
P1: GRN

Journal of Heuristics KL577-04-Chu April 13, 1998 11:53

Journal of Heuristics, 4: 63–86 (1998)
c© 1998 Kluwer Academic Publishers

A Genetic Algorithm for the Multidimensional
Knapsack Problem

P.C. CHU AND J.E. BEASLEY
The Management School, Imperial College, London SW7 2AZ, England
email: p.chu@ic.ac.uk; j.beasley@ic.ac.uk

Abstract

In this paper we present a heuristic based upon genetic algorithms for the multidimensional knapsack problem. A
heuristic operator which utilises problem-specific knowledge is incorporated into the standard genetic algorithm
approach. Computational results show that the genetic algorithm heuristic is capable of obtaining high-quality
solutions for problems of various characteristics, whilst requiring only a modest amount of computational effort.
Computational results also show that the genetic algorithm heuristic gives superior quality solutions to a number
of other heuristics.

Key Words: genetic algorithms, multidimensional knapsack, multiconstraint knapsack, combinatorial
optimisation

1. Introduction

In this paper, we present a genetic algorithm (GA) based heuristic for a well-known NP-hard
problem, themultidimensional knapsack problem(MKP), which can be formulated as:

maximise
n∑

j =1

pj x j , (1)

subject to
n∑

j =1

ri j x j ≤ bi , i = 1, . . . , m, (2)

xj ∈ {0, 1}, j = 1, . . . , n. (3)

Each of themconstraints described in Eq. (2) is called aknapsackconstraint, so the MKP
is also called them-dimensional knapsack problem. Other names given to this problem in
the literature are themulticonstraint knapsack problem, themulti-knapsack problemand
themultiple knapsack problem. Some authors also include the termzero-onein their name
for the problem, e.g., themultidimensional zero-one knapsack problem. The special case
corresponding tom = 2 is known as thebidimensional knapsack problemor thebi-knapsack
problem.

We would comment here that this use of alternative names for the same problem is
obviously unnecessary and potentially confusing. Historically the majority of authors appear
to have used the namemultidimensional knapsack problemand so we have also used this
name in our paper.

P1: GRN

Journal of Heuristics KL577-04-Chu April 13, 1998 11:53

64 CHU AND BEASLEY

Let I = {1, . . . , m} and J = {1, . . . , n}, with bi ≥ 0 for all i ∈ I andri j ≥ 0 for all
i ∈ I , j ∈ J. A well-statedMKP assumes thatpj > 0 andri j ≤ bi <

∑n
j =1 ri j for all

i ∈ I , j ∈ J, since any violation of these conditions will result in somexj ’s being fixed to
zero and/or some constraints being eliminated.

Many practical problems can be formulated as a MKP, for example, the capital budgeting
problem where projectj has profitpj and consumesri j units of resourcei . The goal is
to find a subset of then projects such that the total profit is maximised and all resource
constraints are satisfied. Other applications of the problem include allocating processors
and databases in a distributed computer system (Gavish and Pirkul (1982)), project selection
and cargo loading (Shih (1979)), and cutting stock problems (Gilmore and Gomory (1966)).

We would note here that the MKP can be regarded as ageneral statementof any zero-one
integer programming problem with non-negative coefficients. Indeed much of the early
work on the problem (e.g., Hillier (1969), Kochenberger, McCarl, and Wymann (1974),
Senju and Toyoda (1968), Zanakis (1977)) viewed the problem in this way.

2. Literature survey

Most of the research on knapsack problems deals with the much simpler single constraint
version(m= 1). For the single constraint case the problem is not strongly NP-hard and
effective approximation algorithms have been developed for obtaining near-optimal solu-
tions. A good review of the single knapsack problem and its associated exact and heuristic
algorithms is given by Martello and Toth (1990).

Below we review the literature for the MKP structuring our review by first considering
exact algorithms and then heuristic algorithms.

2.1. Exact algorithms

Shih (1979) presented a branch and bound algorithm for the MKP. In his method, an upper
bound was obtained by computing the objective function value associated with the optimal
fractional solution algorithm (Dantzig (1957)) for each of them single constraint knapsack
problems separately and selecting the minimum objective function value among those as the
upper bound. His algorithm was tested on a set of randomly generated test problems with
sizes up tom = 5 andn = 90, and with various constraint tightness. Computational results
showed that his algorithm performed better than the general zero-one additive algorithm of
Balas (1965).

Another branch and bound algorithm was developed by Gavish and Pirkul (1985). Various
relaxations of the problem, including lagrangean, surrogate and composite relaxations were
used. Experiments were carried out to evaluate the quality of the bounds generated by these
different relaxations. Their results showed that the composite relaxation (which used a
subgradient optimisation procedure to determine the multipliers) yielded the best bounds
overall, albeit at extra computational effort. New algorithms for obtaining surrogate bounds
were also developed and tested. Rules for reducing the problem size were suggested and
shown to be effective through computational tests. Their final algorithm was tested on a set
of randomly generated problems with sizes up tom = 5 andn = 200. Their algorithm was

P1: GRN

Journal of Heuristics KL577-04-Chu April 13, 1998 11:53

A GENETIC ALGORITHM 65

compared with the exact method of Shih (1979) and was found to be faster by at least one
order of magnitude. It was also compared to, and found to be faster than, the commercial
mixed-integer programming solver Sciconic/VM. Their algorithm can also be used as a
heuristic by terminating it before the tree search is completed. They found that such a
scheme is superior to a heuristic developed by Loulou and Michaelides (1979).

Other previous exact algorithms, with only limited success being reported, include dy-
namic programming based methods (Gilmore and Gomory (1966), Nemhauser and Ullmann
(1969), Weingartner (1967), Weingartner and Ness (1967)), an enumeration algorithm based
on Fourier-Motzkin elimination (Cabot (1970)) and an iterative scheme in which linear
programs were solved to generate subproblems that were then solved through implicit
enumeration (Soyster, Lev, and Slivka (1978)).

Crama and Mazzola (1994) showed that although the bounds derived from the well-
known relaxations, such as lagrangean, surrogate, or composite relaxations, are stronger
than the bounds obtained from the linear programming (LP) relaxation, the improve-
ment in the bound that can be realised using these relaxations is limited. In particular,
they showed that the improvement in the quality of the bounds using any of these re-
laxations cannot exceed the magnitude of the largest coefficient in the objective func-
tion.

There have been a limited number of papers considering a statistical/asymptotic analysis
of the MKP. An asymptotic analysis was presented by Schilling (1990) who computed
the asymptotic (n →∞ with m fixed) objective function value for the MKP where theri j ’s
and pj ’s were uniformly (and independently) distributed over the unit interval and where
bi = 1. Szkatula (1994) generalised that analysis to the case where thebi were not restricted
to be one (see also Szkatula (1997)). A statistical analysis of the MKP was conducted
by Fontanari (1995), who investigated the dependence of the objective function on the
knapsack capacities and on the number of capacity constraints, in the case when alln
objects were assigned the same profit value and theri j ’s were uniformly distributed over
the unit interval. A rigorous upper bound on the optimal profit was obtained by employing
the annealed approximation and then compared with the exact value obtained through a
lagrangean relaxation method.

2.2. Heuristic algorithms

Below we review heuristic algorithms for the MKP, structuring our review by clustering
related papers together. The clusters we consider are:

• early heuristics, early heuristic approaches
• bound based heuristics, which make use of an upper bound on the optimal solution to the

MKP
• tabu search heuristics, based on tabu search concepts
• genetic algorithm heuristics, based on genetic algorithm concepts
• analysed heuristics, with some theoretical underlying analysis relating to their worst-case

or probabilistic performance
• other heuristics.

P1: GRN

Journal of Heuristics KL577-04-Chu April 13, 1998 11:53

66 CHU AND BEASLEY

2.2.1. Early heuristics. Zanakis (1977) gave detailed results comparing three algorithms
from Hillier (1969), Kochenberger, McCarl, and Wymann (1974), and Senju and Toyoda
(1968). No one heuristic was found to dominate the others computationally.

Loulou and Michaelides (1979) presented a greedy-like method based on Toyoda’s primal
heuristic (1975). Primal heuristics start with a zero solution, after which a succession of
variables are assigned the value one, according to a given rule, as long as the solution
remain feasible. Their algorithm selects a variable having the maximum “pseudo-utility”
among all candidates in each step. The pseudo-utility is defined asu j = pj /v j , wherev j

is thepenalty factorof variable j , which depends on the resource coefficientsri j and can
be defined in several ways. Their heuristic was tested on randomly generated problems of
relatively small sizes as well as some larger real-world problems. Their results showed that
the average deviation from optimum ranged from 0.26% to 1.08% for smaller problems and
up to 14% for larger problems.

