
Tabu Search

Key idea: Use aspects of search history (memory) to escape from
local minima.

Simple Tabu Search:

I Associate tabu attributes with candidate solutions or
solution components.

I Forbid steps to search positions recently visited by
underlying iterative best improvement procedure based on
tabu attributes.

Heuristic Optimization 2015 78

Tabu Search (TS):

determine initial candidate solution s
While termination criterion is not satisfied:
|| determine set N 0 of non-tabu neighbours of s
|| choose a best improving candidate solution s 0 in N 0

|||| update tabu attributes based on s 0

b s := s 0

Heuristic Optimization 2015 79



Note:

I Non-tabu search positions in N(s) are called
admissible neighbours of s.

I After a search step, the current search position
or the solution components just added/removed from it
are declared tabu for a fixed number of subsequent
search steps (tabu tenure).

I Often, an additional aspiration criterion is used: this specifies
conditions under which tabu status may be overridden (e.g., if
considered step leads to improvement in incumbent solution).

Heuristic Optimization 2015 80

Example: Tabu Search for SAT – GSAT/Tabu (1)

I Search space: set of all truth assignments for propositional
variables in given CNF formula F .

I Solution set: models of F .

I Use 1-flip neighbourhood relation, i.e., two truth
assignments are neighbours i↵ they di↵er in the truth value
assigned to one variable.

I Memory: Associate tabu status (Boolean value) with each
variable in F .
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Example: Tabu Search for SAT – GSAT/Tabu (2)

I Initialisation: random picking, i.e., select uniformly at
random from set of all truth assignments.

I Search steps:
I variables are tabu i↵ they have been changed

in the last tt steps;
I neighbouring assignments are admissible i↵ they

can be reached by changing the value of a non-tabu variable
or have fewer unsatisfied clauses than the best assignment
seen so far (aspiration criterion);

I choose uniformly at random admissible assignment
with minimal number of unsatisfied clauses.

I Termination: upon finding model of F or after given bound
on number of search steps has been reached.
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Note:

I GSAT/Tabu used to be state of the art for SAT solving.

I Crucial for e�cient implementation:

I keep time complexity of search steps minimal
by using special data structures, incremental updating
and caching mechanism for evaluation function values;

I e�cient determination of tabu status:
store for each variable x the number of the search step
when its value was last changed it

x

; x is tabu i↵
it � it

x

< tt, where it = current search step number.
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Note: Performance of Tabu Search depends crucially on
setting of tabu tenure tt:

I tt too low ) search stagnates due to inability to escape
from local minima;

I tt too high ) search becomes ine↵ective due to overly
restricted search path (admissible neighbourhoods too small)

Advanced TS methods:

I Robust Tabu Search [Taillard, 1991]:
repeatedly choose tt from given interval;

also: force specific steps that have not been made for a long time.

I Reactive Tabu Search [Battiti and Tecchiolli, 1994]:
dynamically adjust tt during search;

also: use escape mechanism to overcome stagnation.

Heuristic Optimization 2015 84

Further improvements can be achieved by using intermediate-term
or long-term memory to achieve additional intensification or
diversification.

Examples:

I Occasionally backtrack to elite candidate solutions, i.e.,
high-quality search positions encountered earlier in the search;
when doing this, all associated tabu attributes are cleared.

I Freeze certain solution components and keep them fixed
for long periods of the search.

I Occasionally force rarely used solution components to be
introduced into current candidate solution.

I Extend evaluation function to capture frequency of use
of candidate solutions or solution components.
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Tabu search algorithms algorithms are state of the art
for solving several combinatorial problems, including:

I SAT and MAX-SAT

I the Constraint Satisfaction Problem (CSP)

I several scheduling problems

Crucial factors in many applications:

I choice of neighbourhood relation

I e�cient evaluation of candidate solutions
(caching and incremental updating mechanisms)
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Dynamic Local Search

I Key Idea: Modify the evaluation function whenever
a local optimum is encountered in such a way that
further improvement steps become possible.

I Associate penalty weights (penalties) with solution
components; these determine impact of components on
evaluation function value.

I Perform Iterative Improvement; when in local minimum,
increase penalties of some solution components
until improving steps become available.
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Dynamic Local Search (DLS):

determine initial candidate solution s
initialise penalties
While termination criterion is not satisfied:
|| compute modified evaluation function g 0 from g
|| based on penalties
|||| perform subsidiary local search on s
|| using evaluation function g 0

||b update penalties based on s
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Dynamic Local Search (continued)

I Modified evaluation function:
g 0(⇡, s) := g(⇡, s) +

P
i2SC(⇡0,s) penalty(i), where

SC (⇡0, s) = set of solution components
of problem instance ⇡0 used in candidate solution s.

