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Abstract

The multidimensional 0–1 knapsack problem is one of the most well-known integer programming problems and has

received wide attention from the operational research community during the last four decades. Although recent ad-

vances have made possible the solution of medium size instances, solving this NP-hard problem remains a very in-

teresting challenge, especially when the number of constraints increases. This paper surveys the main results published

in the literature. The focus is on the theoretical properties as well as approximate or exact solutions of this special 0–1

program.
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1. Introduction

The multidimensional 0–1 knapsack problem

(MKP) is a special case of general linear 0–1 pro-

grams. Several names have been mentioned in the

literature for the MKP: m-dimensional knapsack

problem, multidimensional knapsack problem,

multiknapsack problem, multiconstraint 0–1

knapsack problem, etc. . .We choose to refer to the

name coined first by Weingartner and Ness [184],
which means without ambiguity that MKP is a
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generalization of the standard 0–1 knapsack

problem ðm ¼ 1Þ.
Historically, the first examples have been ex-

hibited by Lorie and Savage [120] and by Manne

and Markowitz [126] as a capital budgeting model.

Basically, the MKP is a resource allocation model

which can be stated as

max z ¼
Xn
j¼1

cjxj

s:t:
Xn
j¼1

aijxj 6 bi; i 2 M ¼ f1; 2; . . . ;mg; ð1Þ

xj 2 f0; 1g; j 2 N ¼ f1; 2; . . . ; ng; ð2Þ

where n is the number of items and m is the

number of knapsack constraints with capacities bi
ed.
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ði ¼ 1; 2; . . . ;mÞ. Each item j 2 N requires aij units
of resource consumption in the ith knapsack

ði ¼ 1; 2; . . . ;mÞ and yields cj units of profit upon

inclusion. The goal is to find a subset of items that

yields maximum profit without exceeding the re-

source capacities. By its nature, all entries are

nonnegative. More precisely, it can be assumed,

without loss of generality, that cj > 0, bi > 0,
06 aij 6 bi and

Pn
j¼1 aij > bi for all j 2 N and for

all i 2 M (since otherwise some or all of the vari-

ables can fixed to 0 or 1). Moreover, any MKP

having at least one of these entries aij equal to 0,

can be replaced by an equivalent MKP with pos-

itive entries, i.e. both problems have the same

feasible solutions.

The MKP is one of the most well-known con-

strained integer programming problem, and the

large domain of its applications has greatly con-

tributed to its fame. Following the seminal paper

of Lorie and Savage [120], MKP modeling has

been investigated intensively in capital budgeting

and project selection applications [135,146,183].

Recently, Meier et al. [137] investigated more re-

alistic approaches combining capital budgeting

models with novel, real techniques for project

evaluation. One of their contributions was to

propose a new scenario-based capital budgeting

model which includes the MKP as a subproblem

coupled with generalized upper bound (GUB)

constraints. Beaujon et al. [19] also reported a MIP

formulation designed to select projects for inclu-

sion in a R&D portfolio, this model taking the

form of a MKP with other generalized constraints.

Capital budgeting appeared to be an on-going

management challenge for not-for-profits hospitals

and multihospital healthcare systems in the United

States. In this context, a financially oriented capi-

tal budgeting framework is developed in [108]

which uses a MKP formulation. The MKP has

been also introduced to model problems including

cutting stock [70], loading problems [20,165], in-

vestment policy for the tourism sector of a devel-

oping country [65], allocation of databases and

processors in a distributed data processing [63],

delivery of groceries in vehicles with multiple

compartments [25] and approval voting [170].

More recently, the MKP has been used to model

the daily management of a remote sensing satellite
like SPOT, which consisted in deciding every day
what photographs will be attempted the next day

[179].

The MKP is also a subproblem of many general

integer programs. By example, the solution of

multicommodity network optimization problems

with general step cost functions led to solve at each

iteration a subproblem which can be converted

into a MKP coupled with multiple choice con-
straints [62]. Moreover, the multiknapsack struc-

ture �naturally� appeared in several interesting

extensions of the MKP. In capital budgeting with

multiple criteria and multiple decision makers, the

use of both an analytical hierarchy process and an

integer programming framework led to a two-

phases method in which the second phase need to

solve a MKP instance [112]. Cappanera and Tru-
bian [24] introduced another interesting extension

of the MKP, in which there are greater-than-equal

inequalities, called demand constraints, besides the

standard knapsack constraints, and the objective

function coefficients are not constrained in sign.

According to the fact that identifying feasible so-

lutions is a hard task in this case, they proposed a

two-stage tabu search based procedure which did
not really take into account the underlying MKP

structure.

In mathematical programming studies, the bi-

dimensional case of the MKP appeared as a

promising subproblem. This model was encoun-

tered with a polyhedral approach when ð1; kÞ-
configurations were used to enforce LP-bounds

[3,145], and also in Lagrangean decomposition
techniques, where each knapsack-like constraint

can be associated with GUB constraint, or a

cardinality constraint related to the variables fixed

at 1 in any optimal solution, to strengthen dual

upper bounds [59,133].

Finally, the renewed interest in the research

community in computational integer program-

ming has intensified, during the last decades, the
use of MKP benchmarks. On the one hand the

nonnegativeness and the density of the constraint

matrix A, on the other hand the nonexistence of

special constraints such as generalized upper

bounds, special-ordered sets and plant-location

constraints, distinguish this problem from the 0–1

linear programming problem. These hypotheses
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are fundamental because it has been shown that
the existence of special constraints is essential to

derive efficient methods for solving large-scale 0–1

linear problems (see for example [43]). Hence,

suitable numerical experiments for testing any new

approach to solve pure 0–1 linear programs cannot

get away from it.

Previous surveys on the MKP can be found in

Gavish and Pirkul [64], Fr�eeville [52], Fr�eeville and
Plateau [59], Chu and Beasley [28] and Osorio et al.

[144]. In this paper, we give a broader insight into

the main results published in the literature with

emphasis on recent publications. Section 2 pre-

sents exact methods and reduction techniques. We

also discuss testing and implementation issues.

