
Ant Colony Optimization for Deadlock Detection in Concurrent Systems

Gianpiero Francesca, Antonella Santone
Dip. di Ingegneria

University of Sannio
Benevento, Italy

Email: {gianpiero.francesca@gmail.com,
santone@unisannio.it}

Gigliola Vaglini
Dip. di Ing. dell’Informazione

University of Pisa
Pisa, Italy

Email: g.vaglini@iet.unipi.it

Maria Luisa Villani
ENEA

Roma, Italy
Email: marialuisa.villani@enea.it

Abstract—Ensuring deadlock freedom is one of the most
critical requirements in the design and validation of concurrent
systems. The biggest challenge toward the development of
effective deadlock detection schemes remains the state-space
explosion problem when model checking is used for proving
the correctness of a system with respect to a desired behavior.
In this paper we propose the use of the Ant Colony Opti-
mization (ACO) to reduce the state explosion problem arising
when finding deadlocks in complex networks described using
Calculus of Communicating Systems (CCS). Moreover, ACO
is used to provide minimal counterexamples. In fact, although
one of the strongest advantages of model checking is the gen-
eration of counterexamples when verification fails, traditional
model checkers may return very long counterexamples. We
present an implementation of our technique and encouraging
experimental results on several benchmarks. These results are
then compared with other heuristic-based search strategies,
retaining the advantages of our approach.

Keywords-Formal methods; CCS; Ant Colony Optimization;
Heuristic Searches.

I. INTRODUCTION

Ensuring deadlock freedom is one of the most critical
requirements in the design and validation of concurrent
systems. Model checking [14] is an automatic technique
to verify compliance of the system implementation with
respect to its defined requirements. It applies to a formal
description of the system behavior as a finite automata, and
to a temporal-logic formula representing the requirement
to be verified. Examples are, respectively, the Calculus
of Communicating Systems (CCS) [30], which provides a
Labelled Transition System (LTS) semantics of processes
and is especially powerful to describe concurrency, complex
networks and interaction networks, and the mu-calculus
logic [33].

Model checking is also used to verify complex systems,
i.e. systems composed of interconnected parts that as a
whole exhibit one or more properties not obvious from the
properties of the individual parts. Model checking has a
number of advantages over traditional approaches that are
based on simulation and testing and deductive reasoning.
The biggest challenge toward the development of effective
deadlock detection schemes remains the state explosion

problem when model checking is used for proving the
correctness of a system with respect to a desired behavior.
This problem occurs in systems with many components
that can interact with each other or in systems with data
structures that can assume many different values.

Numerous approaches have been introduced for alleviating
state-space explosion, for example symbolic model check-
ing [29], on-the-fly [28], compositional reasoning [12],
[32] local model checking [34], partial order [21], and
abstraction [13]. Although the size of the systems that could
be verified has been increased by these techniques, many
realistic systems are still too large to be handled.

In recent years, great interest has been shown in combining
techniques from the artificial intelligence area with model
checking techniques, and this yields another promising fu-
ture direction of research in the model checking field.

In this paper we consider concurrent systems described using
the Calculus of Communicating Systems (CCS) [30] and
propose the use of the Ant Colony Optimization (ACO)
to reduce the state explosion problem. ACO algorithms are
stochastic techniques belonging to the class of metaheuristic
algorithms and inspired by the foraging behavior of real ants.
Although one of the strongest advantages of model checking
is the generation of counterexamples when verification fails,
traditional model checkers (based on depth-first search algo-
rithms) may return very long counterexamples. Ant Colony
Optimization, beside reducing the state explosion problem,
can be used to find short counterexamples. In fact, ACO
algorithms are able to find optimal or near optimal solutions
using a reasonable amount of resources. For this reason, they
can be suitable for searching states (in particular deadlocks)
in the graph of large system models, for which traditional
exploration algorithms fail. A short counterexample is pre-
ferred to a long one, when searching deadlocks, since that
path will be examined in order to determine the cause of
the deadlock, and long error paths can prevent an easy
comprehension of the fault.

