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Abstract Ant colony optimization is a metaheuristic that has been applied to a va-
riety of combinatorial optimization problems. In this paper, an ant colony optimiza-
tion approach is proposed to deal with the multidimensional knapsack problem. It
is an extension of Max Min Ant System which imposes lower and upper trail limits
on pheromone values to avoid stagnation. In order to choose the lower trail limit,
we provide a new method which takes into account the influence of heuristic infor-
mation. Furthermore, a local search procedure is proposed to improve the solutions
constructed by ants. Computational experiments on benchmark problems are carried
out. The results show that the proposed algorithm can compete efficiently with other
promising approaches to the problem.

Keywords Ant colony optimization · Metaheuristic · Multidimensional knapsack
problem

1 Introduction

The multidimensional knapsack problem (MKP) consists in finding a subset of an
original set of objects such that the total profit of the selected objects is maximized
while a set of resource constraints are satisfied, where the terms profit and resource
should be considered in their most general sense. The MKP has been recognized
as a model of many real applications such as cutting stock problems (Gilmore and
Gomory 1966), project selection and cargo loading (Shih 1979), allocating processors
and databases in a distributed computer system (Gavish and Pirkul 1982).
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It is well-known that the MKP is an NP-hard problem. Exact algorithms, such
as branch-and-bound algorithms (e.g. Shih 1979), dynamic programming based al-
gorithms (e.g. Gilmore and Gomory 1966), can solve only instances of very lim-
ited size in an acceptable computation time. The intractability of the MKP mo-
tivated many researchers to focus on the development of heuristic methods (e.g.
Battiti and Tecchiolli 1995; Chu and Beasley 1998; Freville and Plateau 1994;
Glover and Kochenberger 1996; Hanafi and Freville 1998).

In the last decade, Ant Colony Optimization (ACO) has been successfully applied
to many hard combinatorial optimization problems (Dorigo et al. 1999; Dorigo and
Stützle 2004). ACO was inspired by the foraging behavior of real ants (Dorigo et al.
1996). When solving a problem, artificial ants probabilistically construct solutions
using heuristic information and pheromone trails. The pheromone trails are updated
according to the quality of the solutions constructed by the ants. The success of ACO
has motivated many attempts to solve the MKP with it (Alaya et al. 2004; Fidanova
2002; Leguizamon and Michalewicz 1999).

In this paper, we develop an algorithm based on ACO for the MKP. Our algo-
rithm extends Max Min Ant System (MMAS) (Stützle and Hoos 2000) which is
one of the most successful ACO algorithms (Dorigo and Blum 2005). In MMAS,
upper and lower trail limits are imposed on pheromone trails to avoid stagnation
where all ants construct the same solution over and over again, such that no bet-
ter solution can be found anymore (Stützle and Hoos 2000). Obviously, appropri-
ate limits are important to the performance of MMAS. The upper limit is usually
set to an estimate of the asymptotically maximum pheromone trail value, whereas
the lower trail limit is relatively difficult to choose. Stützle and Hoos (2000) sug-
gested to set the lower trail limit based on the probability of constructing the best
solution found when all the pheromone values have converged to either the upper
or lower trail limit (Levine and Ducatelle 2004). This method assumes that the in-
fluence of heuristic information can be neglected. However, when ACO is applied
to the MKP, heuristic information is important (Alaya et al. 2004; Fidanova 2002;
Leguizamon and Michalewicz 1999). In order to overcome this limitation, our al-
gorithm provides a new method to choose the lower trail limit. The basic idea is to
change the lower trail limit when the difference between the solutions constructed
by ants and the best solution which was reinforced at the previous cycle is small.
Since the relative difference between the upper and lower trail limits is dynamic in
this method, it is called dynamic method. Correspondingly, the proposed algorithm is
called dynamic MMAS (DMMAS). In addition, a local search procedure is proposed
to improve the solutions generated by ants.

The remainder of this paper is organized as follows. In Sect. 2, the MKP is defined.
Then we give a general introduction to ACO and a survey on previous ACO-based
algorithms for the MKP. In Sect. 3, the proposed algorithm is presented. Section 4
describes the method of choosing the lower trail limit. Section 5 presents the proposed
local search procedure. The computational results on benchmark problems are given
in Sect. 6. The conclusion is given in Sect. 7.
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2 Preliminaries

2.1 The multidimensional knapsack problem

The MKP can be formulated as follows (Chu and Beasley 1998):

maximise
n∑

j=1

pjxj (1)

subject to
n∑

j=1

rij xj ≤ bi, i = 1, . . . ,m, (2)

xj ∈ {0,1}, j = 1, . . . , n. (3)

There are m resource constraints in this problem, therefore the MKP is also called
the m-dimensional knapsack problem. Let I = {1, . . . ,m} and J = {1, . . . , n} with
bi ≥ 0 for all i ∈ I , and rij ≥ 0 for all i ∈ I, j ∈ J . A well-stated MKP assumes that
pj > 0 and rij ≤ bi <

∑n
j=1 rij . It is clear that each solution x = (x1, . . . , xn) is an

n-dimensional vector. If xj is equal to 1, it means that object j is selected, otherwise,
object j is unselected.