I Penalty initialisation: For all i : penalty(i) := 0.

I Penalty update in local minimum s: Typically involves
penalty increase of some or all solution components of s;
often also occasional penalty decrease or penalty smoothing.

I Subsidiary local search: Often Iterative Improvement.
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Potential problem:

Solution components required for (optimal) solution
may also be present in many local minima.

Possible solutions:

A: Occasional decreases/smoothing of penalties.

B: Only increase penalties of solution components that are
least likely to occur in (optimal) solutions.

Implementation of B (Guided local search):

[Voudouris and Tsang, 1995] Only increase penalties of solution

components i with
maximal utility:

util(s 0, i) :=
f
i

(⇡, s 0)

1 + penalty(i)

where f
i

(⇡, s 0) = solution quality contribution of i in s 0.
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Example: Guided Local Search (GLS) for the TSP

[Voudouris and Tsang 1995; 1999]

I Given: TSP instance G

I Search space: Hamiltonian cycles in G with n vertices;
use standard 2-exchange neighbourhood;
solution components = edges of G ;
f (G , p) := w(p); f

e

(G , p) := w(e);

I Penalty initialisation: Set all edge penalties to zero.

I Subsidiary local search: Iterative First Improvement.

I Penalty update: Increment penalties for all edges with
maximal utility by

� := 0.3 · w(s
2-opt

)

n

where s
2-opt

= 2-optimal tour.
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Related methods:

I Breakout Method [Morris, 1993]

I GENET [Davenport et al., 1994]

I Clause weighting methods for SAT
[Selman and Kautz, 1993; Cha and Iwama, 1996; Frank, 1997]

I several long-term memory schemes of tabu search

Dynamic local search algorithms are state of the art
for several problems, including:

I SAT, MAX-SAT

I MAX-CLIQUE [Pullan et al., 2006]
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Hybrid SLS Methods

Combination of ‘simple’ SLS methods often yields
substantial performance improvements.

Simple examples:

I Commonly used restart mechanisms can be seen
as hybridisations with Uninformed Random Picking

I Iterative Improvement + Uninformed Random Walk
= Randomised Iterative Improvement
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Iterated Local Search

Key Idea: Use two types of SLS steps:

I subsidiary local search steps for reaching
local optima as e�ciently as possible (intensification)

I perturbation steps for e↵ectively
escaping from local optima (diversification).

Also: Use acceptance criterion to control diversification vs
intensification behaviour.
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Iterated Local Search (ILS):

determine initial candidate solution s
perform subsidiary local search on s
While termination criterion is not satisfied:
|| r := s
|| perform perturbation on s
|| perform subsidiary local search on s
|||| based on acceptance criterion,
b keep s or revert to s := r
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Note:

I Subsidiary local search results in a local minimum.

I ILS trajectories can be seen as walks in the space of
local minima of the given evaluation function.

I Perturbation phase and acceptance criterion may use aspects
of search history (i.e., limited memory).

I In a high-performance ILS algorithm, subsidiary local search,
perturbation mechanism and acceptance criterion need to
complement each other well.

In what follows: A closer look at ILS
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ILS — algorithmic outline

procedure Iterated Local Search
s0  GenerateInitialSolution
s⇤  LocalSearch(s0)
repeat

s 0  Perturbation(s⇤, history)
s⇤0  LocalSearch(s 0)
s⇤  AcceptanceCriterion(s⇤, s⇤0, history)

until termination condition met
end
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basic version of ILS

I initial solution: random or construction heuristic

I subsidiary local search: often readily available

I perturbation: random moves in higher order neighborhoods

I acceptance criterion: force cost to decrease

such a version of ILS ..

I often leads to very good performance

I only requires few lines of additional code to existing local
search algorithm

I state-of-the-art results with further optimizations
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basic ILS algorithm for TSP

I GenerateInitialSolution: greedy heuristic

I LocalSearch: 2-opt, 3-opt, LK, (whatever available)

I Perturbation: double-bridge move (a specific 4-opt move)

I AcceptanceCriterion: accept s⇤0 only if f (s⇤0)  f (s⇤)
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basic ILS algorithm for SMTWTP

I GenerateInitialSolution: random initial solution or by EDD
heuristic

I LocalSearch: piped VND using local searches based on
interchange and insert neighborhoods

I Perturbation: random k-opt move, k > 2

I AcceptanceCriterion: accept s⇤0 only if f (s⇤0)  f (s⇤)
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Quadratic Assignment Problem (QAP)