A tool implementing our technique has been developed and
used to verify a sample of CCS processes: the results of these
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experiments are discussed in Section IV and comparisons
with other informed search strategies are given. We show
that the technique presented can indeed improve the search,
especially when combined with a heuristic, in terms of nodes
generation and solution length.

II. OVERVIEW OF CCS

Let us now quickly recall the main concepts about the
Calculus of Communicating Systems (CCS) [30]. The syntax
of processes is the following:

! ::= "#$ ∣ % ∣ &.! ∣ !+ ! ∣ !∣! ∣ !∖( ∣ ![) ]

where & ranges over a finite set of actions % =
{*, ,, ,, -, -, ...}. The action * ∈ % is called the internal
action. The set of visible actions, ' , ranged over by $, $′ . . .,
is defined as % − {*}. The set (, in the processes of the
form !∖(, is a set of actions such that ( ⊆ '; while the
relabeling function ) , in the processes of the form ![) ],
is a total function, ) : % → %, such that the constraint
)(*) = * is respected. Each action $ ∈ ' (resp. $ ∈ ') has
a complementary action $ (resp. $). Given ( ⊆ ' , with (
we denote the set {$, $ ∣ $ ∈ (}. The constant % ranges over
a set of constant names: each constant % is defined by a
constant definition %

def
= !, where ! is called the body of %.

We denote the set of processes by ℰ .

The process "#$ can perform no actions. The process &.! can
perform the action & and then become the process !. The
process !+ . can behave either as ! or as .. The operator ∣
expresses parallel composition: if the process ! can perform
& and become !′, then !∣. can perform & and become !′∣.,
and similarly for .. Furthermore, if ! can perform a visible
action $ and become !′, and . can perform $ and become .′,
then !∣. can perform * and become !′∣.′. The operator ∖
expresses the restriction of actions. If ! can perform & and
become !′, then !∖( can perform & to become !′∖( only if
& ∕∈ (. The operator [) ] expresses the relabeling of actions.
If ! can perform & and become !′, then ![) ] can perform
)(&) and become !′[) ]. Each relabeling function ) has the
property that )(*) = * . Finally, a constant % behaves as !

if % def
= !.

Given a set - of constant definitions, the standard op-
erational semantics [30] is given by a relation −→" ⊆
ℰ×%×ℰ . −→" (−→ for short) is the least relation defined
by the rules in Table I.

A (labeled) transition system is a quadruple / =
(0,%,−→, !), where 0 is a set of states, % is a set of
transition labels (actions), ! ∈ 0 is the initial state, and
−→ ⊆ 0×%×0 is the transition relation. If (!, &, .) ∈ −→,
we write !

!−→ .. If 1 ∈ %∗ and 1 = &1 . . . &", " ≥ 1, we
write !

#−→ . to mean !
!1−→⋅ ⋅ ⋅ !!−→ .. Moreover !

$−→ !,
where 2 is the empty sequence. Given ! ∈ 0, with
ℛ−→(!) = {. ∣ ! #−→ .} we denote the set of the states

reachable from ! by −→. Given a CCS process !, the
standard transition system for ! is defined as 2(!) =
(ℛ−→(!),%,−→, !). In the following, ! ∕−→ denotes that
no !′, & exist such that ! !−→ !′,while ! ∕ !−→ denotes that no
!′ exists such that ! !−→ !′. Now the notion of deadlock is
defined.

Definition 2.1: Let ! be a CCS process.
∙ ! is 34,3$56743 if ! ∕−→;
∙ ! is deadlock sensitive if and only if . ∈ ℛ−→(!) exists

such that . ∕−→;
∙ ! is deadlock free if and only if it is not deadlock

sensitive.
Note that ! is deadlock sensitive if and only if 2(!) contains
at least a deadlocked state corresponding to a deadlocked
process.

The difficulty of building complex systems has sparked a
large research effort to develop formal approaches to the
design and analysis of these systems. To reason formally
about real-world systems, tool support is necessary; con-
sequently, a number of tools embodying various analysis
methods have been developed. They provide a support for
automatically answering the verification question: does a
system 898 satisfy a property :? To implement such a tool,
the verification question must be formulated more carefully
by fixing the following:

1) a precise notation for defining systems;
2) a precise notation for defining properties; and
3) an algorithm to check if a system satisfies a property.