2.2.2. Bound based heuristics.Balas and Martin (1980) used linear programming by
relaxing the integrality constraints and heuristically set the fractional solution integer whilst
maintaining feasibility.

Magazine and Oguz (1984) presented a heuristic algorithm that combines the ideas of
Senju and Toyoda’s dual heuristic (1968) with Everett’s generalised lagrange multiplier
approach (1963). Dual heuristics start with the all-ones solution, variables are then suc-
cessively set to zero according to heuristic rules until a feasible solution is obtained. Their
algorithm computes the approximate solution and uses the multipliers generated to obtain
an upper bound. This upper bound is generally loose compared to the bound obtained
by LP relaxation. Their algorithm (MKNAP) was tested on a large set of randomly gener-
ated problems varying in size fromm = 20 to 1,000 andn = 20 to 1,000, and was compared
with two other heuristic algorithms: the primal heuristics of Kochenberger, McCarl, and
Wymann (1974) (KOCH) and the dual approach of Senju and Toyoda (1968) (SEN). They
noted that, in terms of solution quality, KOCH performed slightly better than MKNAP
overall, followed by SEN. MKNAP and SEN performed markedly better than KOCH in
terms of computation time. The time complexity of KOCH, SEN and MKNAP were shown
to beO(mn2), O(mn2) andO(mn3), respectively.

Pirkul (1987) presented a heuristic algorithm which makes use of surrogate duality. The
m knapsack constraints were transformed into a single knapsack constraint using surrogate
multipliers. A feasible solution was obtained by packing this single knapsack in the de-
creasing order of profit/weight ratios. This ratio was defined aspj /

∑m
i =1 ωi r i j whereωi

is the surrogate multiplier for constrainti . Surrogate multipliers were determined using a
descent procedure. New feasible solutions were obtained by fixing variables to zero and the
best feasible solution chosen. Extensive computational testing indicated that the algorithm
generated good feasible solutions. The performance of his heuristic is considerably better
than the heuristic of Loulou and Michaelides (1979) and similar to the pivot and comple-
ment heuristic of Balas and Martin (1980) in terms of solution quality. We implemented
this heuristic (see Section 5.4.1), but using an alternative method for finding surrogate mul-
tipliers, which involves solving the LP relaxation of the original problem and using the dual
variables (the shadow prices) from that solution as surrogate multipliers.

P1: GRN

Journal of Heuristics KL577-04-Chu April 13, 1998 11:53

A GENETIC ALGORITHM 67

Lee and Guignard (1988) presented an heuristic that combined Toyoda’s primal heuristic
(1975) with variable fixing, linear programming and a complementing procedure from
Balas and Martin (1980). Computational results were presented with some standard test
problems and some randomly generated problems with sizes up tom = 20 andn = 200
which indicated that their heuristic produces better quality results than Toyoda (1975) and
Magazine and Oguz (1984), but is out-performed by Balas and Martin (1980).

Volgenant and Zoon (1990) extended Magazine and Oguz’s heuristic in two ways: (1) in
each step, not one, but more, multiplier values are computed simultaneously, and (2) at the
end of the procedure the upper bound is sharpened by changing some multiplier values.
From a comparison using a set of test problems, these extensions appeared to yield an
improvement, on average, at the cost of only a modest amount of extra computing time.
The time complexity of their algorithm isO(n(n + m)).

Freville and Plateau (1994) presented an efficient preprocessing algorithm for the MKP.
Their algorithm (AGNES), based on their previous work (Freville and Plateau (1986)),
provided sharp lower and upper bounds on the optimal value, and also a tighter equivalent
representation by reducing the continuous feasible set and by eliminating constraints and
variables. Their scheme was shown to be very effective through experiments with stan-
dard test problems and large-scale randomly generated problems with sizes up tom = 30
and n = 500. Their computational results indicated the superiority of their algorithm
over the surrogate heuristic of Pirkul (1987) (denoted by MKHEUR), although our im-
plementation of MKHEUR (see Section 5.4.1) showed significantly better results than the
ones reported by them for similar problems. Their algorithm also compared favourably
with the heuristic and early termination algorithm of Gavish and Pirkul (1985) (denoted
by G&P). However, we note here that the large computation times for the G&P algorithm
reported in their study (Freville and Plateau (1994)) are somewhat inconsistent with the
small computation times reported in (Gavish and Pirkul (1985)).

Freville and Plateau (1997) presented a heuristic for the special case corresponding to
m = 2, the bidimensional knapsack problem. Their heuristic incorporates a number of
components including problem reduction, a bound based upon surrogate relaxation and
partial enumeration. Computational results were presented for randomly generated prob-
lems of sizes up ton = 750 comparing their heuristic with the exact algorithm of Gavish
and Pirkul (1985).

2.2.3. Tabu search heuristics.A number of papers involving the use of tabu search to
solve the MKP have appeared in recent years.

Dammeyer and Voss (1993) presented a tabu search heuristic based on reverse elimination.
Computational results were presented for 57 standard test problems from the literature
indicating that they found the optimal solution for 41 of these problems.

Aboudi and J¨ornsten (1994) combined tabu search with the pivot and complement heuris-
tic of Balas and Martin (1980) in a heuristic for general zero-one integer programming.
Computational results were presented for 57 standard MKP test problems from the liter-
ature indicating that they found the optimal solution for 49 of these problems. A similar
approach is presented in Løkketangen, J¨ornsten, and Storøy (1994) with computational
results for the same set of test problems indicating that they found the optimal solution for
39 of these problems.

P1: GRN

Journal of Heuristics KL577-04-Chu April 13, 1998 11:53

68 CHU AND BEASLEY

Battiti and Tecchiolli (1995) presented a heuristic based on reactive tabu search (es-
sentially tabu search but with the length of the tabu list varied over the course of the
algorithm). Computational results were presented for their heuristic for problems of sizes
up to m = n = 500. They also presented results for a number of other heuristics based
upon repeated local search, simulated annealing, genetic algorithms and neural networks.

Glover and Kochenberger (1996) presented a heuristic based on tabu search. Their ap-
proach employed a flexible memory structure that integrates recency and frequency infor-
mation keyed to “critical events” in the search process. Their method was enhanced by a
strategic oscillation scheme that alternates between constructive (current solution feasible)
and destructive (current solution infeasible) phases. They define a “critical event” as the last
feasible solution found after a transition between phases. Such solutions were subjected
to a simple local optimisation procedure in an attempt to improve them. Their approach
successfully obtained optimal solutions for each of 57 standard test problems from the lit-
erature. They also report that for 24 randomly generated problems of sizes up tom = 25
andn = 500 their heuristic outperformed an incomplete branch and bound algorithm.

Løkketangen and Glover (1996) presented a heuristic based on probabilistic tabu search
(essentially tabu search but with the acceptance/rejection of a potential move controlled by
a probabilistic process). Computational results were presented for 18 standard problems
taken from the literature of sizes up tom = 30 andn = 90. Optimal solutions were obtained
for 13 of these problems.

Hanafi and Freville (1997) presented a heuristic strongly related to the work of Glover
and Kochenberger (1996). They solve a subset of the same test problems and report better
quality results for this subset than Glover and Kochenberger.

Løkketangen and Glover (1997) presented a tabu search heuristic designed to solve
general zero-one mixed-integer programming problems. Applying their approach to 57
standard MKP test problems from the literature they obtained (using one or other variant
of their heuristic) optimal solutions for all but 3 of these test problems.

2.2.4. Genetic algorithm heuristics.A number of papers involving the use of genetic
algorithms to solve the MKP have appeared in recent years.

In the GA of Khuri, Bäck, and Heitk¨otter (1994) infeasible solutions were allowed to
participate in the search and a simple fitness function which uses a graded penalty term
was used. Their heuristic was tested on a small number of standard test problems; only
moderate results were reported.

In Thiel and Voss (1994) simple heuristic operators based on local search algorithms were
used, and a hybrid algorithm based on combining a GA with a tabu search heuristic was
suggested. Their heuristic was tested on a set of standard test problems, but the results were
not computationally competitive with those obtained using other heuristic methods.

In Rudolph and Sprave (1995, 1996) a GA was presented where parent selection is not
unrestricted (as in a standard GA) but is restricted to be between “neighbouring” solutions.
Infeasible solutions were penalised as in Khuri, B¨ack, and Heitk¨otter (1994). An adaptive
threshold acceptance schedule (motivated by Dueck and Scheuer (Dueck (1993), Dueck
and Scheuer (1990)) for child acceptance was used. Computational results were presented
for one problem of sizem = 5 andn = 50.

P1: GRN

Journal of Heuristics KL577-04-Chu April 13, 1998 11:53

A GENETIC ALGORITHM 69

In the GA of Hoff, Løkketangen, and Mittet (1996) only feasible solutions were allowed.
Their GA successfully obtained optimal solutions for 56 out of 57 standard test problems
taken from the literature (when replicated ten times for each problem).