2.2 ACO for the MKP

ACO is a class of model-based metaheuristics. It uses a colony of ants, which are
guided by pheromone trails and heuristic information, to construct solutions itera-
tively for a problem. To solve a static combinatorial optimization problem via ACO,
the main procedure is described as follows: at each cycle, every ant constructs a so-
lution and then pheromone trails are updated. The algorithm stops iterating when a
termination condition is met. Generally, the termination condition may be a maxi-
mum number of solution constructions or a given time limit.

Since the progenitor of ACO, called Ant System (AS), was introduced (Dorigo
et al. 1996), many improvements have been proposed to make ACO algorithms very
effective. One of the most outstanding ACO variants is MMAS (Stützle and Hoos
2000). The prominent characteristic of MMAS is that upper and lower trail limits are
imposed on pheromone trails to avoid stagnation. Moreover, the pheromone values
are initialized to the upper trail limit. This gives ants higher exploration ability in the
early cycles. In addition, MMAS uses only one ant to update pheromone trails. The
ant may be the one which constructed the global-best solution or the iteration-best
one. In this way, it can make ants exploit those best solutions. MMAS deliberately
schedules the global-best solution and the iteration-best solution for pheromone up-
date in order to balance exploitation and exploration. Strong exploitation may be
obtained by using the global-best solution, while exploration may be intensified by
using the iteration-best solution (Levine and Ducatelle 2004).

In recent years, several ACO-based algorithms have been proposed to deal with the
MKP (Alaya et al. 2004; Fidanova 2002; Leguizamon and Michalewicz 1999). Their
differences mainly lie in the ways of laying pheromone trails and the definitions of
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heuristic information. Let S = {o1, o2, . . . , o|S|} be the set of the selected objects,
where |S| is the cardinality of S. Three ways of laying pheromone trails have been
investigated:

(1) The first way is to lay pheromone trails on each object of S (Leguizamon and
Michalewicz 1999). In this way, each object is associated with an amount of
pheromone which represents the preference of the object. It tries to increase the
desirability of each object of S in such a way that, when constructing a new
solution, these objects will be more likely to be chosen;

(2) The second one is to lay pheromone trails on each pair (ou, ou+1) of successively
selected objects of S (Fidanova 2002). The idea is to increase the desirability of
choosing object ou+1 when the last selected object is ou. In this way, a pheromone
trail represents the preference of selecting a certain object after another one;

(3) The third one is to lay pheromone trails on all pairs of different objects of S

(Alaya et al. 2004). The idea is to increase the desirability of choosing simulta-
neously two objects of S so that, when constructing a new solution, the objects
of S will be more likely to be selected if some objects of S have been selected.

With respect to heuristic information, Alaya et al. (2004) and Leguizamon and
Michalewicz (1999) applied a kind of dynamic heuristic information. Let Sk be the
set of the selected objects at the kth construction step. For each candidate object j ,
the heuristic information ηSk

(j) is given as follows:

ηSk
(j) = pj

/(
m∑

i=1

rij /dSk
(i)

)
(4)

where dSk
(i) = bi −∑

g∈Sk
rig . Since Sk will be changed from step to step, the heuris-

tic information is dynamic. Fidanova (2002) used three kinds of static heuristic in-
formation. For each object j , three kinds of heuristic information η1

j , η2
j and η3

j are
given as follows:

η1
j = p

d1
j (5)

where d1 is a parameter.

η2
j =

{
p

d1
j /s

d2
j if sj �= 0

p
d1
j if sj = 0

(6)

where sj = maxi (rij ), d1 and d2 are two parameters.

η3
j =

{
p

d1
j /s

d2
j if sj �= 0

p
d1
j if sj = 0

(7)

where sj = ∑m
i=1 rij , d1 and d2 are two parameters.
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3 Description of the proposed algorithm

DMMAS, the proposed algorithm, follows the standard scheme of ACO, whereas
several components are dependent on the characteristics of the MKP. In the following,
we will explain how to define pheromone trails and heuristic information, and then
describe the details about constructing a solution. Finally, we will present how to
update pheromone trails.

3.1 Pheromone trails and heuristic information

It is known that the MKP is a typical subset problem which involves selecting an
optimal feasible subset of an original set of objects. Some other examples of ACO
algorithms for subset problems are the constraint satisfaction problem (Solnon 2002),
the maximum clique problem (Solnon and Fenet 2006) and the edge-weighted k-
cardinality tree problem (Blum and Blesa 2005). In contrast to the ordering problems,
such as traveling salesman problem (TSP), subset problems focus on selecting rather
than ordering (Solnon and Bridge 2006). For these problems, one may consider two
different pheromone structures: a pheromone structure that associates a pheromone
trail with every object, or a pheromone structure that associates a pheromone trail
with every pair of objects. In DMMAS, the first way of laying pheromone trails is
used, i.e., a pheromone trail τ(j) is associated with each object j .