To cope with the first problem, several specification lan-
guages have been developed as, for example, CCS. The
second problem can be solved using a temporal logic as, for
example, the mu-calculus logic [33]. For the last problem,
several algorithms exist. The most used verification method-
ology is model checking [14]: the property that the system
must satisfy, expressed in some temporal logic, is checked
on a finite structure representing the behavior of the system.
If we specify the system by means of a process algebra
program, like CCS, this structure is a labeled transition
system, i.e., an automaton whose transitions are labeled by
event names. The transition system represents all possible
executions of the program. To check a property, model
checking explores every possible state that the system may
reach during execution. If the system does not satisfy the
property, a description of the execution sequence leading to
the state is reported to the user that can be used to pinpoint
the source of the error. Many bugs such as deadlock and
critical section violations may be found using this approach.

One of the most popular verification environment is the
Concurrency Workbench of New Century (CWB-NC) [15],
which includes several different specification languages,
among which CCS. In the CWB-NC the verification of
temporal logic formulae is based on model checking.
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Table I
STANDARD OPERATIONAL SEMANTICS OF CCS

III. HEURISTIC SEARCHES AND ACO

Blind search algorithms, such as Breadth-First (BFS) and
depth-first (DFS) searches, are simple and can in principle
find solutions to any state space problem. However, they
usually result inefficient and impractical in case of large
search spaces, as those of most real problems. On the other
hand, heuristic search algorithms can be applied to improve
the search efficiency.

In this section we briefly recall some notions on heuristic
search algorithms, in particular A*. The reader can refer to
[31] for further details.

A. The A* algorithm.

A well-known heuristic search algorithm for solving state-
space search problems is A* [31]. A* is an algorithm for
finding a path in a graph that leads to a goal node.

In addition to nodes, arcs and costs, A* uses one more
kind of data: a number ℎ̂("), that is a heuristic evaluation
function, associated with each node. Specifically, ℎ̂(") is
an estimate of a lower bound on the cost of getting from
that node to a goal node. The A* algorithm prefers to
visit nodes that appear to be better, i.e., nodes with the
minimum evaluation, so that goal nodes are found faster.
More precisely, at each step A* generates and evaluates the
successors of an unexplored node " with the lowest total
estimate, )(") = <(")+ℎ̂("), that is the sum of the distance
from the start node to the node ", namely <("), plus the
estimate from the node " to the goal node, i.e., ℎ̂("). It
stops when a goal node is chosen. A* starts with the initial
node and generates all its children nodes. The estimates
are usually based on logical or physical knowledge, which
otherwise would not be represented in the graph. If the nodes
represent cities and the arc costs are railroad miles, then ℎ̂(")
might be the airline distance from the city " to the goal
city; if the nodes are puzzle positions, ℎ̂(") might be the
minimum number of moves before the puzzle is possibly
solved. Table II outlines the A* algorithm for finding the
minimal-cost solution path in a graph. For a more precise
description of the algorithm the reader can refer to [31].

An important property holds: A* returns a minimal-cost
solution path provided that the heuristic estimate function

1) Let )(*) be the cost of a path from +,-., to node * and get
)(+,-.,) = 0. Let OPEN be a list of nodes that initially contains
only the +,-., node. Calculate the estimate ℎ̂(+,-.,).

2) Select the node * on the list OPEN such that the quantity '(*) =
()(*)+ ℎ̂(*)) is the smallest. In the presence of two or more nodes
with the same '(*), just select any of them. If * is a goal node,
then the path to * is a preferred solution path and its cost is )(*).
If there are no OPEN nodes, there is no solution path in the graph.

3) Remove * from OPEN. Find all the successors of *. For each
successor +, let )(+) = )(*)+(cost on arc form * to +). Calculate
the estimate ℎ̂(+) and add + to OPEN if ℎ̂(+) is not ∞.

4) Go to step 2.

Table II
THE A* ALGORITHM.

ℎ̂ satisfies the so-called admissibility condition, i.e., ℎ̂ is op-
timistic, and ) is a non-decreasing function. More formally:

Definition 3.1 (admissibility): A heuristic estimate
function ℎ̂ defined on the nodes of a graph = is admissible
if for each node " in =,

ℎ̂(") ≤ ℎ(")

where ℎ(") is the actual cost of a preferred path from " to
a goal node.