Section 3 discusses theoretical results. In Section 4,

we review heuristics for finding feasible solutions.
2. Exact methods

It is instructive to recall the history of the de-

velopment of exact methods at the same time for

the MKP and the single constraint version. The

0–1 knapsack problem has aroused great interest
in the research community. The development of

exact algorithms began several decades ago. The

early effective procedures emerged in the 1980s

[11,47,131]. They preceded a variety of solution

methods including dynamic programming and its

variants, a branch-and-bound network approach

as well as special enumeration technique and re-

duction schemes. In their famous book [132],
Martello and Toth reported experiments with al-

gorithm MT2 solving uncorrelated and weakly

correlated instances with up to more than 100,000

variables. Several recent and significant advances

tackle the case of strongly correlated instances

which remained very difficult to solve. These new

approaches involve the hybridization of dynamic

programming and branch-and-bound [153], the
use of expanding core subproblem [149] and upper

bounds obtained by adding valid inequalities on

the cardinality of an optimal solution constraint

[133], the combination of a new dynamic pro-

gramming recursion and an additional cardinality

constraint [134,150] and can effectively solve large

problems of these type as well as other hard
classes. Besides, several effective special-purpose
codes are available to practitioners and researchers

of the operations research community (by example

among others FPK79 [47], MT2 and MTR [132],

COMBO [134]).

2.1. Review

Though the MKP is a straightforward gener-
alization of the single case, the situation is quite

different when several constraints are taken into

account. The development of exact algorithms for

the MKP began during the sixties. Gilmore and

Gomory [70] gave one of the early references

which outlines a dynamic programming algorithm.

Always within the dynamic programming stream,

Green [80] proposed extensions to the method of
Gilmore and Gomory, and Weingartner and Ness

[184] developed another approach embedding

heuristics. Marsten and Morin [128–130] com-

bined dynamic programming and branch-and-

bound approaches for solving the MKP, including

among others the introduction of low time con-

suming heuristics and LP bounds. The elimination

of irrelevant states during the dynamic program-
ming computation has been also investigated by

Ibaraki [94] and Isaka [98]. These hybrid methods

enhance the basic dynamic programming ap-

proach and bring out interesting new ideas.

However, due to the excessive space requirements

as the single constraint case, instances can be

solved only for small values of n and the capacities

bi. Consequently, neither of them are an effective
self-containing solution for the MKP.

Other special approaches have tried to take

advantage of the special structure of the MKP.

Cabot [23] suggested an enumeration technique

based on the Fourier–Motzkin elimination method

and Thesen [174] presented a recursive branch and

bound algorithm. Unfortunately, both methods

have produced only scanty results. Soyster et al.
[167] obtained a little bit more significant results

with an iterative scheme. Starting with the solution

of the LP relaxation, the basic variables are fixed

to their values 0 or 1 and the remaining subprob-

lem corresponding to the fractional variables is

solved through implicit enumeration. If the fea-

sible solution is not proved to be optimal, a
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disjunctive cut is added, which cuts off the current
feasible solution and allows to strengthen the next

LP-relaxation. However, convergence occurs only

when the duality gap is small, because of numeri-

cal instability.

The seminal papers of Balas [6] and Glover [71]

started the development of implicit enumeration

techniques to solve 0–1 linear programs (see also

[7,68]). Lemke and Spielberg [116], Trauth and
Woolsey [178] and Breu and Burdet [22] investi-

gated among others the computational effective-

ness of several optimizing 0–1 codes based on these

techniques. The ability of these methods for solv-

ing MKP instances exactly remained rather lim-

ited. By example, Wyman [185] formulated

decision rules for choosing between optimal and

heuristic algorithms by comparing a specific-pur-
pose greedy heuristic with the code RIP30C

[69,163]. This optimizing 0–1 code adds the fea-

tures of surrogate constraints and an embedded

linear program to accelerate the implicit enumer-

ation method of Balas [6]. The reported results

concerned randomly generated and uncorrelated

MKP instances with a size which does not exceed

45 variables and 30 constraints. So far, implicit
enumeration based branch-and-bound methods

have not been competitive with other more sig-

nificant approaches discussed further on.

Shih [165] designed the first linear program-

ming-based branch and bound method which

takes advantage of the special structure of the

MKP. The estimation of an upper bound and the

branching rule at any node are based on the in-
formation provided by the solutions of the LP

relaxations associated to each of the m single-

constraint knapsack problems. Shih reported

computational experiments with a group of thirty

randomly generated and uncorrelated problems

with 5 constraints and 30–90 variables, and

showed that the solution time of the improved

Balas algorithm can be reduced by a factor ten in
this way. The main drawbacks of this approach

are first its excessive space requirements, second its

inability to solve problems with tight resource

constraints [64].

Lagrangean and surrogate relaxation based

branch-and-bound methods have also been devel-

oped, but with varying results. Crama and Maz-
zola [30] gave an important result on the
improvement in the bound that can be realized

with these relaxations. They showed that for any

k, l 2 Rm
þ, the composite relaxation introduced

by Greenberg and Pierskalla [71]:

zCRðk; lÞ

¼
X
i2M

kibi þmax
X
j2N

cj

 (
�
X
i2M

kiaij

!
xj

�����
�
X
j2N

X
i2M

liaij

 !
xj 6

X
i2M

libi;

xj 2 f0; 1g; j 2 N

)

is such that zLP �maxj2N fcjg6 zCRðk; lÞ and
1
2
zLP 6 zCRðk; lÞ. This result states that the com-

posite dual, and consequently the Lagrangean dual

(with more than m� 1 relaxed constraints) and the

surrogate dual, cannot improve upon the bound

zLP obtained from the LP relaxation by more than
cmax, the largest objective-function coefficient.

Early investigations with Lagrangean multipli-

ers in solving the MKP began with the paper of

Lorie and Savage [120]. They proposed a kind of

Lagrangean heuristic for 0–1 integer program-

ming, in which all of the constraints were relaxed

in the objective function. Their approach was later

formalized by Everett [44] and extended by Kaplan
[101]. Nemhauser and Ullman [140] showed that

with respect to this relaxation, the problem of

finding an optimal set of multipliers is equivalent

to solving the dual of the LP relaxation. Stimu-

lated by the successful application of lagrangean

duality in solving structured combinatorial opti-

mization problem [90,91], Etcheberry et al. [42]

reported numerical experiments with two Petersen
test problems [146] of small size by using an im-

plicit enumeration approach where Lagrangean

relaxation and subgradient optimization replaced

linear programming. Barcia [12] and Barcia and

Holm [13] presented an iterative algorithm, called

�Bound Improving Sequence Algorithm�, based on

Lagrangean relaxation. A decreasing sequence of

upper bounds on the optimal value z� is generated
by adding cuts cx6UB, where UB is an upper

bound of z�. The main drawback of this approach
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is that several very hard subset-sum problems need
to be solved exactly to ensure finite convergence.