Apart from pheromone trails, heuristic information is another important factor
for solution construction. The heuristic information we used is on the basis of the
pseudo-utility ratios (Chu and Beasley 1998), which are defined by:

∀j ∈ J, η(j) = pj∑m
i=1 wirij

(8)

where wi is the shadow price of the ith constraint in the linear programming re-
laxation of the original MKP, which has been adopted by the genetic algorithm in
Chu and Beasley (1998). The denominator of (8) represents the tightness of object j .
As indicated in (8), an object with a higher profit and lower tightness will be more
desirable for selection.

3.2 Constructing a solution

When constructing a solution, an ant starts with an n-dimensional vector x. This
vector corresponds to a solution, and each element of this vector is initially set to
zero. At the kth construction step (k ≥ 1), an ant scratches an object following the
transition probability:

P(ck = j |τ) =
{

τ(j)αη(j)β∑
u∈Uk

τ(u)αη(u)β
if j ∈ Uk

0 otherwise
(9)

where Uk is the set of objects which have not yet scratched and satisfy all constraints,
that is, Uk = {o ∈ {1, . . . , n}|(xo = 0)∧ (rio ≤ bi −∑n

j=1 rij xj , i = 1, . . . ,m)}. α and
β (α,β ≥ 0) are two parameters which control the relative importance of pheromone
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trails and heuristic information. According to this transition probability, ants prefer
selecting those more desirable objects with a higher amount of pheromone. Suppose
that object i is selected, then the ith element of the vector will be changed into 1. The
construction process stops when Uk is empty.

3.3 Pheromone update

Once each ant has constructed a solution, only the best ant is used to update
pheromone trails. More formally, pheromone trails are updated as follows:

∀u ∈ J, τ(u)l+1 = ρτ(u)l + �τ(u), (10)

If τ(u)l+1 < τmin, then τ(u)l+1 = τmin (11)

If τ(u)l+1 > τmax, then τ(u)l+1 = τmax (12)

where τ(u)l is the pheromone value of object u at cycle l, ρ is the pheromone per-
sistence (1 − ρ is the pheromone evaporation rate). Let sbest be the solution con-
structed by the chosen ant. It may be the global-best solution sgb or the iteration-best
one sib . If element u of sbest is equal to 1, then �τ(u) is equal to g(sbest), where
g(x) = 1/

∑n
j=1 pj (1 − xj ). Otherwise, �τ(u) is 0. τmax and τmin are the upper and

lower trail limits respectively. In this way, those objects selected by the chosen ant
will receive more pheromone and therefore will be more likely selected in future
cycles. The upper trail limit τmax is initialized to an arbitrarily high value. After a
global-best solution sgb is constructed, τmax is set to g(sgb)/(1 − ρ). Note that τmax
may be different from cycle to cycle. In the next section, we will discuss how to
choose the lower trail limit in detail.

4 Selecting the lower trail limit

The lower trail limit is crucial to the performance of the proposed algorithm. When
the relative difference between the upper and lower trail limits is very small, the
search behavior of ants may be too diversified. Whereas very striking relative differ-
ence may lead to stagnation, since it is often caused by a much higher pheromone
level on some solution components than on others (Stützle and Hoos 2000). Hence a
suitable lower trail limit should be chosen in such a way that a good tradeoff between
diversification and intensification can be obtained.

4.1 Analysis of Stützle and Hoos’ method

In Stützle and Hoos (2000), the lower trail limit τmin is set as

τmin = ετmax (13)

where ε = (1− n
√

Pbest)/((avg−1) n
√

Pbest), avg is equal to n/2, n is the total number
of objects, the parameter Pbest is the probability of constructing the best solution
found when all the pheromone values have converged to either τmax or τmin. For
simplicity, we denote this method as SH method.
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When the SH method is applied to select the lower trail limit, it is important to
choose an appropriate Pbest. In order to study the influence of Pbest on the capability
of ants to explore the search space, two measures are used:

(1) Similarity ratio: This measure is commonly used to measure diversification, and
it has been applied to evolutionary algorithms (Morrison and De Jong 2001). The
following similarity ratio is given by Solnon and Fenet (2006):

∑n
j=1(

∑na

i=1 si
j · (∑na

i=1 si
j − 1))

(na − 1) · ∑n
j=1

∑na

i=1 si
j

(14)

where si
j is the j th element of solution si which is constructed by the ith ant, na

is the number of ants. If all solutions are the same, the ratio is equal to one. The
ratio is equal to zero if all ants select entirely different objects.

(2) Re-sampling ratio: It is used to measure how effective an algorithm is in sam-
pling the search space (Solnon and Fenet 2006). Let DiffNum be the number
of unique solutions generated over a whole run and TotalNum be the number
of all generated solutions, then the re-sampling ratio is defined as (TotalNum −
DiffNum)/TotalNum. Values close to 0 indicate an effective search, that is, few
duplicate solutions are generated, while values close to 1 mean that the search is
in stagnant condition, i.e., few new solutions are generated.