B. Ant Colony Optimization

Ant Colony Optimization algorithms were first introduced
by Dorigo [18] and are a class of probabilistic techniques
for solving combinatorial optimization problems which can
be reduced to finding cost efficient paths on graphs.

As the name suggests, ACO algorithms have been inspired
by the behavior of real ants. The idea behind is that, although
the real ants are blind, they can construct the shortest paths
from their nest to the food sources. The colonies accomplish
this task by using a collective decision making strategy based
on pheromone trails. Each ant is free to choose its path
but it can also follow a pheromone trail left by other ants.
During their walks, the ants leave pheromone trails on the
paths, enlarging the probability of their choice. Thanks to
this process, the shorter paths will be more desirable because
the ants will walk through them faster, increasing their
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pheromone trails sooner. This behavior has been successfully
applied to several NP-complete optimization problems.

In ACO, there is a set of artificial ants (colony) that build
the solutions using a stochastic constructive procedure. The
main idea is to use an ant colony that explores the model
graph of the problem, searching for solutions. When a
solution is found, the pheromone process allows to find
the shortest path from the source to the solution node.
To help the algorithm’s convergence, there are also two
processes that do not appear in the natural ant system:
daemons and pheromone evaporation. Daemons can control
the search by erasing or increasing pheromone trails. The
pheromone evaporation uniformly reduces the pheromone
values in order to advantage the arcs that belong to the
solution paths.

In Table III a general ACO pseudo-code is described and

Figure 1 presents a flow chart describing how the ACO
works to solve problems specifically.

procedure ACOMetaheuristic
ScheduleActivities

ConstructAntsSolutions
UpdatePheromones
DaemonActions // optional

end ScheduleActivities
end procedure

Table III
PSEUDO-CODE OF THE ACO METAHEURISTIC

More formally, ants walk randomly on a graph = = (>,()
called construction graph, where ( is the set of connections
(arcs) among the components (nodes) of >. Each connection
$%& ∈ ( has an associated pheromone trail *%& ; each node 7 ∈
> has an associated numerical value ℎ', which by default is
equal to one but can be replaced by an heuristic value. Both
values are used to guide the search. In first step the algorithm
places the ants on the source node, then at each step the
ants go independently from a node to another looking for
a solution; that behavior is the forward mode. When an ant
finds a solution, it switches in backward mode: it goes back
from the solution node to the source leaving the pheromone
on the arcs. When it reaches the source node it switches in
forward mode and restarts. The algorithm runs until a given
stopping criterion is fulfilled, such as finding a solution or
reaching a given number of steps. In the forward mode, the
ant probabilistically chooses the next node according to the
formula:

!'%,& =

⎧
⎨

⎩

()"
#,%)⋅( 1

ℎ%
)'∑

(∈)*
#

()"
#,(

)⋅( 1
ℎ%

)'
if ? ∈ @'

%

0 if ? ∕∈ @'
%

where @'
% is the set of the nodes next to #, and the & and

A are algorithm’s parameters.

An important parameter is the pheromone quantity that the
ants can leave on the edges. In most cases, this can be a
constant quantity or be proportional to the solution goodness.

IV. THE METHOD AND EXPERIMENTAL RESULTS

In this section we discuss our experience of applying ACO
to verify the deadlock freedom property in CCS processes.
To this aim, we considered an heuristic function proposed in
[22], whose formal definition, for completeness, is reported
in the Appendix. The role of the heuristic function is to guide
the ants in finding deadlocks and to guide the construction
of a minimal-cost solution path. A tool implementing ACO
with and without use of the heuristic function has been
developed. We have used this tool to verify a sample of
CCS processes, in order to evaluate the performances of
our method, and compare them against some informed/non-
informed strategies, such as BFS, A*, and the algorithm used
by the CWB-NC.