I given: matrix of
inter–location distances; d

ij

:
distance from location i to
location j

I given: matrix of flows
between objects; f

rs

: flow
from object r to object s

I objective: find an assignment (represented as a permutation)
of the n objects to the n locations that minimizes

min
⇡2⇧(n)

nX

i=1

nX

j=1

d
ij

f⇡(i)⇡(j)

⇡(i) gives object at location i
I interest: among most di�cult combinatorial optimization

problems for exact methods
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basic ILS algorithm for QAP

I GenerateInitialSolution: random initial solution

I LocalSearch: iterative improvement in 2-exchange
neighborhood

I Perturbation: random k-opt move, k > 2

I AcceptanceCriterion: accept s⇤0 only if f (s⇤0)  f (s⇤)
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basic ILS algorithm for SAT

I GenerateInitialSolution: random initial solution

I LocalSearch: short tabu search runs based on 1-flip
neighborhood

I Perturbation: random k-flip move, k >> 2

I AcceptanceCriterion: accept s⇤0 only if f (s⇤0)  f (s⇤)
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ILS is a modular approach

Performance improvement by optimization of modules

I consider di↵erent implementation possibilities for modules

I fine-tune modules step-by-step

I optimize single modules without considering interactions
among modules
 local optimization of ILS
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ILS — initial solution

I determines starting point s⇤0 of walk in S⇤

I random vs. greedy initial solution

I greedy initial solutions appear to be recomendable

I for long runs dependence on s⇤0 should be very low
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ILS for FSP, initial solution
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ILS — perturbation

I important: strength of perturbation

I too strong: close to random restart

I too weak: LocalSearch may undo perturbation easily

I random perturbations are simplest but not necessarily best

I perturbation should be complementary to LocalSearch
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double-bridge move for TSP

I small perturbation

I complementary to LK local search

I low cost increase

A

BC

D

Old:
A-B-C-D

New:
A-D-C-B
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sometimes large perturbations needed

I example: basic ILS for QAP

given is average deviation from best-known solutions for
di↵erent sizes of the perturbation (from 3 to n); averages over
10 trials; 60 seconds on a 500MHz Pentium III.

instance 3 n/12 n/6 n/4 n/3 n/2 3n/4 n

kra30a 2.51 2.51 2.04 1.06 0.83 0.42 0.0 0.77
sko64 0.65 1.04 0.50 0.37 0.29 0.29 0.82 0.93
tai60a 2.31 2.24 1.91 1.71 1.86 2.94 3.13 3.18
tai60b 2.44 0.97 0.67 0.96 0.82 0.50 0.14 0.43
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Adaptive perturbations

I single perturbation size not necessarily optimal

I perturbation size may vary at run-time;
done in basic Variable Neighborhood Search

I perturbation size may be adapted at run-time;
leads to reactive search

Complex perturbation schemes

I optimizations of subproblems [Lourenço, 1995]

I input data modifications
I modify data definition of instance
I on modified instance run LocalSearch using input s⇤, output is

perturbed solution s 0

Heuristic Optimization 2015 110

example of a complex perturbation
[Codenotti et al., 1993, 1996]

1. coordinate
    perturbation

2. local search

v1
v3

v4

v5

v6v7

v8

s's

v2

v1

v3

v4v5

v6v7

v8

v2
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ILS — speed

I on many problems, small perturbations are su�cient

I LocalSearch in such a case will execute very fast; very few
improvement steps

I sometimes access to LocalSearch in combination with
Perturbation increases strongly speed (e.g. don’t look bits)

I example: TSP
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ILS — speed, example

I compare No. local
searches of 3-opt in
fixed computation time

I #LSRR: No. local
searches with random
restart

I #LS1-DB: No. local
searches with one
double bridge move as
Perturbation

I time limit: 120 sec on
a Pentium II 266 MHz
PC

instance #LSRR #LS1-DB #LS1-DB/#LSRR

kroA100 17507 56186 3.21
d198 7715 36849 4.78
lin318 4271 25540 5.98
pcb442 4394 40509 9.22
rat783 1340 21937 16.38
pr1002 910 17894 19.67
d1291 835 23842 28.56
fl1577 742 22438 30.24
pr2392 216 15324 70.94
pcb3038 121 13323 110.1
fl3795 134 14478 108.0
rl5915 34 8820 259.4
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ILS — acceptance criterion

I AcceptanceCriterion has strong influence on nature and
e↵ectiveness of walk in S⇤

I controls balance between intensification and diversification

I simplest case: Markovian acceptance criteria

I extreme intensification:
Better(s⇤, s⇤0, history): accept s⇤0 only if f (s⇤0) < f (s⇤)

I extreme diversification:
RW(s⇤, s⇤0, history): accept s⇤0 always

I many intermediate choices possible
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example: influence of acceptance criterion on TSP