Figure 1 plots the evolution of the similarity ratio and the re-sampling ratio ob-
tained at each cycle where instance 10.100.00 is used as an example. Even when Pbest
is set to 0.005, the similarity ratio and the re-sampling ratio increase very quickly and
reach 0.98 and 0.36 at cycle 150 respectively. That is, ants focus on a very small re-
gion of the search space and 36 percent of the solutions generated had already been
generated before. In this case, the search has to be diversified. It is clear that heuristic
information plays an important role in solution construction, while (13) takes no ac-
count of heuristic information. This makes it uneasy to choose Pbest. Especially, when
this method is applied to a broad range of instances, it will be very inconvenient to
choose this important parameter.

4.2 The dynamic method

In order to choose a lower trail limit, we first describe the relative differences on
pheromone trails. Let T1 = {τ(u)αη(u)β |sbest(u) = 1, u ∈ J } and T2 = {τ(u)αη(u)β |
sbest(u) = 0, u ∈ J }. Suppose the minimal value of T1 is τ1, the maximal value
of T2 is τ2. Once pheromone trails are updated, τ1/τ2 increases. Specially, when
τ1/τ2 → +∞, the probability of constructing sbest at the next cycle will tend to 1,
that is, the hamming distance between a random solution s constructed at the next
cycle and sbest will tend to zero. Formally, we have

Property 1 Let the expected value of the hamming distance between s and sbest be
E(d(s, sbest)), then E(d(s, sbest)) → 0 if and only if τ1/τ2 → +∞.

Proof Put O = {j ∈ J |sbest(j) = 1}, K = |O|. Suppose that when constructing the
solution s, the kth selected object is ak (1 ≤ k ≤ K). Note that E(d(s, sbest)) → 0
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Fig. 1 Evolution of (a) the similarity ratio and (b) the re-sampling ratio for instance 10.100.00 (average
over 50 runs). The default value of each parameter was: na = 50, α = 1, β = 20, ρ = 0.95, γ = 8, λ = 2,
Pbest = 0.9
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if and only if P(ak ∈ O) → 1(1 ≤ k ≤ K). Since s is constructed following the way
described in Sect. 3.2, the proof is obvious. �

According to the definition of T1 and T2, it can be seen that E(d(s, sbest)) takes
into account heuristic information. According to classical statistical theory (Devore
2000), E(d(s, sbest)) can be estimated as follows:

E(d(s, sbest)) ≈ avgd (15)

avgd =
∑na

i=1 d(si, sbest)

na

(16)

where avgd is called average distance, na is the number of ants and si is the so-
lution constructed by ant i. It is well-known that avgd is an unbiased estimator of
E(d(s, sbest)). Note that sbest is the solution that has been rewarded at the previous
cycle. Since avgd can be computed incrementally during the solution construction
step, no significant extra computation cost is needed.

Our method of choosing the lower trail limit is given as follows:
When a new sgb is found, τmin is initialized to a very small value. This can be

realized by setting τmin to ετmax where Pbest is set to a very large number (e.g.
Pbest ≥ 0.5). Since then, if the average distance avgd is very small, it is possible
that the relative difference between τ1 and τ2 is extremely large. It implies that the
relative difference between the lower and upper trail limits is too large. In order to
decrease the relative difference, one possible way is to increase τmin. That is,

If avgd < γ , then τmin := λτmin (17)

where γ is a positive number, λ(λ > 1) is a parameter.
Unlike the SH method, our method provides a new way to balance diversification

and intensification by dynamically updating the lower trail limit when the average
distance is small. In this method, τmin is initialized to a very small value so that
τmax/τmin is very large at first. Once the premise of (17) is satisfied, τmax/τmin scales
down. Moreover, τmax/τmin can be large enough in order to favor pheromone guid-
ance. The threshold γ is used to determine whether the relative difference on the trail
limits is small or not. With a very large value, the relative difference on the trail limits
will be very small after a few cycles. While the relative difference on the trail limits
will be large if γ is set to a small value. Specially, when γ is equal to 0, τmin will be
changeless at all.

We also analyzed the dynamic method based on similarity ratio and re-sampling
ratio. As shown in Fig. 1, the similarity ratios and re-sampling ratios of the dynamic
method are smaller than those of the SH method. This means that ants have better
ability to explore new solutions. Figure 2 plots the evolution of the average distance
of the dynamic method and the SH method. With respect to the dynamic method,
the average distances are larger than or close to γ (where γ = 8) during the run of
DMMAS. As to SH method, at the beginning of the search, the average distances
are large. After cycle 150, the average distances are very small (less than 1). This
confirms that ants only search in a very small region of the search space.
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Fig. 2 Evolution of the average distance for instance 10.100.00 (average over 50 runs). The default value
of each parameter was: na = 50, α = 1, β = 20, ρ = 0.95, γ = 8, λ = 2, Pbest = 0.9

In Stützle and Hoos (2000), pheromone reinitializing is applied to avoid stagna-
tion. In practice, one can reinitialize pheromone trails when the average difference is
less than γ or when no better solution could be found for Nni cycles. We measured
the significance of the obtained results using the Wilcoxon rank sum test with a sig-
nificance level of 0.05. The statistical results show that no significant improvement
can be obtained by reinitializing pheromone. This may be due to the adoption of short
run test. Of course, when long time is allowed, this restarting mechanism may be use-
ful for MMAS as well as DMMAS. In fact, it is profitable to execute several short
runs of MMAS than running a single long run in the same whole computation time
(Stützle 1998).