The ACO algorithm was run with the following parameters
settings
∙ ℎ is the heuristic value (see Appendix);
∙ & = 1; and A = 1;
∙ the initial value of the pheromone is equal to 1000;
∙ the amount of pheromone deposited is 1/$4"<Cℎ(0),

where 0 is the set of arcs of the path from the source
to a deadlock and circular paths are deleted;

∙ evaporation= 0.99999;
∙ the default number of ants is 10.

Also, 100 independent runs were executed on the same CCS
process to get statistically significant values.

First we considered several instances of the dining philoso-
phers example, as a well-known incorrect solution of that
problem is described by a deadlock sensitive CCS process.
In this solution, when a philosopher gets hungry, he can,
without any control, pick up his left fork first, then his right
one; if he can eat, then he puts the forks down in the same
order that he had picked them up.

On these processes, the ACO algorithm was run both with
and without the heuristic function in order to analyze its
impact on the performance of the algorithm. Indeed, we
discovered that the use of the heuristic is really worthwhile
for big-size processes, such as the instances with " > 8
philosophers.

Figure 2 shows that, over the same number of iterations
allowed in both cases, the heuristic much helps to reduce
the exploration area, and Figure 3 provides evidence that
the heuristic also helps to reach minimal length solutions.

Instead, Table IV shows a comparison of the heuristic-based
ACO and the other strategies, on the number of generated
nodes. The ACO algorithm used in those experiments had
a colony size of 15 ants and performed 1000 iterations. It
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Figure 1. Flow chart of ACO

is interesting to note that the CWB-NC (resp. BFS) was not
able to build the complete transition system with " = 8
(resp. " = 9); A* succeeds until " = 12, while only ACO
exceed those limits.

* ACO A* BFS CWB-NC
2 10 7 12 18
3 42 16 48 79
4 96 33 185 342
5 184 81 741 1474
6 989 250 2964 6345
7 1561 1036 11952 27304
8 7749 2501 48376 −
9 12596 2862 − −
10 19071 4731 − −
11 40245 11287 − −
12 45276 42131 − −
13 48546 − − −
14 55446 − − −
15 59667 − − −

Table IV
RESULTS OF FOR THE DINING PHILOSOPHERS (GENERATED NODES)

In Figure 4 we have reported the length of the counterex-
amples for the dining philosophers when ACO and A* are
used.

As Figure 4 reports, A* succeeds until 7 philosophers, while
ACO succeeds until 12 philosophers.

We have also used the greedy strategy in our experiments
noting that ACO returns better results than greedy mostly in
finding the (near) minimal length path. Our aim is to find

short counterexamples and to do so quickly. These two goals
are in contrast so we need a trade-off between the advantage
of the shortest counterexample and the cost to compute it.
Thus, sometimes the optimality of the solution is not worth
the loss in efficiency of the search. Therefore, the efficiency
could be further improved because the number of generated
nodes can be reduced by stopping the run when a solution
is found. Table V shows the number of generated nodes in
this case.

* ACO A* BFS CWB-NC
7 )0* 416 1036 11952 27304

,120 2657 19531 619953 30937
9 )0* 676 2862 − −

,120 7766 97984 − −
11 )0* 1120 11287 − −

,120 23222 774609 − −
13 )0* 2161 − − −

,120 75806 − − −

Table V
RESULTS OF FOR THE DINING PHILOSOPHERS (STOPPING WHEN A

SOLUTION IS FOUND)

Improvements to the above method are introduced in order to
ensure the correctness of deadlock-free concurrent systems.
We use three kinds of daemon actions:
∙ useless node elimination: our heuristic is syntactically

defined, thus can return infinity when a constant already
expanded is encountered: this means that the state under
consideration is safe. When a node, with heuristic value
equal to infinity, is reached, the daemon deletes the
pheromone trail.

120121112
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∙ loop elimination: whenever a loop is generated, the
daemon deletes the pheromone trail breaking the loop.

∙ dead-end node: whenever an ant finds a node such that
all the outgoing edges have no pheromone trails, the
daemon erases ingoing edge’s pheromone trail.

These improvements help to find a deadlock, but are es-
pecially useful to ensure the correctness of a deadlock-free
system. In fact, a deadlock-free system is modelled with
an automaton where no sink node exists. Using the actions
of the daemons, eventually ants will stick in the start node
proving the deadlock freedom of the system.