I small perturbations are known to be enough

I high quality solutions are known to cluster;
“big valley structure”
 good strategy incorporates intensification
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I compare average dev.
from optimum (�

avg

)
over 25 trials

I �
avg

(RR): random
restart

I �
avg

(RW): random walk
as AcceptanceCriterion

I �
avg

(Better): first
descent in S⇤ as
AcceptanceCriterion

I time limit: 120 sec on
a Pentium II 266 MHz
PC

instance �
avg

(RR) �
avg

(RW) �
avg

(Better)
kroA100 0.0 0.0 0.0
d198 0.003 0.0 0.0
lin318 0.66 0.30 0.12
pcb442 0.83 0.42 0.11
rat783 2.46 1.37 0.12
pr1002 2.72 1.55 0.14
pcb1173 3.12 1.63 0.40
d1291 2.21 0.59 0.28
fl1577 10.3 1.20 0.33
pr2392 4.38 2.29 0.54
pcb3038 4.21 2.62 0.47
fl3795 38.8 1.87 0.58
rl5915 6.90 2.13 0.66
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exploitation of search history

I many of the bells and whistles of other strategies
(diversification, intensification, tabu, adaptive perturbations
and acceptance criteria, etc...) are applicable

simplest usage of search history

I extremely simple use of history:
Restart(s⇤, s⇤0, history): Restart search if for a number of
iterations no improved solution is found
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ILS — QAP, example results

instance accept 3 n/12 n/6 n/4 n/3 n/2 3n/4 n

kra30a Better 2.51 2.51 2.04 1.06 0.83 0.42 0.0 0.77
kra30a RW 0.0 0.0 0.0 0.0 0.0 0.02 0.47 0.77
kra30a Restart 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.77
sko64 Better 0.65 1.04 0.50 0.37 0.29 0.29 0.82 0.93
sko64 RW 0.11 0.14 0.17 0.24 0.44 0.62 0.88 0.93
sko64 Restart 0.37 0.31 0.14 0.14 0.15 0.41 0.79 0.93
tai60a Better 2.31 2.24 1.91 1.71 1.86 2.94 3.13 3.18
tai60a RW 1.36 1.44 2.08 2.63 2.81 3.02 3.14 3.18
tai60a Restart 1.83 1.74 1.45 1.73 2.29 3.01 3.10 3.18
tai60b Better 2.44 0.97 0.67 0.96 0.82 0.50 0.14 0.43
tai60b RW 0.79 0.80 0.52 0.21 0.08 0.14 0.28 0.43
tai60b Restart 0.08 0.08 0.005 0.02 0.03 0.07 0.17 0.43
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ILS — local search

I in the simplest case, use LocalSearch as black box

I any improvement method can be used as LocalSearch

I best performance with optimization of this choice

I often it is necessary to have direct access to LocalSearch (e.g.
when using don’t look bits)

Heuristic Optimization 2015 119



complex local search algorithms

I variable depth local search, ejection chains

I dynasearch

I variable neighborhood descent
I any other local search can be used within ILS, including short

runs of
I tabu search
I simulated annealing
I dynamic local search
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e↵ectiveness of local search?

I often: the more e↵ective the local search the better performs
ILS

I example TSP: 2-opt vs. 3-opt vs. Lin-Kernighan

I sometimes: preferable to have fast but less e↵ective local
search

the tradeo↵ between e↵ectiveness and e�ciency of the local search
procedure is an important point to be adressed when optimizing an

ILS algorithm
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tabu search vs. 2-opt, tai60a

I short tabu search runs (6n iterations) vs. 2-opt
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tabu search vs. 2-opt, sko64

I short tabu search runs (6n iterations) vs. 2-opt
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tabu search vs. 2-opt, tai60b

I short tabu search runs (6n iterations) vs. 2-opt
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optimize performance of ILS algorithms

I important to reach peak performance

I optimization goal has to be given (optimize average solution
quality, etc.)

I robustness is an important issue

I start: basic ILS

ad-hoc optimization

I optimize single components, e.g. in the order
GenerateInitialSolution, LocalSearch, Perturbation,
AcceptanceCriterion

I iterate through this process
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closer look

I optimal configuration of one component depends on other
components

I complex interactions among components exist

I directly address these dependencies to perform a global
optimization of ILS performance

main dependencies

I perturbation should not be easily undone by LocalSearch; if
LocalSearch has obvious short-comings, a good perturbation
should compensate for them.

I combination Perturbation — AcceptanceCriterion determines
the relative balance of intensification and diversification; large
perturbations are only useful if they can be accepted
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ILS is ..

I based on simple principles

I easy to understand

I basic versions are easy to implement

I flexible, allowing for many additional
optimizations if needed

I highly e↵ective in many applications
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