In conclusion, even if elegant results and effective

algorithms have emerged with Lagrangean duality

for solving both 0–1 linear programs, particularly

for problems for which the duality gap is very

small or null, and 0–1 knapsack problems, by

adding valid inequalities on the cardinality of an

optimal solution and relaxing it in a Lagrangean
fashion, it seems that a Lagrangean relaxation

framework is not appropriate to tackle the simple

and homogeneous structure of the MKP.

The surrogate strategy introduced by Glover

[71] replaces the original constraints by a single

new one, called a surrogate constraint. Greenberg

and Pierskalla [81] provided the first major treat-

ment of surrogate constraints in the context of
general mathematical programming. The studies

by Glover [72,73], Karwan and Rardin [102] and

Dyer [38] complete the bulk of the research done in

this area. Search procedures to find surrogate and

composite multipliers were proposed by Karwan

and Rardin [102–104], Karwan et al. [105], Dyer

[38] and Glover [76] for general integer programs.

Specific procedures were designed for the bidi-
mensional 0–1 knapsack problem [53,58,85], able

to find the optimal dual solution within a finite

number of iterations, practically independent of

the number of variables.

Although more effort is typically required to

calculate the bounds, surrogate relaxations appear

more useful for solving the MKP than Lagrangean

relaxation. Gavish and Pirkul [64] developed a
branch-and-bound procedure embbeding new

approximate algorithms for obtaining surrogate

bounds and rules for reducing problem size. As a

matter of fact, they used a LP relaxation of the

surrogate dual to avoid the solving of 0–1 knap-

sack problems and to lead to low solution times. In

this way the LP bound was not improved, but

attractive results were obtained. More precisely,
they showed that their method was significantly

faster than Shih�s method and a general integer

programming package called Sciconic/VM [17] by

testing a group of problems with size up to 80

variables and 7 constraints. Sikorski [166] reported

also numerical experiments with a branch-and-

bound method based on surrogate duality. Fr�eeville
and Plateau [60] investigated the use of integer
surrogate relaxations for solving the more simple

case m ¼ 2. Particularly, a specific and efficient

preprocessing phase is designed, completed with

an enumerative phase if needed. Computational

experiments with several sets of randomly gener-

ated and correlated instances up to n ¼ 750

showed that the procedure compares favorably

with Gavish and Pirkul procedure and can provide
for the bidimensional case a competitive alterna-

tive to LP-based strategies.

Constraint programming techniques integrated

into integer programming is in an on-going re-

search phase for solving mixed-integer program-

ming problems. Preliminary work by Oliva et al.

[143] in the context of MKP deals with the use of

reduced costs to identify a set of constraints
among which at least one must be satisfied to find

a better solution than the current one. A constraint

programming solver uses these new constraints to

enhance the exploration of each node of the

branch-and-bound search tree developed by

CPLEX by reducing the feasible domain. Numer-

ical results, reported in the bi-dimensional case on

medium size (n up to 100), show both a decreasing
number of explored nodes and an increasing CPU

time. It is too early to make comments about the

potential of such an approach. However, these

results remain moderate and much more work

must be done to assert the efficiency of constraint

programming.

2.2. Commercial softwares and data sets

The best success for solving the MKP has been

obtained recently with branch-and-cut algorithms

embedding effective preprocessing. Moreover,

widely used solvers including CPLEX [29], OSL

[97] and XPRESS-MP [33] are available as well as

systems such as MINTO [139] which have been

built to provide an easier-to-use interface for the
development of a special-purpose optimizer (see

[100] for a comprehensive exposition). Although

many impressive results have been obtained in the

last decade for solving problems with thousands of

integer variables or even more, it seems that the

MKP remains rather difficult to handle when an

optimal solution is wanted.
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A common approach to study the efficiency of
an approximate or exact method is to compare its

performances with other optimizers on standard

sets of test problems. The OR-Library [18], created

by Beasley in 1990, 1 is a collection of integer

programs that contains, among others, MKPs.

The first set is compose of 56 small and uncorre-

lated instances, collected from earlier papers by

Fr�eeville and Plateau [56] and consisting of m ¼ 2–
30 and n ¼ 6–105. This set is easy to solve. A great

part of the optimal solution were contained in the

early works of Shih [165] and Gavish and Pirkul

[64], and more recently, all the problems were

solved to optimality in less than 3 seconds of CPU

time by CPLEX v6.5.2. [144].

The second set is a collection of 270 more dif-

ficult instances [28], generated using the procedure
suggested by Fr�eeville and Plateau [59]. Several

experimental studies conducted with the single

constraint case [132,157,187] and the multidimen-

sional case [59,60] showed that correlation be-

tween the objective function and constraint

coefficients contributes to the problems hardness.

The constraint coefficients aij are drawn from the

uniform distribution Uð0; 1000Þ. The profit coeffi-
cients cj are correlated to aij and generated as

follows: cj ¼
P

i2M aij=mþ Kuj where uj is drawn

from the continuous uniform distribution Uð0; 1Þ
and K is the correlation value. The parameter K is

set to 500. Decreasing values of K increase the

correlation and consequently, degrade solution

procedure performance. The number of con-

straints was set to 5, 10 and 30, and the number of
variables was set to 100, 250 and 500. For each m–
n combination, thirty problems are generated and

the constraint capacities bi are set using the rela-

tion bi ¼ a
P

j2N aij where a is a tightness ratio:

a ¼ 0:25 for the first ten problems, a ¼ 0:50 for the
next ten problems and a ¼ 0:75 for the remaining

test problems. Osorio et al. [144] observed that

CPLEX v6.5.2., without modifying its default pa-
rameters, could solve only 95 instances to opti-

mality in less than 3 hours and a memory size of

250 Mb. As a matter of fact, it is important to
1 OR-Library is available at http://mscmga.ms.ic.ac.uk/info.

html.
notice that in the rest of the problems, CPLEX
usually terminated because the memory size was

exceeded by the tree expansion. However, even if

early termination occurs, CPLEX obtained lower

bounds of good quality. For example, the average

value is greater than the one obtained with the

genetic algorithm developed by Chu and Beasley

[28] within comparable CPU time requirements.