5 Improving DMMAS with local search

It is known that the coupling of ACO and local search can effectively improve the
performance of the pure ACO. In fact, ACO performs a rather coarse-grained search,
and then the solutions constructed can be locally optimized by an adequate local
search procedure (Dorigo and Stützle 2002).

The local search procedure we proposed is a deterministic procedure. The main
idea is to replace each selected object with every two unselected objects, until the
replacement with the highest gain is determined. Consequently, at most one selected
object is replaced by at most two unselected objects.

The idea of adding an improvement phase to ACO has been widely exploited
before (e.g. Blum and Blesa 2005; Levine and Ducatelle 2004; Maniezzo and Colorni



An ant colony optimization approach for the multidimensional 75

1999; Solnon 2002). The drawback of this approach is that using local search results
in a very slow algorithm. We can speed up the local search procedure by sorting
the objects in decreasing order of profit. This can be explained as follows: when to
determine the second unselected object, if the current gain is less than the highest
gain obtained so far, then it is unnecessary to try the remaining objects.

6 Experimental study

The algorithm proposed in this paper was coded in C++ and run on a 2.8 GHZ Pen-
tium IV processor. The benchmark instances for evaluating DMMAS and local search
procedure are taken from Chu and Beasley (1998).1 Each instance is identified by no-
tation m.n.z, where m and n are the number of constraints and objects respectively,
z is a label that differentiates between instances with the same number constraints and
objects. As suggested in Stützle and Hoos (2000), a dynamic mixed strategy which
increases the frequency of using sgb was adopted for pheromone update: Let f gb in-
dicate that every f gb cycles sgb is used to update pheromone trails. For the first 9
cycles, we set f gb = 3, for cycles 10 to 24 we set f gb = 2, and from cycle 25 on
f gb = 1. The initial value of pheromone trails was set to some arbitrarily high value.
50 independent runs were carried out on each instance.

6.1 Parameters setting

Like Leguizamon and Michalewicz (1999), DMMAS stops iterating when ants have
constructed 10000 solutions. We have studied the influence of seven parameters based
on experimental results. The default value of each parameter was na = 50, α = 1,
β = 20, ρ = 0.95, γ = 8, λ = 2, Pbest = 0.9. In each experiment only one of the
parameter values was changed. The values tested were: na ∈ {10,20,50,100}, α ∈
{0.5,1,2,4}, β ∈ {1,5,10,20,40}, ρ ∈ {0.7,0.8,0.9,0.95,0.98}, γ ∈ {2,4,8,16},
λ ∈ {1.5,2,2.5,3}, Pbest ∈ {0.6,0.7,0.8,0.9}. We used problem 10.100.00 as an ex-
ample. Figure 3 summarizes the results. For each parameter value, there is a sample
of 50 profits. The data is represented in box plot format.

The number of ants was set to 50. With smaller values, solution quality is often
decreased. As na increases, more candidate solutions can be constructed at each cycle
and the best profit obtained at each run is usually better. However, since the maximum
number of solution construction is fixed, solution quality is decreased when na is set
to a very large number. This may be due to little cooperation between ants.

It can be seen that solution quality is more sensitive to β than to α. DMMAS works
better when a relatively high value is chosen for β . However, with a very large value
(e.g., 40), the ants aggressively select these objects with higher heuristic information,
and the efficiency of the algorithm is reduced. When β = 20, a good value of α is 1.
As α increases or decreases, the performance of DMMAS decreases.

The pheromone persistence ρ determines the rate of pheromone evaporation.
The best results were obtained when ρ was set to 0.95. With smaller values, the

1http://people.brunel.ac.uk/~mastjjb/jeb/info.html.

http://people.brunel.ac.uk/~mastjjb/jeb/info.html.
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Fig. 3 Box plots for the sensitivity analysis of seven parameters for instance 10.100.00. Performance sta-
tistics for each parameter value are based on results from 50 runs. The default value of each parameter
was: na = 50, α = 1, β = 20, ρ = 0.95, γ = 8, λ = 2, Pbest = 0.9. In each experiment only one of the val-
ues was changed. The values tested were: na ∈ {10,20,50,100}, α ∈ {0.5,1,2,4}, β ∈ {1,5,10,20,40},
ρ ∈ {0.7,0.8,0.9,0.95,0.98}, γ ∈ {2,4,8,16}, λ ∈ {1.5,2,2.5,3}, Pbest ∈ {0.6,0.7,0.8,0.9}

pheromone trails evaporate faster. As a result, the search concentrates earlier around
the best solutions. While with larger values of ρ (e.g., 0.98), the pheromone trails
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of the objects which are not reinforced decreases slowly, and hence, more cycles are
required to make ants exploit the best solutions.

γ , λ, Pbest have an influence on the lower trail limit τmin. As suggested in Sect. 4.2,
γ or λ should be set to a low value. When γ or λ is larger, τmin will increase faster.
In this case, the performance of DMMAS is lower. With different values of Pbest,
the differences between solution quality are not significant. When Pbest = 0.9, the
performance is slightly better.