2.2.5. Analysed heuristics.Frieze and Clarke (1984) described a polynomial approxi-
mation scheme based on the use of the dual simplex algorithm for linear programming,
and analysed the asymptotic properties of a particular random model (see also (Schilling
(1990), Szkatula (1994, 1997)) for other asymptotic analyses). No computational results
were given.

Rinnooy Kan, Stougie, and Vercellis (1993) proposed a class of generalised greedy
algorithms in which items are selected according to decreasing ratios of their profit and a
weighted sum of their resource coefficients. They investigated the complexity of computing
a set of weights that gives the maximum greedy solution value. Their heuristics were
subjected to both a worst-case, and a probabilistic, performance analysis. No computational
results were given.

Averbakh (1994) investigated the properties of several dual characteristics of the MKP for
different probabilistic models. He also presented a fast statistically efficient approximate
algorithm with linear running time complexity for problems with random coefficients.

2.2.6. Other heuristics. Fox and Scudder (1985) presented a heuristic based on starting
from setting all variables to zero(one) and successively choosing variables to set to one(zero).
Computational results were presented for randomly generated test problems with sizes up
to m = 100 andn = 100 but withpj = 1 andri j = 0 or 1.

Drexel (1988) presented a heuristic based upon simulated annealing. Computational
results were presented for 57 test problems indicating that the optimal solution was found
for 25 of these problems.

Glover (1994) presented a heuristic based on ghost image processes and reported that,
compared to Senju and Toyoda’s dual heuristic (1968), his heuristic gave superior quality
results on randomly generated problems with sizes up tom = 20 andn = 100.

Hanafi, Freville, and Abedellaoui (1996) presented a simple multistage algorithm (SMA)
within which a number of different local search procedures (such as greedy, simulated
annealing, threshold accepting (Dueck (1993), Dueck and Scheuer (1990)) and noising
(Charon and Hudry (1993)) can be used. A computational comparison of SMA with AGNES
(Freville and Plateau (1994)) was made using 54 test problems taken from (Freville and
Plateau (1990)). They also presented a comparison between two tabu search heuristics of
their own devising and a number of other tabu search heuristics (Aboudi and J¨ornsten (1994),
Glover and Kochenberger (1996), Løkketangen and Glover (1996, 1997)). Overall one of
their tabu search heuristics produced results equal in quality to the tabu search heuristic of
Glover and Kochenberger (1996).

3. Genetic algorithms

A genetic algorithm can be understood as an “intelligent” probabilistic search algorithm
which can be applied to a variety of combinatorial optimisation problems (Reeves (1993)).
The theoretical foundations of GAs were originally developed by Holland (1975). GAs

P1: GRN

Journal of Heuristics KL577-04-Chu April 13, 1998 11:53

70 CHU AND BEASLEY

are based on the evolutionary process of biological organisms in nature. During the course
of evolution, natural populations evolve according to the principles of natural selection
and “survival of the fittest”. Individuals which are more successful in adapting to their
environment will have a better chance of surviving and reproducing, whilst individuals
which are less fit will be eliminated. This means that thegenesfrom the highly fit individuals
will spread to an increasing number of individuals in each successive generation. The
combination of good characteristics from highly adapted ancestors may produce even more
fit offspring. In this way, species evolve to become more and more well adapted to their
environment.

A GA simulates these processes by taking an initial population of individuals and ap-
plying genetic operators in each reproduction. In optimisation terms, each individual in
the population is encoded into a string orchromosomewhich represents a possiblesolu-
tion to a given problem. The fitness of an individual is evaluated with respect to a given
objective function. Highly fit individuals orsolutionsare given opportunities to reproduce
by exchanging pieces of their genetic information, in acrossoverprocedure, with other
highly fit individuals. This produces new “offspring” solutions (i.e.,children), which share
some characteristics taken from both parents. Mutation is often applied after crossover
by altering some genes in the strings. The offspring can either replace the whole popula-
tion (generationalapproach) or replace less fit individuals (steady-stateapproach). This
evaluation-selection-reproduction cycle is repeated until a satisfactory solution is found.
The basic steps of a simple GA are shown below.

Generate an initial population;
Evaluate fitness of individuals in the population;
repeat:

Select parents from the population;
Recombine (mate) parents to produce children;
Evaluate fitness of the children;
Replace some or all of the population by the children;

until a satisfactory solution has been found.

A more comprehensive overview of GAs can be found in (B¨ack, Fogel, and Michalewicz
(1997), Beasley, Bull, and Martin (1993a, 1993b), Goldberg (1989), Mitchell (1996),
Reeves (1993)).

4. A GA for the MKP

We modified the basic GA described in the previous section in such a way that problem-
specific knowledge is considered. Our modified GA for the MKP is as follows.

4.1. Representation and fitness function

The first step in designing a genetic algorithm for a particular problem is to devise a suitable
representation scheme, i.e., a way to represent individuals in the GA population. The

P1: GRN

Journal of Heuristics KL577-04-Chu April 13, 1998 11:53

A GENETIC ALGORITHM 71

1 2 3 4 5 · · · n − 1 nj

S[j] 0 1 0 0 1 · · · 0 1

Figure 1. Binary representation of a MKP solution.

standard GA 0-1 binary representation is an obvious choice for the MKP since it represents
the underlying 0-1 integer variables.

Hence, in our representation, we used an-bit binary string, wheren is the number of
variables in the MKP. In this representation a value of 0 or 1 at thej th bit implies thatxj = 0
or 1 in the solution, respectively. This binary representation of an individual’s chromosome
(solution) for the MKP is illustrated in Figure 1.

We note that a bit stringS∈ {0, 1}n might represent an infeasible solution. An infea-
sible solution is one for which at least one of the knapsack constraints is violated, i.e.,∑n

j =1 ri j S[j] > bi for somei ∈ I .
There are a number of standard ways (Chu and Beasley (1995), Davis and Steenstrup

(1987), Michalewicz (1995)) of dealing with constraints and infeasible solutions in GAs:

• to use a representation that automatically ensures that all solutions are feasible,
• to separate the evaluation of fitness and infeasibility (Chu and Beasley (1995)),
• to design a heuristic operator (often called arepair operator) which guarantees to trans-

form any infeasible solution into a feasible solution,
• to apply a penalty function (Goldberg (1989), Powell and Skolnick (1993), Richardson

et al. (1989), Smith and Tate (1993)) to penalise the fitness of any infeasible solution
without distorting the fitness landscape.

Based upon our previous experience with GAs (Beasley and Chu (1996), Chu (1997),
Chu and Beasley (1995, 1997)) we adopted the approach of using a heuristic operator to
convert an infeasible solution into a feasible one, since a simple greedy heuristic (see Section
4.4) exists that is guaranteed to construct a feasible MKP solution. By restricting the GA
to search only the feasible region of the solution space, we have the following single fitness
function based entirely on the objective function to be maximised:

f (S) =
n∑

j =1

pj S[j]. (4)

Note here that we are trying tomaximisefitness—in other words, the higher the fitness
the better a MKP solution is.

4.2. Parent selection

Parent selection is the task of assigning reproductive opportunities to each individual in the
population. Typically in a GA we need to generate two parents who will have (one or more)
children.

P1: GRN

Journal of Heuristics KL577-04-Chu April 13, 1998 11:53

72 CHU AND BEASLEY

The tournament selection method works by forming two pools of individuals, each con-
sisting ofT individuals drawn from the population randomly. Two individuals with the best
fitness, each taken from one of the two tournament pools, are chosen to be parents. Using a
larger value forT has the effect of increasing selection pressure on the more fit individuals.

We adopted the standardbinary tournament selection method (i.e.,T = 2) as the method
for parent selection because it can be implemented very efficiently.

4.3. Crossover and mutation

The binary, problem-independent, representation we have adopted for the MKP allows a
wide range of the standard GA crossover and mutation operators to be adopted. Based on
our previous work, (Beasley and Chu (1996), Chu (1997), Chu and Beasley (1995, 1997)),
indicating that the overall performance of GAs for combinatorial optimisation problems is
often relatively insensitive to the particular choice of crossover operator, as well as some
limited computational experience in the context of the MKP to re-confirm this observation,
we arbitrarily adopted the uniform crossover operator as the default crossover operator.

In uniform crossover two parents have a single child. Each bit in the child solution is
created by copying the corresponding bit from one or the other parent, chosen according
to a binary random number generator [0, 1]. If the random number is a 0, the bit is copied
from the first parent, if it is a 1, the bit is copied from the second parent.

Once a child solution has been generated through crossover, a mutation procedure is
performed that mutates some randomly selected bits in the child solution, i.e., causes these
chosen bits to change from 0 to 1 or vice versa. The rate of mutation is generally set to be
a small value (in the order of 1 or 2 bits per string).