Following the empirical study in [92,113] of the
effects of constraints coefficient generation on the

performance of solution procedures, Osorio et al.

[144] proposed a somewhat different problem

generator. The constraint coefficients aij are drawn
from the exponential distribution: aij ¼ 1:0�
1000 logðUð0; 1ÞÞ. It has been also observed

[92,148] that the constraint slackness setting is a

very significant factor influencing the size of the
zLP � z� gap. Problems with tighter constraints

tend to have larger zLP � z� gap values and then

are more difficult to solve. A first set of 30 �difficult�
problems consisting of 100 variables and 5 con-

straints was generated with a tightness ratio equal

to 0.25. They observed that CPLEX v6.5.1 could

solve only 19 instances to optimality in less than 3

hours with 128 Mb in RAM. A second set con-
sisting of instances up to n ¼ 500, 5 constraints

and various tightness ratios leads to the same

conclusion, i.e. these problems cannot be solved in

a reasonable amount of CPU time and memory

with CPLEX v6.5.2.

Finally, two other data sets have been proposed

by Glover and Kochenberger [77]. 2 They are

correlated and uniform randomly generated. The
first set contains 24 fairly difficult problems in size

up to 500 variables and 25 constraints. Optimality

has been proved for the first seventeen instances.

The best known feasible solutions for the last se-

ven problems are given in Vasquez and Hao [180].

The second set includes still more difficult in-

stances with n up to 2500. As far as we know,

CPLEX cannot tackle these instances, even with
its last enhanced versions. Therefore, it appears

that the MKP continues to be a challenging

problem for commercial ILP solvers.
2 Available at http://hces.bus.olemiss.edu/tools.html/.

http://mscmga.ms.ic.ac.uk/info.html
http://mscmga.ms.ic.ac.uk/info.html
http://hces.bus.olemiss.edu/tools.html/
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2.3. Other implementation issues

As CPLEX is a general-purpose mixed integer

programming solver, enhanced versions of

CPLEX, or of any commercial solver, could be

created by embedding preprocessing tools which

held advantage of the special structure of the

MKP.
Preprocessing techniques play a fundamental

role in the development of efficient integer pro-

gramming methods. Basic techniques try, among

other things, to fix variables, to identify infeasi-

bility and constraint redundancy, to tighten the

LP-relaxation by modifying coefficients and by

generating strong valid inequalities. Savelsbergh

[160] gave a comprehensive survey of reduction
techniques for 0–1 and mixed integer program-

ming problems (see also [84,116]).

The seminal papers of Plateau [152] and Fayard

and Plateau [46] introduced the main ideas to re-

duce the size of MKP instances by fixing variables

and by eliminating redundant constraints. By ex-

ample, the fixation of variables for any instance P
needs the knowledge of a good lower bound zH ¼
cx associated with a feasible solution x, and lies on

the following basic property: for any j 2 f1; . . . ; ng
and for any e 2 f0; 1g, if zðP jxj ¼ eÞ6 zH then ei-

ther xj ¼ 1� e in any optimal solution of P , or

ðP jxj ¼ 1� e; cx > zH Þ has no feasible solution and

x is optimal. Then, by considering several La-

grangean and surrogate relaxations of the MKP,

more and more tigh upper bounds of ðP jxj ¼ eÞ are
computed with increasing complexity to achieve

the inequality zðP jxj ¼ eÞ6 zH . These rules ex-

tended the well-known fixing property based on

the reduced costs associated to the LP-relaxation.

Particularly, one of these rules brought into play

the additivity of the reduced costs coupled with the

set of preferred Lagrangean relaxations. These re-

duction rules have been tested intensively in order
to identify their capabilities, both in the general

case [59] and in the bi-dimensional case [60]. The

numerical results showed that the effectiveness of

this kind of size reduction fluctuated with the

structure of the instances. A small number of

constraints furthers the reduction effect, as well as

uncorrelated and randomly generated entries

generated with the uniform distribution.
A recent study developed a dynamic program-
ming based reduction framework in front of a

CPLEX [4]. Two sequences of upper and lower

bounds are generated by solving LP-relaxations

and by using dynamic programming respectively.

Their comparison allows either to prove that the

best feasible solution obtained is optimal, or to fix

a subset of variables to their optimal values.

Computational experiments with a large set of
large-scale instances showed that the reduction

framework is able to reduce the CPU time of

CPLEX v7.0. However, the procedure failed to

reduce the size in some cases, by example with the

difficult instances of Glover and Kochenberger

[77], but at least, good feasible solutions are ob-

tained very quickly.

The recent study by Osorio et al. [144] focused
on the generation of logic cuts, and also allowed to

fix variables to zero by using the above property

based on the reduced costs associated to the LP-

relaxation. Two types of logic cuts are generated

by hybriding surrogate analysis [78] and constraint

pairing [21]. Many numerical experiments are

conducted with the previous data sets and showed

that CPLEX v6.5 performed much better on av-
erage when augmented with this procedure, the

main progress being obtained thanks to the logic

cuts.

Parallelization of tree search algorithms has

received wide attention in the computer science

community, and has focused on scalable parallel

task scheduling and distribution strategies. Be-

sides, one can remark that specific developments
have been carried out for the MKP. Plateau and

Roucairol [154] and Mans [127] presented a par-

allel framework, including the search of an initial

feasible solution, size reduction based on the ad-

ditivity of the reduced costs, and a terminal

branch-and-bound phase. A linear speed up has

been obtained with randomly generated problems

and runs performed on a CRAY-2. However, no
impressive results have been reported in the liter-

ature as far as we know.

On the other hand, Johnson et al. [100] men-

tioned that parallel branch-and-cut and parallel

branch-and-price seem to have great potential in

mixed integer programming. This new research

area is certainly a promising way to treat MKP
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instances with a large number of variables and a
reasonable number of constraints.
3. Theoretical analysis

Besides numerical testing, theoretical analysis,

first helps us to understand the huge increase in

difficulty when moving from a single constraint to
more than two, and second, that uncorrelated in-

stances randomly generated with the uniform dis-

tribution are rather easy to solve.