We also used the Wilcoxon rank sum test to determine whether the observed dif-
ferences are significant at the 0.05 level. The statistical results show the default values
are not worse than the other considered values.

6.2 The performance of DMMAS

To study the performance of DMMAS, we applied it to twenty-five instances. The
first ten instances have 100 objects and 5 constraints, the second ten have 100 objects
and 10 constraints, and the last five have 500 objects and 5 constraints.

We first compared the dynamic method with the SH method. When the SH method
is used to select the lower trail limit, we observed that a good value of Pbest is 0.05.
Table 1 shows the results. For each instance, the best and average total profits as
well as standard deviations are given. More discussion on performance assessment of
stochastic algorithms is available in Birattari and Dorigo (2007). The best result for
each instance was in boldface. It can be seen that the dynamic method can provide
better results on 21 instances. Nevertheless, when the SH method is used, the results
may be improved by fine-tuning the parameters to each individual instances. So far
many research efforts have been devoted to parameter configuration, the interested
reader is referred to Adenso-Diaz and Laguna (2006), Birattari et al. (2002), Birattari
(2004), Hutter et al. (2007). Since the dynamic method is easy to implement and can
make ants have very nice search capability, we focus on this method hereafter.

Then we compared DMMAS with other ACO-based algorithms. Since the re-
sults of Fidanova (2002) are inferior to those of Alaya et al. (2004), Leguizamon
and Michalewicz (1999), we only report the results of the latter two algorithms.
The results are summarized in Table 2. ACOLM gives the results in Leguizamon and
Michalewicz (1999), Ant-knapsack gives the results in Alaya et al. (2004). Since the
standard deviations of ACOLM are unavailable, only the best and average total prof-
its are given. For other algorithms, the best and average profits as well as standard
deviations are given. The best result for each instance was in boldface.

One can notice that DMMAS provides the best results and Ant-knapsack is better
than ACOLM. Moreover, the numbers of solution constructions of these algorithms
are 10.000, 60.000, and 10.000 respectively. Thus DMMAS can obtain the best solu-
tions rapidly.

6.3 The performance of the hybrid DMMAS

We now studied the performance of the hybrid DMMAS, denoted as DMMAS+ls,
which combines DMMAS and the local search procedure proposed in Sect. 5. DM-
MAS+ls works as follows: at each cycle, once each ant has constructed a solution,
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Table 1 Comparison of the SH method with the dynamic method on 25 instances. The first ten instances
have 100 objects and 5 constraints, the second ten have 100 objects and 10 constraints, and the last five
have 500 objects and 5 constraints

The SH method The dynamic method

Instance Best knowna Best Averageb Std. dev. Best Average Std. dev.

5.100.00 24381 24381 24354 26.1 24381 24362 23.8

5.100.01 24274 24274 24268 15.9 24274 24273 6.2

5.100.02 23551 23551 23531 8.5 23551 23540 7.2

5.100.03 23534 23534 23477 13.1 23534 23482 14.9

5.100.04 23991 23991 23957 13.3 23991 23954 10.8

5.100.05 24613 24613 24603 5.0 24613 24608 6.3

5.100.06 25591 25591 25559 35.2 25591 25591 0.0

5.100.07 23410 23410 23403 15.1 23410 23404 13.3

5.100.08 24216 24216 24212 8.5 24216 24211 5.9

5.100.09 24411 24411 24392 30.9 24411 24406 13.8

10.100.00 23064 23064 23037 26.4 23064 23045 19.6

10.100.01 22801 22801 22741 34.1 22801 22742 40.8

10.100.02 22131 22131 22078 31.6 22131 22091 29.8

10.100.03 22772 22772 22711 44.4 22772 22710 37.6

10.100.04 22751 22751 22606 33.9 22751 22617 43.9

10.100.05 22777 22777 22647 38.7 22777 22663 40.3

10.100.06 21875 21875 21794 49.7 21875 21826 28.4

10.100.07 22635 22635 22542 27.0 22635 22557 31.0

10.100.08 22511 22438 22396 14.8 22438 22409 17.3

10.100.09 22702 22702 22690 41.4 22702 22696 32.7

5.500.00 120134 120094 120039 23.5 120116 120043 31.2

5.500.01 117864 117840 117779 34.6 117854 117777 33.3

5.500.02 121112 121095 121021 28.9 121102 121023 35.4

5.500.03 120804 120772 120707 33.6 120778 120707 32.6

5.500.04 122319 122311 122241 30.6 122319 122249 32.1

aThe best known results of the first twenty instances are given in Chu and Beasley (1998), and the others
are given in Vasquez and Hao (2001)
bAll average total profits are rounded off

and before updating pheromone trails, the local search procedure is applied to im-
prove each constructed solution. The largest instances in Chu and Beasley (1998)
were used as benchmark problems. They consist of 90 instances with 500 objects and
the number of constraints varies from 5 to 30. There are 30 instances in each group
which is denoted by m.n. The termination condition was a given time limit. When
DMMAS+ls was applied to 5.500, 10.500 and 30.500, the time limits were 100s,
200s and 400s respectively. These values were predetermined based on the criterion
that DMMAS+ls can converge satisfactorily.
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Table 2 Comparison of DMMAS with two ACO-based algorithms on 25 instances. The first ten instances
have 100 objects and 5 constraints, the second ten have 100 objects and 10 constraints, and the last five
have 500 objects and 5 constraintsa