We would comment here that one useful approach in GA work is to first make simple
standard choices for crossover and mutation operators and only re-examine these choices if
computational results are disappointing. As will become apparent below the computational
results for the GA with these simple choices were not disappointing.

4.4. Repair operator

Clearly, the child solution generated by the crossover and mutation procedures may not be
feasible because the knapsack constraints may not all be satisfied. In order to guarantee
feasibility, a heuristic operator based on a simple greedy algorithm was applied.

Note here that the standard GA term for such an operator is to call it arepair operator.
We believe that this is really an inappropriate term because the termrepair implies fixing
something which once worked and now is broken. In fact the GA representation never
worked in the first place, i.e., it never had the property that it guaranteed feasibility for the
child. However, because the term repair operator is widely used in GAs, we will also use
it in this paper.

The general technique used to design greedy-like heuristics for the MKP follows the no-
tion of thepseudo-utilityratios (for solving the single constraint problem) which are defined
as the ratios of the objective function coefficients (pj ’s) to the coefficients of the single knap-
sack constraint (r j ’s). The greater the ratio, the higher the chance that the corresponding

P1: GRN

Journal of Heuristics KL577-04-Chu April 13, 1998 11:53

A GENETIC ALGORITHM 73

variable will be equal to one in the solution. However, when more than one constraint is
present, it is not quite clear how this approach can be generalised. Several ways to calculate
pseudo-utility ratios for the MKP, with various degrees of complexity, have been proposed
(e.g., see (Loulou and Michaelides (1979), Pirkul (1987), Toyoda (1975)). Here we adopted
thesurrogate dualityapproach of Pirkul (1987) in determining the pseudo-utility ratios as
it is conceptually simple and computationally straightforward. The general idea behind this
method is described very briefly as follows.

The surrogate relaxation problem of the MKP (denoted by SR-MKP) can be defined as:

maximise
n∑

j =1

pj x j , (5)

subject to
n∑

j =1

(
m∑

i =1

ωi r i j

)
xj ≤

m∑
i =1

ωi bi , (6)

xj ∈ {0, 1}, j = 1, . . . , n, (7)

whereω = {ω1, . . . , ωm} is a set of surrogate multipliers (orweights) of some positive real
numbers. The inequality, Eq. (6), is called the surrogate constraint. Surrogate constraints
were first introduced by Glover (1965, 1977) to provide choice rule evaluations and bounds
for integer programming problems in (Glover (1965)) and to transform infeasible solutions
into feasible solutions in the context of an evolutionary procedure in (Glover (1977)).

SR-MKP is often solved to obtain an upper bound on the original MKP (see Gavish and
Pirkul (1985)). The best possible bound using this relaxation method can be obtained by
finding an optimal set of weights that minimises the solution value of SR-MKP. It has been
shown that if the optimal weights are known, then the bound generated by this relaxation is
better than, or equal to, bounds generated by both lagrangean relaxation and LP relaxation.
In practice, however, deriving optimal weights for SR-MKP is a difficult task (Gavish and
Pirkul (1985)).

Since SR-MKP is essentially a single constraint knapsack problem, the pseudo-utility
ratio for each variable, based on the surrogate constraint coefficient, is simplyu j =
pj /

∑m
i =1 ωi r i j . Clearly, the effectiveness of the greedy heuristic based on the surrogate

problem (in the form of a single constraint knapsack problem) strongly depends on the ability
of the surrogate constraint to capture the aggregate weighted consumption level of resources
for each variable, and this in turn relies on the determination of a good set of weights.

Pirkul (1987) suggested several methods to derive these weights. One of the simplest
methods to obtain reasonably good weights is to solve the LP relaxation of the original
MKP (using a linear programming solver likeCPLEX(1995)) and to use the values of the
dual variablesas the weights. In other words,ωi is set equal to theshadow priceof thei th
constraint in the LP relaxation of the MKP.

We would comment here that although Gavish and Pirkul (1985) found that solving the
LP relaxation of the MKP was time-consuming (using the code (Land and Powell (1973))
available to them at that time) it is clear that linear programming solution technology has
advanced considerably since then. Certainly our computational experience has been (see
Section 5.3) that a modern code likeCPLEXhas absolutely no difficulty in solving the LP
relaxation of the MKP.

P1: GRN

Journal of Heuristics KL577-04-Chu April 13, 1998 11:53

74 CHU AND BEASLEY

Having obtained theωi ’s and subsequently computed theu j ’s (u j = pj /
∑m

i =1 ωi r i j), a
repair operator can then be designed which considers the inclusion and exclusion of each
variable in the child solution based onu j . Our repair operator consists of two phases. The
first phase (called DROP) examines each variable inincreasingorder ofu j and changes the
variable from one to zero if feasibility is violated. The second phase (called ADD) reverses
the process by examining each variable indecreasingorder ofu j and changes the variable
from zero to one as long as feasibility is not violated.

The aim of the DROP phase is to obtain a feasible solution from an infeasible solution,
whilst the ADD phase seeks to improve the fitness of a feasible solution. We remark that in
order to achieve an efficient implementation of the repair operator, a preprocessing routine
is applied to each problem that sorts and renumbers variables according to thedecreasing
order of theiru j ’s. The pseudo-code for the repair operator (after this preprocessing has
been carried out) is given in Algorithm 1.

Algorithm 1. Repair operator for the MKP
Let: Ri = the accumulated resources of constrainti in S.
1: initialise Ri = ∑n

j =1 ri j S[j], ∀i ∈ I ;
2: for j = n to 1do /∗ DROP phase∗/

3: if (S[j] = 1) and (Ri > bi , for anyi ∈ I) then
4: setS[j] ← 0;
5: setRi ← Ri − ri j , ∀i ∈ I ;
6: end if
7: end for
8: for j = 1 ton do /∗ ADD phase∗/

9: if (S[j] = 0) and (Ri + ri j ≤ bi , ∀i ∈ I) then
10: setS[j] ← 1;
11: setRi ← Ri + ri j , ∀i ∈ I .
12: end if
13: end for

Algorithm 1 is “greedy” in the sense that during the DROP phase (steps 2–7), variables,
with the lowestu j being considered first, are successively removed from the solution until
a feasible solution is achieved. This is followed by the ADD phase (steps 8–13), which
successively adds variables, with the highestu j being considered first, back into the solution
until acompletesolution has been found, i.e., the remaining free resources are not sufficient
to add another variable to the solution. Algorithm 1 isguaranteedto always produce a
feasible solution for the MKP, irrespective of the initial child solution.

Note here that elements of Algorithm 1 have appeared in many papers down the years.
For example phases equivalent (or very similar) to DROP and ADD above have appeared
before, e.g.,

• for the DROP phase see (Fox and Scudder (1985), Magazine and Oguz (1984), Senju
and Toyoda (1968)),

• for the ADD phase see (Fox and Scudder (1985), Kochenberger, McCarl, and Wymann
(1974), Loulou and Michaelides (1979), Pirkul (1987), Toyoda (1975)),

P1: GRN

Journal of Heuristics KL577-04-Chu April 13, 1998 11:53

A GENETIC ALGORITHM 75

• for both phases see (Freville and Plateau (1994, 1997), Glover and Kochenberger (1996),
Hanafi and Freville (1997), Hanafi, Freville, and Abedellaoui (1996), Theil and Voss
(1994)).

One difference however between our algorithm and this work is the use of linear pro-
gramming dual variables as multipliers in the pseudo-utility ratio (u j = pj /

∑m
i =1 ωi r i j)

to set the order in which variables are considered. The work mentioned above typically
uses multipliers in the pseudo-utility ratio based directly on the original problem coeffi-
cients or calculated by a heuristic procedure for solving the surrogate relaxation SR-MKP
(Eqs. (5)–(7)).

4.5. Initial population

In order to achieve sufficient diversification, the initial population, with the size being fixed
at N = 100, was randomly generated. Each of the initialfeasiblesolutions was constructed
by a primitive primal heuristic that repeatedly randomly selects a variable and sets it to one
if the solution is feasible. The heuristic terminates when the selected variable cannot be
added to the solution (see Algorithm 2).

Algorithm 2. InitialiseP(0) for the MKP
for k = 1 to N do

setSk[j] ← 0, ∀ j ∈ J;
setT ← J; /∗ T is a dummy set∗/

randomly select aj ∈ T and setT ← T − j ;
while Ri + ri j ≤ bi , ∀i ∈ I do

setSk[j] ← 1;
setRi ← Ri + ri j , ∀i ∈ I ;
randomly select aj ∈ T and setT ← T − j .

end while
end for

4.6. Algorithmic outline

The outline of the GA heuristic which we have developed for the MKP is shown in Algo-
rithm 3. The default settings for our GA are:

• the binary tournament selection method,
• the uniform crossover operator,
• a mutation rate equal to 2 bits per child string,
• to discard any duplicate children (i.e., discard any child which is the same as a member

of the population),
• the steady-state replacement method based on eliminating the individual with the lowest

fitness value.