For a more complete evaluation of applying ACO to dead-
lock detection, we selected from the literature a sample of
well known deadlock sensitive systems1:
∙ Solitaire Game (SG) [1]: a CCS specification of a

solitaire game, developed by Luca Aceto.
∙ Context Management Application Service Element

(CM-ASE) [16]: a model of the Application Layer of
the Aeronautical Telecommunications Network, devel-
oped by Gurov and Kapron.

∙ Mail System (MS) [10]: a specification of a mail sys-
tem, devised by Gordon Brebner. The communication
software is a multiprocess implementation where one
process handles each communication protocol used in
the system.

∙ GRID [9]: two processes on a grid 5×5 of relay stations
which allow them to communicate.

∙ MUTUAL: a system handling the requests of a resource
shared by 10 processes. It presents two alternative
choices between a server based on a round robin
scheduling and a server based on mutual exclusion.

1Deadlock is present by design in some processes, while in others it has
been induced.

∙ Philips Bounded Retransmission Protocol (BRP) [24],
[25], [26]: the Bounded Retransmission Protocol used
by the Philips Company in one of its products.

∙ Solid State Interlocking (SSI) [11]: this system de-
scribes the British Rail’s Solid State Interlocking (SSI)
which is devoted “to adjust, at the request of the signal
operator, the setting of signal and points in the railway
to permit the safe passage of trains.”

The results of all runs are reported in Table VI: time is
in msec, gen indicates the number of generated states and
length represents the best path length leading to a deadlock.
Experiments were executed under windows on an Intel
Pentium dual CPU with a 2 GHz processor and 2GB of
RAM. In all the experiments we set the number of the
ants to 10 and we performed 1000 iterations. In Table VI
we compare only ACO, A* and BFS; clearly we have not
considered the CWB-NC, since it uses a DFS search. It is
worth to note that our approach really improves the search
in terms of nodes generation and the time employed. Only
in a few cases we loose the best path.

V. CONCLUSION AND RELATED WORK

In the literature, the use of ACO is limited to finding near-
minimal counterexamples. In this paper, ACO is also used
to reduce the state space explosion problem, when finding
deadlocks in concurrent systems described with CCS. This
method can also be applied to programming languages, with
the only constraint to transform the program in a CCS
process or, equivalently, in a transition system. For example,
in [23] we have shown an example of transformation for
multi-threaded JAVA program. Moreover, for CCS, several
methodologies to reduce the state explosion problem have
been defined, based on compositional reasoning [17], par-
tial order [20], abstraction [8]. All these methods can be

121122113
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Figure 2. Generated nodes per iteration

combined with our ACO-based method.

As a future work we intend to perform an empirical analysis
in order to investigate the effectiveness of our approach
in relation with the structure of CCS processes. With this
kind of investigation we could be able to define a sort of
taxonomy that would be of great value when the search
strategy more appropriate for the problem at hand has to
be chosen.

The application of ACO to formal verification has not yet
been extensively explored. Only Alba and Chicano [2],
[3], [4] have proposed ACO for formal verification in the
SPIN [27] environment. That approach is applied in [2] to
any safety property and works on the product automaton
between the formula negation and the system automaton;
our approach is dedicated to a particular safety property and
is applied on the system automaton directly. Moreover, they
use the heuristic functions defined by Edelkamp et al. in
[19], namely, two estimation functions, the first counts the
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Figure 3. Length of the best solution found at each iteration

number of active (or non-blocked) processes, and the other
is a formula based heuristic where the deadlock formula
is inferred from the user designated dangerous states. We
use an estimation that is made from the structure of the
process, hence more informative. The technique proposed in
[2] is not able to ensure the correctness when no error (for
example a deadlocked state) is found since they establish
a maximum length for the paths that the ants build. Our
work overcomes this problem since a syntactically defined
heuristic and particular daemon actions are used.

According to the experiments carried out, optimal counterex-
amples have been retrieved in most cases in our approach.
Nevertheless, we can observe that we have, in percentage,
better results both in terms of memory reduction and in time
of CPU, compared with techniques such as BFS and A*.

