .., 0.25n}, and in the innermost level
the set {3, 4, .., 10}. The innermost ILS was terminated after ten iterations, while the middle-level
ILS was terminated after five iterations. As can be seen in Table 6, HILS(3) resulted to be the
best performing algorithm for these instances, even performing better than the ILS-ES approach.
An illustration of the development of the solution quality over time is given in Figure 1.

6 Conclusions

In this article, we have introduced an example of a metaheuristic that has been successfully
hybridized with itself, which shows that hybrid metaheuristics are potentially not only limited to
hybrids among different metaheuristics. We illustrated this concept of self-hybridization using the
example of iterated local search, where this concept can be applied in a reasonably straightforward
way. In fact, the possibility of having nested local searches was already suggested in an earlier
overview article on ILS [10], although there the idea of a self-hybridization of ILS has not been
further elaborated. We further have shown that this idea of nesting iterated local searches leads
to a hierarchy of ILS algorithms.
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Figure 1: Plot of the development of the solution cost over computation time on two taiXXe
instances. Given are the plots for HILS(2), HILS(3), ILS-ES and robust tabu search (RoTS).
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Table 5: Comparison between HILS(2), ILS-ES, ILSts, and RoTS. The computation times for
each instance class and all algorithms are indicated in the column t. Given are the percentage
deviations from the best average across the 100 test instances. Statistically significant differences
are indicated in italics font.

Class Size t HILS(2) ILS-ES ILSts RoTS
ES.1 100 54 0.08 0.00 0.24 0.26
ES.2 100 54 0.06 0.00 0.26 0.26
ES.3 100 54 0.27 0.00 0.30 0.95
GS.1 100 54 0.03 0.00 1.99 0.29
GS.2 100 54 0.02 0.00 1.79 0.28
GS.3 100 54 0.01 0.00 5.16 0.42
ES.1 200 438 0.00 0.11 0.11 0.20
ES.2 200 438 0.00 0.09 0.14 0.17
ES.3 200 438 0.27 0.00 1.31 0.94
GS.1 200 438 0.00 0.01 0.65 0.34
GS.2 200 438 0.00 0.03 0.66 0.30
GS.3 200 438 0.07 0.00 1.17 0.72
ES.1 300 1400 0.00 0.17 0.08 0.22
ES.2 300 1400 0.00 0.16 0.17 0.24
ES.3 300 1400 0.32 0.00 1.15 0.77
GS.1 300 1400 0.00 0.13 1.04 0.39
GS.2 300 1400 0.00 0.14 0.99 0.28
GS.3 300 1400 0.06 0.00 2.52 1.53
ES.1 500 7300 0.00 0.48 0.54 0.64
ES.2 500 7300 0.00 0.53 0.36 0.67
ES.3 500 7300 0.19 0.00 0.55 3.25
GS.1 500 7300 0.00 1.70 6.95 5.27
GS.2 500 7300 0.00 2.02 6.87 5.20
GS.3 500 7300 0.02 0.00 2.91 2.18

In an experimental study, we have examined the performance of two nested ILS algorithms
using the example application to the quadratic assignment problem. Computational results on
large QAP instances have shown that after appropriate tuning, the HILS(2) algorithm tested
reaches typically a significantly better performance than the underlying ILS algorithms from which
it was derived. Experiments with an hierarchical ILS algorithm that is an example of the third
level of the hierarchy, have shown promising results on a class of strongly structured instances
that are designed to be hard for local search algorithms.

In summary, we hope that (i) this contributions inspires researchers to consider similar types
of hybrid approaches and that (ii) it encourages them to test the hierarchical ILS approach, in
particular, for a variety of other applications.
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Table 6: Comparison between HILS(2), HILS(3), ILS-ES, and RoTS on three taiXXe instances.
Given are the percentage deviations from the best average for each test instance.

Instance HILS(2) HILS(3) ILS-ES RoTS
tai125e01 157.00 0.00 1.00 25.00
tai175e01 220.00 0.00 2.00 23.00
tai343e01 59.00 0.00 4.00 34.00
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