P1: GRN

Journal of Heuristics KL577-04-Chu April 13, 1998 11:53

76 CHU AND BEASLEY

Since the repair operator is the most computationally expensive procedure in the al-
gorithm, we will restrict the complexity analysis of Algorithm 3per iteration (per child
generated) to the repair operator.

Recall here that we remarked previously in Section 4.4 that in order to achieve an efficient
implementation of the repair operator a preprocessing routine is applied to each problem to
sort variables. This is only done once however, and so does not affect the per iteration time
complexity analysis given below.

Algorithm 3. A GA for the MKP
1: sett := 0;
2: initialiseP(t) := {S1, . . . , SN}, Si ∈ {0, 1}n;
3: evaluateP(t) : { f (S1), . . . , f (SN)};
4: find S∗ ∈P(t) s.t. f (S∗) ≥ f (S), ∀S∈P(t);
5: while t < tmax do
6: select{P1, P2} := 8(P(t)); /∗ 8 = binary tournament selection∗/

7: crossoverC := Äc(P1, P2); /∗ Äc = uniform crossover operator∗/

8: mutateC ← Äm(C); /∗ Äm = mutation operator∗/

9: makeC feasible,C ← Är (C); /∗ Är = repair operator∗/

10: if C ≡ anyS ∈ P(t) then /∗ C is a duplicate of a member of the population∗/

11: discardC and go to 6;
12: end if
13: evaluatef (C);
14: findS′ ∈P(t) s.t. f (S′) ≤ f (S), ∀S ∈ P(t)and replaceS′ ← C;

/∗ steady-state replacement∗/

15: if f (C) > f (S∗) then
16: S∗ ← C;
17: end if /∗ update best solutionS∗ found∗/

18: t ← t + 1;
19: end while
20: returnS∗, f (S∗).

It can be easily seen that in Algorithm 1, the ADD and DROP phases require at most
O(mn) operations each, although this worst-case scenario is unlikely to occur since the two
if statements (steps 3 and 9 in Algorithm 1) will not always be true for everyj examined.
Nevertheless, we conclude that the time complexity of the repair operator, as well as the
complexity of the GA per iteration, is approximatelyO(mn). Since this time complexity
is relatively small we can expect the GA to execute each iteration fairly quickly.

5. Computational study

5.1. Results for small problems

Our GA heuristic was initially tested on 55 standard test problems (divided into six differ-
ent sets) which are available from OR-Library (Beasley (1990,1996)) (email the message
mknapinfoto o.rlibrary@ic.ac.ukor see the WWW addresshttp://mscmga.ms.ic.ac.uk/jeb/

P1: GRN

Journal of Heuristics KL577-04-Chu April 13, 1998 11:53

A GENETIC ALGORITHM 77

orlib/mknapinfo.html). These problems are small real-world problems consisting ofm = 2
to 30 andn = 6 to 105 and their optimal values are known. Many of these problems have
been used by other authors (Aboudi and J¨ornsten (1994), Dammeyer and Voss (1993), Drexl
(1988), Glover and Kochenberger (1996), Hoff, Løkketangen, and Mittet (1996), Khuri,
Bäck, and Heitk¨otter (1994), Løkketangen and Glover (1996), Løkketangen, J¨ornsten, and
Storøy (1994), Thiel and Voss (1994)).

We solved these problems on our Silicon Graphics Indigo workstation (R4000, 100 MHz,
48 MB main memory), using both the general-purposeCPLEXmixed-integer programming
(MIP) solver (version 4.0), and our GA heuristic which was coded in C. The GA heuristic
was run once for each of the problems and each run terminated when 104 non-duplicate
children had been generated. The results are shown in Table 1.

The first two columns in Table 1 indicate the problem set name and the number of
problems in that problem set. The next two columns report forCPLEXthe average solution
time (in CPU seconds) and the average number of nodes searched (all problems were solved
to optimality).

The final three columns in Table 1 report for our GA the average best-solution time, which
is the time that the GA takes to first reach the final best solution, the average execution time,
which is the total time that the GA takes before termination, and the number of problems
for which the GA solution is optimal.

It is clear from Table 1 that our GA finds the optimal solution in all 55 test problems.
However, it isclearly apparentfrom the computation times, both forCPLEXand for our GA,
that these problems are either too small, or too easy, to draw any meaningful conclusions
with respect to the effectiveness of our algorithm. However, we remark here that these
standard problems did present some challenges for other GA heuristics, (e.g., Khuri, B¨ack,
and Heitkötter (1994), Thiel and Voss (1994)), as well as for several other heuristic methods,
e.g., (Aboudi and J¨ornsten (1994), Dammeyer and Voss (1993), Drexl (1988), Løkketangen
and Glover (1996), Løkketangen, J¨ornsten, and Storøy (1994)).

Table 1. Computational results forCPLEXand the GA—small problems.

CPLEXMIP solver
GA

Problem set
name

No. of
problems

Average
solution time

Average num-
ber of nodes A.B.S.T A.E.T NOPT

HP 2 0.3 73 0.4 2.6 2

PB 6 2.8 350 0.1 5.2 6

PETERSEN 7 0.2 75 0.2 3.2 7

SENTO 2 12.0 1149 0.3 11.5 2

WEING 8 0.6 263 0.4 4.3 8

WEISH 30 0.5 127 0.1 6.4 30

Average 1.1 200 0.2 5.6

A.B.S.T= average best-solution time (CPU seconds).
A.E.T = average execution time (CPU seconds).
NOPT= number of problems for which the GA finds the optimal solution.

P1: GRN

Journal of Heuristics KL577-04-Chu April 13, 1998 11:53

78 CHU AND BEASLEY

5.2. Problem generation

As far as we are aware, there exist no publically available standard MKP test problems of
larger sizes and of more difficult types than the problems we have already considered in
Table 1. Therefore, in order to better test the effectiveness of our GA, we independently
generated a set of large MKP instances using the procedure suggested by Freville and
Plateau (1994). The number of constraintsm was set to 5, 10 and 30, and the number of
variablesn was set to 100, 250 and 500. Thirty problems were generated for eachm-n
combination, giving a total of 270 problems.

The r i j were integer numbers drawn from the discrete uniform generatorU (0, 1000).
For eachm-n combination, the right-hand side coefficients (bi ’s) were set usingbi =
α

∑n
j =1 ri j whereα is a tightness ratio andα = 0.25 for the first ten problems,α = 0.50

for the next ten problems andα = 0.75 for the remaining ten problems. The objective
function coefficients(pj ’s) were correlated tori j and generated as follows:

pj =
m∑

i =1

ri j /m + 500qj j = 1, . . . , n,

whereqj is a real number drawn from the continuous uniform generatorU (0, 1). In
general, correlated problems are more difficult to solve than uncorrelated problems (Gavish
and Pirkul (1985), Pirkul (1987)).

We have made these test problems publically available (email the messagemknapinfoto
o.rlibrary@ic.ac.ukor see the WWW addresshttp://mscmga.ms.ic.ac.uk/jeb/orlib/ mknap-
info.html).

5.3. Results for large problems

As before we solved these problems using bothCPLEXand our GA heuristic. The results
are shown in Table 2.

Since the optimal solution values for most of the problems in Table 2 are not known,
the quality of the solutions generated (either byCPLEXor by our GA) are measured by
the percentage gap between the best solution value found and the optimal value of the LP
relaxation, i.e., 100 (optimal LP value—best solution value)/(optimal LP value).

The first three columns in Table 2 indicate the sizes (m andn) and the tightness ratio
(α) of a particular problem structure, with each problem structure containing 10 problem
instances. The next three columns report forCPLEXthe average solution time (in CPU
seconds), the average number of nodes searched and the average percentage gap. The
average figures shown are the average values over 10 problem instances for each problem
structure.

Computational results using the GA heuristic presented in this paper, are shown in the
remaining columns of Table 2. The GA heuristic was run once for each of the 270 problems.
Each run terminated when 106 non-duplicate children had been generated. The average
percentage gap, the average best-solution time, which is the time that the GA takes to first
reach the final best solution, and the average execution time, which is the total time that

P1: GRN

Journal of Heuristics KL577-04-Chu April 13, 1998 11:53

A GENETIC ALGORITHM 79

Table 2. Computational results forCPLEXand the GA—large problems.