From the point of view of the length of counterexam-
ple instead, in some cases we do not reach the minimal
counterexample path, but the result is quite close to it.
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ACO A* BFS
SG )0* 53 666 111

,120 515 1969 1906
30*),ℎ 7 7 7

CM-ASE )0* 47 82 91
,120 1735 5735 19594
30*),ℎ 6 6 6

MS )0* 63 265 276
,120 813 9828 22656
30*),ℎ 12 12 12

MPMC )0* 423 3517 3361
,120 6766 308937 1452984
30*),ℎ 20 18 18

GRID )0* 563 2548 −
,120 16299 315891 −
30*),ℎ 11 6 6

MUTUAL )0* 670 6656 17221
,120 3985 2515003 2598094
30*),ℎ 14 14 14

BRP )0* 449 101 99
,120 23050 14107 11351
30*),ℎ 22 21 21

SSI )0* 124 101 99
,120 688 4328 5358
30*),ℎ 6 6 6

Table VI
RESULTS FOR SOME DEADLOCKED SYSTEMS

A more accurate comparison with the results of the Alba
and Chicano’s approach cannot be made, since they start
from a Promela description of the concurrent system under
verification and speak of memory occupation; instead, we
start from the transition system corresponding to a CCS
process and speak of system states.
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APPENDIX

First, we give some definition and notation.

Given a process !, a constant % of ! is said to be guarded
in ! if % is contained in a sub-process of ! of the form
&.., where . is a process. A process ! is guarded if every
constant of ! is guarded in !, it is unguarded otherwise. In
the following, Unfoldx (p) is the process obtained replacing
each unguarded constant % by its definition. For exam-
ple, if %

def
= ,.%, Unfoldx ((a.b.x ∣x )∖{a}) is the process

(,.-.%∣,.%)∖{,}.

Given a process !, ℱ#E8C(!) = {& ∈ % ∣ ∃!′ s.t. ! !−→ !′}
denotes the set of all actions that ! can immediately perform.
It can be syntactically defined as the least solution of the
recursive definition in Table V.

ℱ1.+,(*13) = ∅

ℱ1.+,(!.#) = {!}

ℱ1.+,(#+ $) = ℱ1.+,(#) ∪ ℱ1.+,($)

ℱ1.+,(#∖() = ℱ1.+,(#)− (

ℱ1.+,(%) = ℱ1.+,(#) if %
def
= #

ℱ1.+,(#[' ]) = {'(!) ∣ ! ∈ ℱ1.+,(#)}

ℱ1.+,(#∣$) =⎧
⎨

⎩

ℱ1.+,(#) ∪ ℱ1.+,($) ∪ {4} if ∃! ∈ ℱ1.+,(#) and

∃! ∈ ℱ1.+,($)

ℱ1.+,(#) ∪ ℱ1.+,($) otherwise

Table VII
DEFINITION OF FIRST ACTIONS.

We now formally define the function ℎ̂.
Definition 5.1: Let ! be a CCS process, ℒ a set of

visible actions, and 7 a set of pairs {⟨%,ℒ′⟩}, where % is
a constant occurring in ! and ℒ′ ⊆ ' . First, we define
the auxiliary function ℎ̂ with three arguments, ℎ̂(!,ℒ, 7),
inductively on !, as in Table VIII. Then, ℎ̂(!) is defined as:
ℎ̂(!) = ℎ̂(!, ∅, ∅).

The heuristic function ℎ̂(!,ℒ, 7) is parametric with respect
to a restriction environment ℒ, (ℒ ⊆ '), which keeps the
set of actions on which some restriction holds. The function
is initially applied to a process with ℒ = ∅. The current
environment ℒ is modified when the function is applied to
!∖( (Rule R5): in this case the actions in ( are added to
ℒ. Note that we expand the body of a constant % each time
the environment under which that constant is evaluated has
changed (Rule R7). Initially, 7 = ∅.

For ! = "#$ (Rule R1) the function ℎ̂ returns 0 as this is a
deadlock by definition.

When applied to &.! (Rule R2), the function returns 0 if &
is a restricted action (i.e., & ∈ ℒ), otherwise we recursively
apply the function to find, if any, an action in ℒ. Roughly
speaking, if & is restricted by ℒ then &.! could not be able
to move; thus, we optimistically return 0.