3.1. Approximation algorithms

As the single case, the MKP is NP-hard but not

strongly NP-hard; indeed, no problem that is
strongly NP-complete can have a pseudo polyno-

mial algorithm unless P ¼ NP , and it is well-known

that dynamic programming provides for both

problems such schemes requiring at most

Oðn
Qm

i¼1 ðbi þ 1ÞÞ computation.

It is also well-known that polynomial approxi-

mation schemes exist for both cases m ¼ 1 and

m > 1. The first polynomial approximation scheme
is due to Shani [164] for the 0–1 knapsack prob-

lem. The case m > 1, with m considered to be a

fixed constant, was analysed by Chandra et al. [26]

with constraint (2) replaced by xj nonnegative in-

teger. Magazine and Oguz [123] extended their

method to the MKP. Frieze and Clarke [61] gave

an alternative approach, which is a straightfor-

ward extension of the idea of Shani. Moreover,
polynomial approximation schemes link with

worst-case analysis, which provides a guarantee on

the maximum amount that a heuristic algorithm

will deviate from optimality for any instance. The

worst-case performance ratio is the largest r
ð06 r6 1Þ for which zHðIÞ=z�ðIÞP r holds for any
instance I 2MKP, where zH ðIÞ denotes the value

provided by the heuristic algorithm H applied to
the instance I . This ratio is usually not predictive

of average performance.

Polynomial approximation scheme allows to

exhibit for the MKP polynomial time heuristic

algorithm for any r arbitrarily close to 1 [61,123].

As the single case, these methods involve partial

enumeration of subsets of items but greedy pack-
ing of items is replaced by LP-rounding. By ex-
ample, for any e > 0, the heuristic EðkÞ in [60] is

parametrized by an integer k ¼ minfn; dmð1�eÞe eg
and has a worst-case performance ratio of

r ¼ 1� e. For S � N ¼ f1; 2; . . . ; ng, let denote
T ðSÞ ¼ ft 2 N n Sjct > minfcjjj 2 Sgg and zbLPcðSÞ
the value of a LP-rounding solution of the MKP

of capacity b�
P

j2S A
j and restricted to the items

j 2 N n S [ T ðSÞ. The kth level partial enumeration

algorithm obtains a solution by solving

zEðkÞ ¼ max
X
j2S

cj

(
þ zbLPcðSÞj

X
j2S

aij 6 bi;

i ¼ 1; . . . ;m; jSj6 k

)

and the problem is solved by enumeration of all

sets S of cardinality k or less. If L is a measure of

the length of space needed to describe the problem,

the time complexity in the worst case is

Oðnkþ5L2 logðnLÞlog logðnLÞÞ if Khachian�s algo-
rithm is used to evaluate the value zEðkÞ.

For the 0–1 knapsack problem, Ibarra and Kim

[96] gave the first fully polynomial approximation

scheme based on dynamic programming tech-

niques, which runs in Oðn=e2 þ n log nÞ time, i.e. in

polynomial time both in the number of variables n
and in the inverse of the worst case performance

ratio e. Further improvements are found in
[114,123]. The main difference between the cases

m ¼ 1 and m > 1 emerges at this point. Unless

P ¼ NP , Gens and Levner [66] and Korte and

Schrader [110] have proven that no fully polyno-

mial approximation scheme exists as soon as the

number of constraints is greater than or equal to 2

(see also [122]). Hence this fundamental result

gives an insight into the increase in difficulties due
to the change of a single constraint by multiple

constraints.

3.2. Probabilistic analysis

A lot of papers have tackled the probablistic

analysis of the MKP during the 1990s. Most of the

results investigated the dependence of the solution

value z� on the constraint capacities bi and on the

number of variables n. Asymptotic but also ana-
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lytical results are given under various assumptions
on how the coefficients are generated.

An optimal basic solution �xx to the LP relaxation

(constraint (2) replaced by 06 xj 6 1, j 2 N ) has

at most m basic variables that are fractional.

Rounding down these values yields a feasible so-

lution b�xxc such that zLP � mcmax 6 zbLPc ¼ cb�xxc6
z�6 zLP. This LP-rounding heuristic performs usu-

ally poorly. However, if it is assumed that the
coefficients cj remain bounded as n is increasing,

the asymptotic equivalences z� � zbLPc ¼ OðnÞ 3

and zLP � z� ¼ OðnÞ follow easily. Frieze and

Clarke [61] studied more precisely the asymptotic

properties of the LP-rounding heuristic. When it is

assumed that all coefficients cj and aij are non-

negative real numbers drawn independently from

the uniform [0,1] distribution and bi ¼ 1 for i ¼
1; 2; . . . ;m, they showed that ðððz� � zbLPcÞÞ=z�Þ6 e
with probability tending to 1 as n!1, provided e
is Oðn�aÞ where a < ð1=mþ 1Þ.

With the same realizations of random variables

cj and aij, Dyer and Frieze [39] generalized two

results stated at first for the one dimensional case.

The first result gave an asymptotic characteriza-

tion of the expectation of the gap zLP � z�. More
precisely, if the capacities bi grow proportionally

with the number n of items (bi ¼ nbi where

0 < bi < 1=2 are fixed for i ¼ 1; 2; . . .m; it can be

remarked that the ith constraint would tend to

redundant if bi > 1=2), then EðzLP � z�Þ6
aðlog2 n=nÞ with a constant a > 0 depending only

on m and b ¼ minfb1; . . . ; bmg. In addition, they

proved that for any e > 0, there exists an approx-
imation algorithm based on the LP relaxation,

which runs in Oðnf ðe;m;bÞÞ for some function

f ðe;m; bÞ > 0 and with probability at least 1� e
solves the MKP.

Several papers investigated the question, raised

by Frieze and Clarke [61], of computing the as-

ymptotic value of the random variable z� for fixed
m. Mamer and Schilling [125] and Schilling
[161,162] gave a main insight according to the as-

sumptions made in [61]; they proved that z� grows
like ðmþ 1Þðn=ðmþ 2Þ!Þ1=mþ1 with a probability
3 OðnÞ denotes as usual some function that tends to zero as

n!1.
one as n goes to infinity. However, the case with all
the capacities bi equal to 1 is a rather artificial

model, and Szkatula [171–173] proposed a gener-

alization of the model which allowed the right-

hand-sides bi to be functions of n with quite

different values. These results allowed to observe

how the asymptotic behavior of z� is influenced by

the coefficients n, m, bi, and more indirectly, by cj,
aij.