CPLEXMIP solver
GA

Problem

m n α

Average
solution

time

Average
number of

nodes
Average
% gap

Average
% gap A.B.S.T A.E.T NOPT

5 100 0.25 519.8 134869 0.99 0.99 9.6 345.9 10

0.50 580.8 159731 0.45 0.45 23.5 347.3 10

0.75 178.3 51777 0.32 0.32 26.9 361.7 10

5 250 0.25 25853.6 5018607 0.22 0.23 50.7 682.0 8

0.50 31162.3 6228417 0.11 0.12 276.7 709.4 5

0.75 12398.5 2457427 0.08 0.08 195.9 763.3 5

10 100 0.25 5417.8 1011031 1.56 1.56 97.5 384.1 10

0.50 6086.8 1242041 0.79 0.79 97.3 418.9 9

0.75 1241.1 299155 0.48 0.48 16.8 462.6 10

5 500 0.25 (981.6) 64398 4.68 0.09 264.6 1271.9 n/k

0.50 (1048.0) 72744 5.02 0.04 291.3 1345.9 n/k

0.75 (1129.8) 80101 2.49 0.03 386.2 1412.6 n/k

10 250 0.25 (1006.2) 69545 4.80 0.51 359.0 870.9 n/k

0.50 (1054.7) 78502 5.41 0.25 342.2 931.5 n/k

0.75 (1195.2) 81475 1.85 0.15 129.1 1011.2 n/k

10 500 0.25 (1738.2) 68723 4.88 0.24 702.5 1504.9 n/k

0.50 (1651.2) 68929 5.50 0.11 562.2 1728.8 n/k

0.75 (1795.0) 68492 2.33 0.07 937.6 1931.7 n/k

30 100 0.25 (1800.0) 99154 4.95 2.91 177.4 604.5 n/k

0.50 (1800.0) 109163 4.79 1.34 118.0 782.1 n/k

0.75 (1800.0) 110272 1.80 0.83 90.1 904.2 n/k

30 250 0.25 (1800.0) 39071 6.42 1.19 582.9 1499.5 n/k

0.50 (1800.0) 49453 6.34 0.53 901.5 1980.0 n/k

0.75 (1800.0) 48539 2.86 0.31 1059.3 2441.4 n/k

30 500 0.25 (1800.0) 22902 6.30 0.61 1127.2 2437.7 n/k

0.50 (1800.0) 27401 6.42 0.26 1121.6 3198.9 n/k

0.75 (1800.0) 27435 2.94 0.17 1903.3 3888.2 n/k

Average 4120.0 658865 3.14 0.54 438.9 1267.4

n/k = not known.
A.B.S.T= average best-solution time (CPU seconds).
A.E.T = average execution time (CPU seconds).
NOPT= number of instances (out of 10) the GA finds the optimal solution.
A number in brackets forCPLEXindicates that the problems were terminated early.

P1: GRN

Journal of Heuristics KL577-04-Chu April 13, 1998 11:53

80 CHU AND BEASLEY

the GA takes before termination, over 10 instances for each problem structure are reported.
Computational times are given in CPU seconds. In the last column, the number of instances
(out of 10) for which the GA finds optimal solution values, if known, is also shown.

Table 2 is split into two parts. The results for the first threem-n combinations relate to
usingCPLEXto solve problems to optimality. These figures indicate that it would not be
computationally practicable on our Silicon Graphics Indigo workstation to useCPLEXto
solve all problems to optimality (sinceCPLEXrequired a large amount of memory/time,
especially when an excessive number of nodes were needed even to reach an integer solution
of reasonable quality). For this reason the results shown forCPLEXin the second part of
Table 2 for the remaining sixm-n combinations are based on terminating whenever tree
memory exceeds 42 MB or after 1800 CPU seconds.

These results illustrate that considerable computational effort is required byCPLEXto
solve even the smallest problems in our test set. It is also clear that in all but two (m = 5,

n = 250, α = 0.25, 0.50) of the 27 problem structures in Table 2, the gap produced by the
GA is at least as good as the gap produced byCPLEX. The average percentage gap (over all
270 test problems) is much lower for the GA (0.54%) than forCPLEX(3.14%).

We also observe that, both for the GA and forCPLEX, for the samemandα, asn increases,
the problems become much harder and take noticeably more time to solve. Likewise, ifm
increases while fixingn andα, the difficulty also increases. Finally, the tightness ratioα has
a predictable influence on the relative gaps; the smaller theα ratios (i.e., tighter constraints),
the larger the gaps.

The results obtained by the GA indicate that the GA heuristic is very effective for
large MKP instances of various structures, judging by the small percentage gaps shown.
We should emphasise here that the reported percentage gaps are a measure of how close
the heuristic solution is to the linear programming optimum, therefore much smaller gaps
are expected if compared to the (unknown) integer optimum. This can be partially verified
by comparing the average percentage gap columns given in Table 2. For those problems
with known optimal values, the percentage gaps reported byCPLEXand the GA are similar,
indicating that the heuristic solution values are indeed very close to the true optimal values.
Finally, the ability of the GA to generate optimal solutions is demonstrated in the last col-
umn, in which the GA is able to find optimal values for many instances. The computation
times for the GA are reasonable (less than one CPU hour in most cases). We should point
out that a generous termination condition (106 non-duplicate children) was given for our GA
just to demonstrate that the GA is capable of converging to high-quality solutions. Judging
from the average best-solution times shown in Table 2 there is a potential to obtain similar
results with a reduced number of iterations.

Finally we would remark thatCPLEXhad no difficulty solving the LP relaxation of the
MKP for the problems shown in Table 2. The average solution time for the LP relaxation
of the problems shown there was only 0.23 CPU seconds.

5.4. Performance comparison with other heuristics

Given the results presented in Table 1 for small problems we believe that there is little that
can be gained by comparing heuristics with respect to their performance on this standard

P1: GRN

Journal of Heuristics KL577-04-Chu April 13, 1998 11:53

A GENETIC ALGORITHM 81

set of small problems. Hence we shall, in this section, restrict our performance comparison
solely to large problems.

5.4.1. Direct comparison. Table 3 directly compares the performance of the GA with
other well-known heuristic methods by means of relative percentage gaps. More precisely,
we have compared the performance of our GA with the heuristic of Magazine and Oguz
(1984) (M&O), the heuristic of Volgenant and Zoon (1990) (V&Z) and the heuristic of
Pirkul (1987) (MKHEUR) on the problems considered in Table 2.

For all these algorithms, since the original codes were not available to us upon request,
we have coded the algorithms ourselves based on the descriptions of the methods outlined in
the corresponding papers. These algorithms were then tested on each of our test problems,
and average figures taken over 10 problem instances for each problem structure.

Table 3 clearly indicates the superiority of our GA over these other heuristic methods in
terms of the quality of the solutions obtained. The GA generates solutions that on average
have much smaller gaps than the other heuristics in all cases.

In terms of computation time, the GA required much more computation time than that
required by the other heuristics. In our implementation the time complexity of M&O and
V&Z was O(mn), whilst that of MKHEUR wasO(mn2). Consequently these algorithms
required between 0.5 and 5 seconds to solve each of the 270 problems shown in Table 3. By
contrast, as discussed above (see Section 4.6), the time complexity of our GAper iteration
was approximatelyO(mn).

However, since the computation times for the GA are within reasonable limits (see
Table 2), we strongly feel that the time requirement is not a decisive factor here when judging
the overall effectiveness of an algorithm. The significant improvement in solution quality
which the GA made over the other heuristics, whilst requiring only modest computing
efforts, favours the choice of the GA.

5.4.2. Indirect comparison. There are number of heuristics presented in the literature
(additional to those already considered in Table 3) for which computational results for
problems of a size at least equal to those shown in Table 2 have been presented.

Below we briefly highlight the most recent of these heuristics and give an indication
of the results presented. However, given the fact that different papers consider different
test problems, we would strongly caution the reader against attempting to pick the “best”
heuristic. We would mention here that in making our test problems publically available we
hope that future authors will be better able to compare their algorithms than can be achieved
today.

• Battiti and Tecchiolli (1995), 8 problems of sizem = n = 500, reactive tabu search
found the best solution for 6 of the 8 problems

• Freville and Plateau (1994), 270 problems of sizes up tom = 30 andn = 500, average
gap 1.91%

• Gavish and Pirkul (1985) and Freville and Plateau (1994), 270 problems of sizes up to
m = 30 andn = 500, average gap 1.98%

• Glover and Kochenberger (1996), 24 problems of sizes up tom = 25 andn = 500,
results better than incomplete tree search

P1: GRN

Journal of Heuristics KL577-04-Chu April 13, 1998 11:53

Table 3. Performance comparison of the GA with other heuristic methods.