When the choice of two processes is encountered (Rule
R3), the minimum number of actions between the two
components is returned.

Let us consider the rule for the parallel composition of
processes (Rule R4). The motivation for this rule is to
provide some information also in the presence of several
communication actions. However, this information is given
without too much care of all the possible situations that
may occur, in order to make the search faster. The rationale
behind the definition of Rule R4 is to assume the best case
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R1. ℎ̂(*13,ℒ, 0) = 0

R2. ℎ̂(!.#,ℒ, 0) =

{
0 if ! ∈ ℒ
1 + ℎ̂(#,ℒ, 0) otherwise

R3. ℎ̂(#1 + #2,ℒ, 0) = min(̂ℎ(#1,ℒ, 0), ℎ̂(#2,ℒ, 0))

R4. ℎ̂(#1∣ ⋅ ⋅ ⋅ ∣#%,ℒ, 0,2) =⎧
⎨

⎩

ℎ̂(Unfoldx (#1∣ ⋅ ⋅ ⋅ ∣#%),ℒ, 0,2 ∪ {%}) if there exists an unguarded constant %
in #1∣ ⋅ ⋅ ⋅ ∣#% with % ∕∈ 2

1 + ℎ̂(#1∣ ⋅ ⋅ ⋅ ∣$∣ ⋅ ⋅ ⋅ ∣#%,ℒ, 0,2) if #& is guarded, 1 ∈ [1..*], and there
exists 1 ∈ [1..*] s.t. #& = !.$, and ! ∕∈ ℒ

*5260.(#1∣ ⋅ ⋅ ⋅ ∣#%) if #& is guarded and ℱ1.+,(#&) ⊆ ℒ, ∀1 ∈ [1..*]∑%

&=1
ℎ̂(#&,ℒ, 0,2) otherwise

R5. ℎ̂(#∖(,ℒ, 0) = ℎ̂(#,ℒ ∪ (, 0)

R6. ℎ̂(#[' ],ℒ, 0) = ℎ̂(#, '−1(ℒ), 0)

R7. ℎ̂(%,ℒ, 0) =

{ ∞ if ⟨%,ℒ⟩ ∈ 0
ℎ̂(#,ℒ, 0 ∪ {⟨%,ℒ⟩}) if ⟨%,ℒ⟩ ∕∈ 0 and %

def
= #

Table VIII
THE ℎ̂ FUNCTION.

where all the communication actions can be performed. First,
we unfold (Unfoldx (p) is the process obtained replacing
each unguarded constant % by its definition) once the un-
guarded constants occurring in the parallel composition. This
can be done storing the unfolded constants in a new set ; .
Consider now the case where all the parallel components are
guarded. If:
∙ there exists an independent component of the parallel

composition, i.e., a process that can perform a non-
restricted action (!% = &.. and & ∕∈ ℒ); then the
estimated number of actions to a deadlocked state is
1 plus the value returned by a recursive application of
the function.

∙ all the components can perform only restricted actions,
then the estimated number of actions to a deadlocked
state is "FG-4E(!1∣ ⋅ ⋅ ⋅ ∣!") , i.e., the number of the
first actions on which two different processes can
communicate. More precisely,

"FG-4E(!1∣ ⋅ ⋅ ⋅ ∣!") =
∣{,∣, ∈ ℱ#E8C(!%), , ∈ ℱ#E8C(!&), # < ?}∣

In all the other cases the sum of the number of actions by
each parallel process !% is returned.

When considering a relabelled process (Rule R6), we must
take as set of actions the set )−1(I) = {& ∣ )(&) ∈ I},
since now the interesting actions are also those relabelled
by ) in actions in ℒ.

Finally, (Rule R7), we return ∞ when we encounter a
constant already expanded under the same environment
(more precisely, when we encounter a constant % such that

⟨%,ℒ⟩ ∈ >). In this case, no action in ℒ has been found, and
this means that the state under consideration is safe: a state
that can perform actions in ℒ is more promising. Actually,
when we reach a state whose ℎ̂-value is ∞, we will never
expand that state, because surely it will be deadlock free.
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