Meanti et al. [136] obtained an important result

by using Lagrangean relaxation technique. Under

a stochastic model a little more general than the

one considered in [39], they proved that z�=n con-

verges with a probability one to Lðk�Þ as n goes to

infinity and m remains fixed. Lðk�Þ is a function of

the right hand sides bi and is defined implicitly by

minimization of LðkÞ, a kind of Lagrangean re-
laxation expectation. k� is the unique minimizer of

LðkÞ over a compact set of multipliers k. However,

explicit results were presented only for the case

m ¼ 1 and m ¼ 2. Geer and Stougie [67] estab-

lished a rate of convergence for the result of

Meanti et al. using results from the theory of em-

pirical processes. Specifically, they proved that

ðn=log lognÞ1=2jðz�=nÞ � Lðk�Þj ¼ Oð1Þ with proba-
bility equal to one. Following the Lagrangean re-

laxation approach of Meanti et al., Fontarani [50]

obtained an analytic result with a different sto-

chastic model where the aij are always independent
random variables uniformly distributed over [0, 1],

but cj ¼ 1 for all j and bi ¼ bn for all i. For any

finite number of constraints, the optimal value z�

is given explicitly as function of the knapsack
capacities.

Averbakh [5] also studied the probabilistic

properties of the Lagrangean dual of the MKP.

Under the assumption that coefficients are inde-

pendently distributed, Averbakh established sev-

eral results of asymptotic type dealing with the

probability of existence of e-optimal ð
Pn

j¼1 cjxj P
ð1� eÞz�Þ and d-feasible ð

Pn
j¼1 aijxj 6 ð1þ dÞbi; i ¼

1; . . . ;mÞ Lagrangean function generalized saddle

points.

An other interesting approach was presented by

Rinnooy Kan et al. [158] in terms of a primal

greedy algorithm (see Section 4.1.1). Building on

the results of Meanti et al., they showed under the

same assumptions and with the optimal dual
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multipliers k� as weights w, that the random vari-
able denoting the solution value of the greedy al-

gorithm is asymptotically optimal with probability

one.

Finally, it can be quoted that, based on the

‘‘replica formulation’’ of disorder physics [51], the

asymptotic behavior of the optimal value z� has

been also investigated in recent years [50,111].

Their main interest was to provide analytic char-
acterization of z� but under quite restrictive as-

sumptions over the stochastic model.
4. Heuristics

Even if recent advances based on the method-

ology of branch-and-cut have made possible the
solution of middle size MKP instances, heuris-

tic methods remain a competitive alternative,

particularly when the number of constraints is

large.

As mentioned before, a lot of papers have ad-

dressed heuristic approaches to the MKP, among

which one can find again all the heuristic ap-

proaches introduced in combinatorial optimiza-
tion. It is then a difficult task to suggest a

classification. Nevertheless, we aim to roughly

propose a grouping of heuristics into greedy al-

gorithms, mathematical programming approaches

and metaheuristics, in addition the more isolated

attempts including specific local search [147],

multistart strategies [40,155,159] and branch-and-

bound early termination [64]. Wolsey gave a major
treatment of heuristic analysis based on partial

enumeration with the MKP taken as example

[186]. Particularly, he showed how certain heuristic

methods can be integrated into enumeration

schemes to produce branch-and-bound algorithms

whose worst case behavior steadlily improves as

the enumeration develops.

Among this huge number of papers, it is im-
portant to underline that some �good ideas� have
emerged during the last three decades. Greedy-like

assignment, LP-based search, surrogate duality

information, local search allowing infeasible and

worsening solutions, embedding heuristic in a re-

duction framework, are the ingredients of the most

efficient procedures.
4.1. Greedy algorithms

Greedy, alternatively called �myopic� or �con-
structive/destructive�, algorithms are fast (polyno-

mial time complexity), and generally simple to

implement. After the initial work of Edmonds

dealing with matroid intersection [41], one of the

earliest effective uses of greedy algorithms may
have been the enumerative algorithms for simple

plant location in Spielberg [168,169] and for the

�weakly linked� problems in Guignard and Spiel-

berg [83].

4.1.1. Review

The early approaches extended the successful

use of the �bang-for-buck� ratios employed for
solving the single constraint knapsack problem,

and which are simply defined as the ratios of the

profits and the resource coefficients. In the multi-

dimensional case, the items are selected according

to ratios cj=
Pm

i¼1 wiaij, where w ¼ ðw1;w2; . . . ;wmÞ
are given nonnegative weights. The first proposal

stated by Senju and Toyoda [163] was a dual

heuristic starting with the all-ones solution and
setting the variables to zero one at a time ac-

cording to increasing ratios until feasibility re-

quirements are satisfied. By contrast, a class of

primal methods was developed which started from

the origin and set variables to one according to

decreasing ratios until no more variables can be

added without violating the constraints [109,121,

177].
At this point, one can underline that the em-

pirical study conducted by Hill and Reilly [92] on

the influence of correlation measure and correla-

tion structure in the bidimensional case, reports a

rather surprising result. In spite of its rough de-

sign, the primal greedy algorithm by Toyoda [177]

performs better than CPLEX (v2.1 utilized in a

depth-first search, branch-and-bound mode) for
instances with many solutions with near-optimal

values.

Next, dual multipliers have been employed in

the definition of the selection rules to design more

competitive greedy algorithms. Magazine and

Oguz [124] combined the Senju and Toyoda �s dual
algorithm with a Lagrangean relaxation approach,

which allows fixing variables to their values as-
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signed in all optimal solutions. Their work has
been extended by Volgenant and Zoon [181].