Problem Average % gap

m n α M&O V&Z MKHEUR GA

5 100 0.25 13.69 10.30 1.59 0.99

0.50 6.71 6.90 0.77 0.45

0.75 5.11 5.68 0.48 0.32

Average 8.50 7.63 0.95 0.59

5 250 0.25 6.64 5.85 0.53 0.23

0.50 5.22 4.40 0.24 0.12

0.75 3.56 3.59 0.16 0.08

Average 5.14 4.61 0.31 0.14

5 500 0.25 4.93 4.11 0.22 0.09

0.50 2.96 2.53 0.08 0.04

0.75 2.31 2.41 0.06 0.03

Average 3.40 3.02 0.12 0.05

10 100 0.25 15.88 15.55 3.43 1.56

0.50 10.41 10.72 1.84 0.79

0.75 6.07 5.67 1.06 0.48

Average 10.79 10.65 2.11 0.94

10 250 0.25 11.73 10.53 1.07 0.51

0.50 6.83 5.92 0.57 0.25

0.75 4.42 3.77 0.33 0.15

Average 7.66 6.74 0.66 0.30

10 500 0.25 8.81 7.90 0.52 0.24

0.50 5.71 4.14 0.22 0.11

0.75 3.62 2.93 0.14 0.07

Average 6.05 4.99 0.29 0.14

30 100 0.25 17.39 17.21 9.02 2.91

0.50 11.82 10.19 3.51 1.34

0.75 6.58 5.92 2.03 0.83

Average 11.93 11.11 4.85 1.69

30 250 0.25 13.54 12.41 3.70 1.19

0.50 8.64 7.12 1.53 0.53

0.75 4.49 3.91 0.84 0.31

Average 8.89 7.81 2.02 0.68

30 500 0.25 9.84 9.62 1.89 0.61

0.50 7.10 5.71 0.73 0.26

0.75 3.72 3.51 0.48 0.17

Average 6.89 6.28 1.03 0.35

Average 7.69 6.98 1.37 0.54

P1: GRN

Journal of Heuristics KL577-04-Chu April 13, 1998 11:53

A GENETIC ALGORITHM 83

• Hanafi and Freville (1997), 7 problems of sizes up tom = 25 andn = 500, results better
than Glover and Kochenberger (1996)

• the GA heuristic presented in this paper, 270 problems of sizes up tom = 30 andn = 500,
average gap 0.54%

6. Conclusions

In this paper we have presented a heuristic algorithm based on GAs for solving multidi-
mensional knapsack problems. Most of the components of our GA are comparable to those
used in a standard GA. Our approach differs from previous GA based techniques in the way
that a heuristic operator which utilises problem-specific knowledge is incorporated. This
operator guarantees that the child solutions can be made feasible. Our positive results sup-
port the idea that this is a desirable approach for tackling the constraints and the feasibility
issue for the MKP.

On a large set of randomly generated problems, we have shown that the GA heuristic is
capable of obtaining high-quality solutions for problems of various characteristics, whilst
requiring only a modest amount of computational effort. Unlike the standard test set used
by many authors, these test problems are of large sizes and are more difficult to solve, in
the sense that we were not able to compute the optimal solutions and prove optimality.

Our algorithm was also directly compared with several other heuristic methods for the
problem. Computational results showed that the GA gave superior quality solutions to these
heuristics.

References

Aboudi, R. and K. J¨ornsten. (1994). “Tabu Search for General Zero-One Integer Programs Using the Pivot and
Complement Heuristic,”ORSA Journal on Computing6, 82–93.

Averbakh, I. (1994). “Probabilistic Properties of the Dual Structure of the Multidimensional Knapsack Problem
and Fast Statistically Efficient Algorithms,”Mathematical Programming65, 311–330.

Bäck, T., D.B. Fogel, and Z. Michalewicz (eds.). (1997).Handbook of Evolutionary Computation. Oxford Uni-
versity Press.

Balas, E. (1965). “An Additive Algorithm for Solving Linear Programs with Zero-One Variables,”Operations
Research13, 517–546.

Balas, E. and C.H. Martin. (1980). “Pivot and Complement—A Heuristic for 0-1 Programming,”Management
Science26, 86–96.

Battiti, R. and G. Tecchiolli. (1995). “Local Search with Memory: Benchmarking RTS,”OR Spektrum17, 67–86.
Beasley, D., D.R. Bull, and R.R. Martin. (1993a). “An Overview of Genetic Algorithms: Part I, Fundamentals,”

University Computing15, 58–69.
Beasley, D., D.R. Bull, and R.R. Martin. (1993b). “An Overview of Genetic Algorithms: Part II, Research Topics,”

University Computing15, 170–181.
Beasley, J.E. (1990). “OR-Library: Distributing Test Problems by Electronic Mail,”Journal of the Operational

Research Society41, 1069–1072.
Beasley, J.E. (1996). “Obtaining Test Problems via Internet,”Journal of Global Optimization8, 429–433.
Beasley, J.E. and P.C. Chu. (1996). “A Genetic Algorithm for the Set Covering Problem,”European Journal of

Operational Research94, 392–404.
Cabot, A.V. (1970). “An Enumeration Algorithm for Knapsack Problems,”Operations Research18, 306–

311.

P1: GRN

Journal of Heuristics KL577-04-Chu April 13, 1998 11:53

84 CHU AND BEASLEY

Charon, I. and O. Hudry. (1993). “The Noising Method: A New Method for Combinatorial Optimization,”
Operations Research Letters14, 133–137.

Chu, P.C. (1997). “A Genetic Algorithm Approach for Combinatorial Optimisation Problems,” Ph.D. Thesis,
University of London.

Chu, P.C. and J.E. Beasley. (1995). “Constraint Handling in Genetic Algorithms: The Set Partitioning Problem,”
Imperial College, Working paper. To appear inJournal of Heuristics.

Chu, P.C. and J.E. Beasley. (1997). “A Genetic Algorithm for the Generalised Assignment Problem,”Computers
and Operations Research24, 17–23.

CPLEX Optimization Inc. (1995).Using the CPLEX Callable Library. CPLEX Optimization Inc., Suite 279, 930
Tahoe Blvd., Bldg. 802, Incline Valley, NV 89451-9436, USA.

Crama, Y. and J.B. Mazzola. (1994). “On the Strength of Relaxations of Multidimensional Knapsack Problems,”
INFOR32, 219–225.

Dammeyer, F. and S. Voss. (1993). “Dynamic Tabu List Management Using Reverse Elimination Method,”Annals
of Operations Research41, 31–46.

Dantzig, G.B. (1957). “Discrete Variable Problems,”Operations Research5, 266–277.
Davis, L. and M. Steenstrup. (1987). “Genetic Algorithms and Simulated Annealing: An Overview.” In L. Davis

(ed.),Genetic Algorithms and Simulated Annealing. Morgan Kaufmann. pp. 1–11.
Drexl, A. (1988). “A Simulated Annealing Approach to the Multiconstraint Zero-One Knapsack Problem,”Com-

puting40, 1–8.
Dueck, G. (1993). “New Optimization Heuristics: The Grand Deluge Algorithm And the Record-to-Record

Travel,” Journal of Computational Physics104, 86–92.
Dueck, G. and T. Scheuer. (1990). “Threshold Accepting: A General Purpose Optimization Algorithm Appearing

Superior to Simulated Annealing,”Journal of Computational Physics90, 161–175.
Everett, H. (1963). “Generalized Lagrange Multiplier Method for Solving Problems of Optimum Allocation of

Resources,”Operations Research11, 399–417.
Fontanari, J.F. (1995). “A Statistical Analysis of the Knapsack Problem,”Journal of Physics A—Mathematical

and General28, 4751–4759.
Fox, G.E. and G.D. Scudder. (1985). “A Heuristic with Tie Breaking for Certain 0-1 Integer Programming Models,”

Naval Research Logistics Quarterly32, 613–623.
Freville, A. and G. Plateau. (1986). “Heuristics and Reduction Methods for Multiple Constraints 0-1 Linear

Programming Problems,”European Journal of Operational Research24, 206–215.
Freville, A. and G. Plateau. (1990). “Hard 0-1 Multiknapsack Test Problems for Size Reduction Methods,”Inves-

tigacion Operativa1, 251–270.
Freville, A. and G. Plateau. (1994). “An Efficient Preprocessing Procedure for the Multidimensional 0-1 Knapsack

Problem,”Discrete Applied Mathematics49, 189–212.
Freville, A. and G. Plateau. (1997). “The 0-1 Bidimensional Knapsack Problem: Toward an Efficient High-Level

Primitive Tool,” Journal of Heuristics2, 147–167.
Frieze, A.M. and M.R.B. Clarke. (1984). “Approximation Algorithms for them-Dimensional 0-1 Knapsack

Problem: Worst-Case and Probabilistic Analysis,”European Journal of Operational Research15, 100–
109.

Gavish, B. and H. Pirkul. (1982). “Allocation of Databases and Processors in a Distributed Comput-
ing System.” In J. Akoka (ed.)Management of Distributed Data Processing, North-Holland, pp. 215–
231.