Instance Best Knownb DMMAS Ant-knapsack ACOLM

Best Averagec Std. dev. Best Average Std. dev. Best Average

5.100.00 24381 24381 24362 23.8 24381 24342 29.3 24381 24331

5.100.01 24274 24274 24273 6.2 24274 24247 38.5 24274 24246

5.100.02 23551 23551 23540 7.2 23551 23529 8.0 23551 23528

5.100.03 23534 23534 23482 14.9 23534 23462 32.6 23527 23463

5.100.04 23991 23991 23954 10.8 23991 23946 31.8 23991 23950

5.100.05 24613 24613 24608 6.3 24613 24587 31.3 24613 24563

5.100.06 25591 25591 25591 0.0 25591 25512 43.8 25591 25505

5.100.07 23410 23410 23404 13.3 23410 23371 30.3 23410 23362

5.100.08 24216 24216 24211 5.9 24216 24172 32.9 24204 24173

5.100.09 24411 24411 24406 13.8 24411 24356 44.3 24411 24326

10.100.00 23064 23064 23045 19.6 23064 23016 42.2 23057 22996

10.100.01 22801 22801 22742 40.8 22801 22714 67.2 22801 22672

10.100.02 22131 22131 22091 29.8 22131 22034 66.9 22131 21980

10.100.03 22772 22772 22710 37.6 22717 22634 60.6 22772 22631

10.100.04 22751 22751 22617 43.9 22654 22547 66.3 22654 22578

10.100.05 22777 22777 22663 40.3 22716 22602 63.3 22652 22565

10.100.06 21875 21875 21826 28.4 21875 21777 44.9 21875 21758

10.100.07 22635 22635 22557 31.0 22551 22453 89.2 22551 22519

10.100.08 22511 22438 22409 17.3 22511 22351 69.4 22418 22292

10.100.09 22702 22702 22696 32.7 22702 22591 88.5 22702 22588

5.500.00 120134 120116 120043 31.2 119893 119658 135.8 N.A.d N.A.

5.500.01 117864 117854 117777 33.3 117604 117423 130.4 N.A. N.A.

5.500.02 121112 121102 121023 35.4 120846 120622 121.4 N.A. N.A.

5.500.03 120804 120778 120707 32.6 120534 120279 152.3 N.A. N.A.

5.500.04 122319 122319 122249 32.1 122126 121829 135.2 N.A. N.A.

aThe standard deviation of ACOLM is not available

bThe best known results of the first twenty instances are given in Chu and Beasley (1998), and the others
are given in Vasquez and Hao (2001)
cAll average total profits are rounded off

dN.A.: not available

At first, we evaluated the influence of the local search. Table 3 summaries the
results of DMMAS and DMMAS+ls. According to the results, it is clear that the
local search can effectively improve the performance of the pure ACO. In addition,
pheromone trails have an important influence on the hybrid DMMAS. Guided by
pheromone trails (where α = 1), ants can construct better solutions for the local
search procedure.
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Table 3 Comparison of DMMAS+ls with DMMAS on thirty instances. The instances have 500 objects
and 5 constraints. For each instance, the best and average total profits as well as standard deviation (std.
dev.) are reporteda (over 50 runs)

Instance DMMAS+ls (α = 1) DMMAS+ls (α = 0) DMMAS

Best Average Std. dev. Best Average Std. dev. Best Average Std. dev.