Following the seminal work of Glover [74],

Fr�eeville and Plateau [54,55] gave three solution

methods using surrogate constraints, and other

concepts such as accelerated fixing (more than one

variable fixed at a time), noising strategy and

strongly determined variables. Pirkul [148] devel-

oped a more straightforward generic approach
embedding a descent procedure to determine the

surrogate constraints. With instances up to n ¼
200 and m ¼ 20, Pirkul proved that this greedy

procedure was generally faster than one of the

major LP-based heuristics, the so-called Pivot and

Complement heuristic described below, and gen-

erated solutions were similar in terms of solution

quality. Finally, Hanafi et al. [88] proposed a two-
stage multistart algorithm which incorporates

different heuristic principles in a flexible fashion.

Starting from a set of random feasible solutions,

the first stage performed different local searches

such that the threshold accepting [36,37] and the

noising method [27]. An additional stage based on

repeated greedy steps tries to improve the current

feasible solution.
An advantage of these methods is that they

enabled the determination of an upper bound to z�

to control the quality of the lower bound. More-

over, the lower and upper bounds have been

combined with reduction techniques to design ef-

ficient preprocessing procedures [59]. Within this

context, Lee and Guignard [115] considered a

multistage procedure tuned with a few parameters
Fig. 1. DROP-A
which control the tradeoff between solution qual-
ity and computation times, and whose values are

set by the users. Numerical results are reported

with 48 test problems with 5–20 constraints and 6–

500 variables, randomly generated using the same

generation methods as in [9,99]. The solution

found was on the average within 0.34% of the

optimum and the computation time was the

shortest compared with greedy algorithms
[124,177] and the Pivot and Complement heuristic

[9].

Beyond its respectable merit in terms of the

quality of solutions obtained and the amount of

computational time consumed, another major

contribution of the greedy concept concerned the

metaheuristics. Indeed, DROP-ADD moves (Fig.

1) and repair operators (Fig. 2) involving greedy-
like assignments as shown in the following exam-

ples, have been used in the more efficient methods

developed in the areas of tabu search [31,32,86]

and genetic algorithms [28,175].

4.1.2. Worst-case analysis

The first results extend the ones obtained in the

single case and deal with the well-known primal

greedy algorithm described above. Following an

example given in [48] for the single case, the series

of instances fn ¼ 2;m ¼ 2; c1 ¼ 1; c2 ¼ k; a11 ¼
1; a21 ¼ k; a12 ¼ k; a22 ¼ k þ 1gk¼1;2;...; show that

the worst-case performance of this heuristic for

any weights w ¼ ðw1;w2Þ > 0 is as bad as 0. In-

deed, one has zGðwÞ ¼ 1 and z� ¼ k, so zGðwÞ=z�
can be arbitrarily close to 0.
DD move.



Fig. 2. Repair operator.
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An interesting analysis of the class of primal

greedy algorithms was conducted by Rinnooy Kan

et al. [158]. They showed that the best greedy so-

lution is not necessarily optimal, but that with

weights chosen as the LP-dual multipliers k�, it

performs always better than the LP-rounding

heuristic, that is zGðk�ÞP zbLPc (the two solutions
are of equal quality in the worst case). They also

pointed out that k� is not the optimal weight and

studied the computational complexity of deter-

mining the optimal weight.

Dobson [34] established tight bounds on the

worst-case behavior of dual greedy algorithms for

the minimization case. Starting from the all-ones

solution and using the weights w ¼ ð1; 1; . . . ; 1Þ, the
items are deleted according to increasing ratio

cj=
Pm

i¼1 aij and coefficient reduction applies in the

remaining columns Aj as soon as the coefficient aij
becomes greater than the update constraint level bi
for any i. As the MKP can be easily transformed

into a set covering problem minfcxjAxP b; x 2
f0; 1gng by complementing the variable xj  1� xj,
the greedy algorithm of Dobson (GD) is nothing
else than a dual greedy algorithm applied to the

maximization version. Fischer [48] coined the prob-

lem that paradoxical dichotomies between mini-

mization and maximization depend strongly on the

use of the ratio zH=z� to measure performance.

Thus, the worst-case analysis can be adapted to

the maximization case by using another ratio to

measure performance. Then, using the follow-
ing performance measure pRðHÞ ¼ zR � zH=zR � z�

where zR ¼
Pn

j¼1 cj is a suitably reference value, one
obtains that pRðGDÞ6HðdÞ, where d ¼ maxj¼1;...;nPm
i¼1 aij and HðdÞ denotes the first d terms of the

harmonic series HðdÞ ¼ 1þ 1
2
þ � � � þ 1

d.

4.2. Mathematical programming

Most of the papers deal with integer/0–1 linear
programs. As the LP-rounding heuristic, they

often exploited the rudimentary idea that optimal

or near-optimal integer solutions are close to the

solution of the LP relaxation. But the use of a

mathematical programming framework gave rise

to many attractive developments.

Hillier [93] introduced several seminal ideas in

his seminal paper. Hillier�s algorithm is to our
knowledge the first example of a multistage algo-

rithm. The first phase identifies a path leading

from the optimal LP solution to another nearby

solution belonging to the integer feasible region.

During the second phase, the algorithm moves

along this path to identify a better feasible integer

solution. This step is the first example of search

strategy, called path relinking, a concept which was
coined by Glover later [75]. Finally, the third

phase realizes a local search which attempts to

improve the current feasible solution by changing

one or two variables at a time. Zanakis [188]

showed with MKP instances of moderate size that

Hillier�s algorithm was more accurate than basic

primal/dual greedy algorithms. In comparison with

the complexity of the greedy methods, the em-
bedded simplex LP accounting for almost 3/4 of

the computing time appeared at the time as too
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much time consuming for solving large instances.
Experimental results and others advances focused

on how to construct efficient �interior paths� are
found in [45,95,99].

Pivot and Complement, developed by Balas and

Martin [9], is probably the most well-known LP-

based procedure for finding approximate solutions

to general linear 0–1 programs (see [10] for the

mixed integer programming case). The procedure
starts off by solving the LP relaxation with a

standard bounded variable simplex method and

continues by performing a sequence of pivots

aimed at putting bounded variables into the basis

at a minimal cost. When this has been achieved a

complementing phase tries to improve the 0–1

solution obtained in the pivoting. This procedure

has performed well in practice on a variety of types
and sizes of binary integer programs and has been

embedded in several commercial codes. Thus it can

be considered as a major reference. A further im-

provement was achieved by introducing an addi-

tional constraint [1]. Moreover, promising results

have been also obtained for pure 0–1 linear pro-

grams by hybrids of tabu search with the Pivot and

Complement heuristic. In Aboudi and Jornsten [2],
the tabu search framework is superimposed on the

Pivot and Complement heuristic used as a black

box. On the other hand, tabu search is embedded

within the Pivot and Complement heuristic [119].