Gavish, B. and H. Pirkul. (1985). “Efficient Algorithms for Solving Multiconstraint Zero-One Knapsack Problems
to Optimality,” Mathematical Programming31, 78–105.

Gilmore, P.C. and R.E. Gomory. (1966). “The Theory and Computation of Knapsack Functions,”Operations
Research14, 1045–1075.

Glover, F. (1965). “A Multiphase-Dual Algorithm for the Zero-One Integer Programming Problem,”Operations
Research13, 879–919.

Glover, F. (1977). “Heuristics for Integer Programming Using Surrogate Constraints,”Decision Sciences8,
156–166.

Glover, F. (1994). “Optimization by Ghost Image Processes in Neural Networks,”Computers and Operations
Research21, 801–822.

P1: GRN

Journal of Heuristics KL577-04-Chu April 13, 1998 11:53

A GENETIC ALGORITHM 85

Glover, F. and G.A. Kochenberger. (1996). “Critical Event Tabu Search for Multidimensional Knapsack Problems.”
In I.H. Osman and J.P. Kelly (eds.),Meta-Heuristics: Theory and Applications. Kluwer Academic Publishers,
pp. 407–427.

Goldberg, D.E. (1989).Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley.
Hanafi, S. and A. Freville. (1997). “An Efficient Tabu Search Approach for the 0-1 Multidimensional Knapsack

Problem,” To appear inEuropean Journal of Operational Research.
Hanafi, S., A. Freville and A.El. Abedellaoui. (1996). “Comparison of Heuristics for the 0-1 Multidimensional

Knapsack Problem,” In I.H. Osman and J.P. Kelly (eds.),Meta-Heuristics: Theory and Applications. Kluwer
Academic Publishers, pp. 449–465.

Hillier, F.S. (1969). “Efficient Heuristic Procedures for Integer Linear Programming with an Interior,”Operations
Research17, 600–637.

Hoff, A., A. Løkketangen, and I. Mittet. (1996). “Genetic Algorithms for 0/1 Multidimensional Knapsack Prob-
lems.” Working Paper, Molde College, Britveien 2, 6400 Molde, Norway.

Holland, J.H. (1975).Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications
to Biology, Control, and Artificial Intelligence. University of Michigan Press.

Khuri, S., T. Bäck, and J. Heitk¨otter. (1994). “The Zero/One Multiple Knapsack Problem and Genetic Algo-
rithms,” Proceedings of the 1994 ACM Symposium on Applied Computing (SAC’94), ACM Press, pp. 188–
193.

Kochenberger, G.A., B.A. McCarl, and F.P. Wymann. (1974). “A Heuristic for General Integer Programming,”
Decision Sciences5, 36–44.

Land, A.H. and S. Powell. (1973).Fortran Codes for Mathematical Programming Linear, Quadratic and Discrete.
Wiley.

Lee, J.S. and M. Guignard. (1988). “An Approximate Algorithm for Multidimensional Zero-One Knapsack
Problems—a Parametric Approach,”Management Science34, 402–410.

Løkketangen, A. and F. Glover. (1996). “Probabilistic Move Selection in Tabu Search for Zero-One Mixed Integer
Programming Problems.” In I.H. Osman and J.P. Kelly (eds.),Meta-Heuristics: Theory and Applications.
Kluwer Academic Publishers, pp. 467–487.

Løkketangen, A. and F. Glover. (1997). “Solving Zero-One Mixed Integer Programming Problems Using Tabu
Search,” to appear inEuropean Journal of Operational Research.

Løkketangen, A., K. J¨ornsten, and S. Storøy. (1994). “Tabu Search Within a Pivot and Complement Framework,”
International Transactions of Operations Research1, 305–316.

Loulou, R. and E. Michaelides. (1979). “New Greedy-Like Heuristics for the Multidimensional 0-1 Knapsack
Problem,”Operations Research27, 1101–1114.

Magazine, M.J. and O. Oguz. (1984). “A Heuristic Algorithm for the Multidimensional Zero-One Knapsack
Problem,”European Journal of Operational Research16, 319–326.

Martello, S. and P. Toth. (1990).Knapsack Problems: Algorithms and Computer Implementations. John Wiley &
Sons.

Michalewicz, Z. (1995). “A Perspective on Evolutionary Computation.” In X. Yao (ed.),Progress in Evolutionary
Computation.Springer-Verlag, pp. 73–89.

Mitchell, M. (1996).An Introduction to Genetic Algorithms. MIT Press.
Nemhauser, G.L. and Z. Ullmann. (1969). “Discrete Dynamic Programming and Capital Allocation,”Management

Science15, 494–505.
Pirkul, H. (1987). “A Heuristic Solution Procedure for the Multiconstraint Zero-One Knapsack Problem,”Naval

Research Logistics34, 161–172.
Powell, D. and M.M. Skolnick. (1993). “Using Genetic Algorithms in Engineering Design Optimization with

Nonlinear Constraints.” In S. Forrest (ed.),Proceedings of the Fifth International Conference on Genetic
Algorithms. Morgan Kaufmann, pp. 424–431.

Reeves, C.R. (1993).Modern Heuristic Techniques for Combinatorial Problems. Blackwell Scientific.
Richardson, J., M. Palmer, G. Liepins, and M. Hillard. (1989). “Some Guidelines for Genetic Algorithms with

Penalty Functions.” In J. Schaffer (ed.),Proceedings of the Third International Conference on Genetic Algo-
rithms. Morgan Kaufmann, pp. 191–197.

Rinnooy Kan, A.H.G., L. Stougie, and C. Vercellis. (1993). “A Class of Generalized Greedy Algorithms for the
Multi-knapsack Problem,”Discrete Applied Mathematics42, 279–290.

P1: GRN

Journal of Heuristics KL577-04-Chu April 13, 1998 11:53

86 CHU AND BEASLEY

Rudolph, G. and J. Sprave. (1995). “A Cellular Genetic Algorithm with Self-adjusting Acceptance Threshold,”
Proceedings of the First IEE/IEEE International Conference on Genetic Algorithms in Engineering Systems:
Innovations and Applications. IEE, London, pp. 365–372.

Rudolph, G. and J. Sprave. (1996). “Significance of Locality and Selection Pressure in the Grand Deluge Evo-
lutionary Algorithm,” In H.M. Voigt, W. Ebeling, I. Rechenberg, and H.P. Schwefel (eds.),Parallel Problem
Solving from Nature IV. Proceedings of the International Conference on Evolutionary Computation. Lecture
Notes in Computer Science, Springer, pp. 686–694.

Schilling, K.E. (1990). “The Growth ofm-Constraint Random Knapsacks,”European Journal of Operational
Research46, 109–112.

Senju, S. and Y. Toyoda. (1968). “An Approach to Linear Programming with 0-1 Variables,”Management Science
15, 196–207.

Shih, W. (1979). “A Branch and Bound Method for the Multiconstraint Zero-One Knapsack Problem,”Journal of
the Operational Research Society30, 369–378.

Smith, A.E. and D.M. Tate. (1993). “Genetic Optimization Using a Penalty-Function.” In S. Forrest (ed.),Pro-
ceedings of the Fifth International Conference on Genetic Algorithms. Morgan Kaufmann, pp. 499–505.

Soyster, A.L., B. Lev, and W. Slivka. (1978). “Zero-One Programming with Many Variables and Few Constraints,”
European Journal of Operational Research2, 195–201.

Szkatula, K. (1994). “The Growth of Multi-constraint Random Knapsacks with Various Right-hand Sides of the
Constraints,”European Journal of Operational Research73, 199–204.

Szkatula, K. (1997). “The Growth of Multi-constraint Random Knapsacks with Large Right-hand Sides of the
Constraints,”Operations Research Letters21, 25–30.

Thiel, J. and S. Voss. (1994). “Some Experiences on Solving Multiconstraint Zero-One Knapsack Problems with
Genetic Algorithms,”INFOR32, 226–242.

Toyoda, Y. (1975). “A Simplified Algorithm for Obtaining Approximate Solutions to Zero-One Programming
Problems,”Management Science21, 1417–1427.

Volgenant, A. and J.A. Zoon. (1990). “An Improved Heuristic for Multidimensional 0-1 Knapsack Problems,”
Journal of the Operational Research Society41, 963–970.

Weingartner, H.M. (1967).Mathematical Programming and the Analysis of Capital Budgeting Problems. Chicago:
Markham Publishing.

Weingartner, H.M. and D.N. Ness. (1967). “Methods for the Solution of the Multidimensional 0/1 Knapsack
Problem,”Operations Research15, 83–103.

Zanakis, S.H. (1977). “Heuristic 0-1 Linear Programming: An Experimental Comparison of Three Methods,”
Management Science24, 91–104.