5.500.00 120148 120111 17.3 119860 119648 67.1 120116 120056 25.5

5.500.01 117879 117841 13.7 117494 117360 59.1 117857 117786 27.9

5.500.02 121131 121097 17.7 120708 120526 54.1 121109 121043 27.2

5.500.03 120804 120776 11.3 120473 120293 48.6 120785 120715 24.1

5.500.04 122319 122303 16.3 121988 121812 53.8 122319 122254 29.8

5.500.05 122024 121991 14.8 121695 121562 47.2 121992 121936 23.6

5.500.06 119127 119093 12.6 118735 118614 46.7 119096 119043 26.4

5.500.07 120568 120525 20.0 120209 120121 48.0 120536 120472 27.6

5.500.08 121575 121537 14.4 121095 120961 51.3 121551 121479 31.9

5.500.09 120717 120678 17.9 120334 120192 53.3 120692 120627 25.7

5.500.10 218428 218397 12.9 218111 217943 54.3 218400 218344 28.1

5.500.11 221202 221168 15.5 220808 220668 47.7 221191 221117 30.9

5.500.12 217534 217513 13.4 217150 217039 55.9 217528 217459 30.9

5.500.13 223560 223547 11.0 223236 223136 39.6 223560 223499 24.6

5.500.14 218966 218956 11.1 218675 218528 52.4 218962 218905 25.9

5.500.15 220530 220497 14.1 220228 220132 45.9 220496 220455 17.2

5.500.16 219989 219974 15.8 219632 219519 46.6 219987 219924 31.5

5.500.17 218194 218171 10.9 217848 217758 47.7 218180 218124 25.8

5.500.18 216963 216948 11.2 216634 216551 44.1 216958 216904 28.6

5.500.19 219719 219694 8.0 219367 219188 49.4 219704 219657 20.6

5.500.20 295828 295809 13.9 295628 295485 42.3 295828 295764 20.9

5.500.21 308086 308069 9.7 307893 307805 32.7 308077 308023 25.6

5.500.22 299796 299781 13.0 299620 299527 36.4 299796 299738 16.5

5.500.23 306480 306467 9.0 306338 306238 31.1 306480 306427 27.5

5.500.24 300342 300334 11.2 300175 300076 29.7 300334 300280 22.2

5.500.25 302571 302556 7.6 302421 302327 37.9 302560 302525 19.7

5.500.26 301329 301317 7.9 301157 301082 36.0 301325 301278 26.7

5.500.27 306454 306426 8.5 306269 306200 26.2 306422 306388 20.4

5.500.28 302828 302810 13.5 302671 302566 39.3 302809 302765 22.1

5.500.29 299906 299894 9.1 299756 299656 38.0 299902 299845 23.8

aAll average total profits are rounded off

Finally, we compared DMMAS+ls with two heuristic approaches which are
among the best performing algorithms for MKP. The one is GA in Chu and Beasley
(1998), which incorporates the standard genetic algorithm with a heuristic operator.
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Table 4 The average total profits of DMMAS+ls, GA and z∗ on 90 largest instancesa

Group Tightness ratio DMMAS+ls GA z∗

5.500 0.25 120629 120616 120623

5.500 0.5 219509 219503 219507

5.500 0.75 302362 302355 302360

10.500 0.25 118603 118566 118600

10.500 0.5 217309 217275 217298

10.500 0.75 302588 302556 302575

30.500 0.25 115541 115470 115547

30.500 0.5 216223 216187 216211

30.500 0.75 302406 302353 302404

aAll averages are rounded off

The other is z∗ in Vasquez and Hao (2001), which combines the linear programming
with tabu search.

Table 4 shows the results of these algorithms. The second column in Table 4 indi-
cates the tightness ratios (Chu and Beasley 1998). Since only the best total profits of
GA and z∗ are available, we report the best total profits of DMMAS+ls (see details
in Appendix). It can be seen that DMMAS+ls outperforms GA. Compared with z∗,
DMMAS+ls obtains better results in 8 out of 9 groups. With regard to CPU time,
DMMAS+ls can deal with each instance within 400s. Therefore DMMAS+ls can
obtain promising solutions within a reasonable amount of computation time.

7 Conclusions

In this paper, we have proposed an algorithm based on ACO, called DMMAS and
applied to the MKP. DMMAS differs from the standard ACO in many components
due to the characteristics of the MKP. A problem-dependent pheromone trail and
heuristic information were defined. We also proposed a method to choose the lower
trail limit. Additionally, we presented a hybrid algorithm which combines DMMAS
with a local search procedure.

We compared DMMAS with three ACO based algorithms. The comparison shows
that DMMAS is superior to those algorithms. We also applied our hybrid algorithm to
the benchmark problems and compared with two promising hybrid algorithms. The
results demonstrate that our hybrid algorithm is competitive.

Although the method of choosing the lower trail limit is motivated by the MKP, it
can be applied to other subset problems. In addition, since machine learning provides
an alternative and promising approach in tuning ACO (Birattari et al. 2002; Birattari
2004), we will further study this interesting direction.
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Appendix

Tables 5 and 6:

Table 5 Best total profits of the instances with 500 objects and 10 constraints

Instance Best Instance Best Instance Best

10.500.00 117784 10.500.10 217353 10.500.20 304353

10.500.01 119198 10.500.11 219041 10.500.21 302371

10.500.02 119196 10.500.12 217797 10.500.22 302416

10.500.03 118813 10.500.13 216868 10.500.23 300757

10.500.04 116487 10.500.14 213816 10.500.24 304367

10.500.05 119454 10.500.15 215086 10.500.25 301796

10.500.06 119813 10.500.16 217931 10.500.26 304949

10.500.07 118312 10.500.17 219984 10.500.27 296450

10.500.08 117779 10.500.18 214346 10.500.28 301331

10.500.09 119197 10.500.19 220865 10.500.29 307089

Table 6 Best total profits of the instances with 500 objects and 30 constraints

Instance Best Instance Best Instance Best

30.500.00 115942 30.500.10 218034 30.500.20 301643

30.500.01 114732 30.500.11 214626 30.500.21 300014

30.500.02 116613 30.500.12 215903 30.500.22 305062

30.500.03 115263 30.500.13 217862 30.500.23 302001

30.500.04 116487 30.500.14 215622 30.500.24 304416

30.500.05 115734 30.500.15 215829 30.500.25 296962

30.500.06 114107 30.500.16 215883 30.500.26 303328

30.500.07 114252 30.500.17 216448 30.500.27 306944

30.500.08 115271 30.500.18 217333 30.500.28 303158

30.500.09 117011 30.500.19 214690 30.500.29 300531
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