Finally, Nediak and Eckstein [138] presented a

pivot-based method related to the Pivot and

Complement and Glover–Lokketangen tabu

search methods. Their method attempts to round a
fractional solution of the LP relaxation by a local

minimization procedure for a concave merit

function taking the value 0 at all integer-feasible

points. This minimization is accomplished by

simplex-like pivots starting, relying only on local

gradient information until they reach a local op-

timum. Numerical results are reported only with

49 MIP test problems selected from the MIPLIB
3.0 collection, and no experiment is to date avail-

able with MKP instances.

Balas et al. [8] proposed a sophisticated local

search, called OCTANE, in the integer neighbor-

hood of the fractional LP-solution for solving pure

0–1 programs. A set of feasible solutions is gener-

ated by computing the intersection points of some
facets of an octahedron, containing the solution x
to the LP-relaxation, with the half lines originating

at x and having selected directions. They showed

that their rather complex method is also a com-

petitive alternative to Pivot and Complement.

More recently, Plateau et al. [151] investigated a

multistage method bringing into play metaheuris-

tics and interior point methods. The first phase

consists of a hybrid search combining an interior
point method to generate fractional germ points, a

local search to restore feasibility, and a cut gener-

ator to diversify the population of initial feasible

solutions. The second phase performs a fixed

number of path relinking runs between a set of pairs

of solutions selected in the initial population. Pre-

liminary comparisons with the Chu and Beasley

algorithm indicate promising prospects for using
interior point methods as a guide to enhanced local

search, path relinking or scatter search [75].

A more user-friendly heuristic and easy to im-

plement is proposed in Andonov et al. [4]. The

main idea is the use of dynamic programming in a

suitable way to get a feasible solution by successive

improvements of the LP-rounding solution. Tested

on all standard sets of the literature, this heuristic,
embedded into a preprocessing framework with

possible reduction of the problem size, is shown to

be robust and very fast compared with the best

tabu search approaches. Particularly, for the last

seven instances of Glover and Kochenberger, with

the optimal solutions unknown, the relative devi-

ation to the best known feasible solution is less

than 0.24% and the CPU time less than 0.1 seconds
on a DEC Alpha workstation.

Oddly, as compared with the success of

Lagrangean heuristics for solving many 0–1 pro-

grams of various characteristics [49], very few

papers reported, to our knowledge, relevant expe-

riences with perturbing optimal solutions to

Lagrangean or surrogate relaxations, so as to

obtain good feasible solutions. The first idea was
developed in Fr�eeville and Plateau [54,55]. The

variables fixed at 1 in the solution of a perturbed

continuous surrogate relaxation are fixed tempo-

rarily at 1, the others are fixed at 0. If the solution

generated in this way is infeasible, a dual greedy

algorithm sets free some of the variables fixed at 1

to move back into the feasible region. The variables
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remaining at 1 are fixed definitively, and the pro-
cedure starts again with the subproblem defined by

the free variables. However, the quadratic time

complexity limits its utilization to medium size in-

stances. The work of Guignard et al. [82] is another

attempt. Lagrangean decomposition was investi-

gated in the bidimensional case with a limited

success unfortunately. Indeed, the size of the la-

grangean dual is equal to the number of variables
and leads to overly expensive time requirements.

4.3. Metaheuristics

As for many others combinatorial optimization

problems, the MKP has been intensively investi-

gated within metaheuristics during the last decade.

Most of the research has considered the MKP an
interesting benchmark but has not exploited its

specific properties sufficiently to state effective

methods. However, several recent papers bringing

into play relevant mechanisms have obtained the

best results reported in the literature.

The first attempt was realized by Drexl [35] with

simulated annealing. He introduced a special

2-exchange random move which maintains the
feasibility of all solutions generated during the

process. Battiti and Tecchiolli [14] introduced a

penalty function which transforms the MKP into

an unconstrained problem. They reported that SA

performance varies greatly with the MKP instance

and was worse than suitable tabu search imple-

mentations, which used different search strategies

to overcome local optimality. Dueck and Scheuer
[36] and Dueck and Wirsching [37] presented a

close and deterministic version of SA, called

threshold accepting, with rather better results than

the SA version of Drexl.

Pioneer research in the field of tabu search for

solving the MKP started with Dammeyer and

Voss [31] who compared static and dynamic

strategies for managing the tabu list. In particular,
they showed that SA may be outperformed by a

dynamic version of TS, called Reverse Elimination

Method, in which feasibility is maintained along

the process by using a multivariate DROP/ADD

move [32,182]. In this context, recent extensions

concerning the link between new dynamic rules

and diversification and intensification strategies
are found in Hanafi and Fr�eeville [87]. Another
tabu list dynamic management, called Reactive

Tabu Search, has been tested with satisfactory

performances by Battiti and Tecchiolli [15,16].

Other TS approaches have been designed for

solving mixed 0–1 integer programs, in which in-

feasibility dealing with the integrality requirements

is allowed during the process. In addition to the

hybrids of TS coupled with pivot and complement
mentioned above, Lokketangen and Glover de-

veloped a direct approach by making TS rely on a

standard bounded variable simplex method as a

subroutine [117]. Others advances for designing

efficient TS mechanisms within this framework are

found in [118].

However, it is undeniable that the best results

have been obtained with methods which exploited
in-depth the MKP�s property that all the near

optimal solutions lie in the boundary of the feasi-

ble domain. The first main idea was the use of

tunneling effect. Glover and Kochenberger [77]

obtained computational results of high quality

over several test beds of large size up to 500 vari-

ables and 25 constraints. They presented a strate-

gic oscillation scheme which alternates between
constructive and destructive phases and drives the

search to variable depths on each side of the fea-

sibility boundary. Hanafi and Fr�eeville [86] ob-

tained competitive results with those of Glover

and Kochenberger, by developing a TS approach

which combines strategic oscillation with general-

ized greedy algorithms guided by surrogate con-

straints information and the state of the search.
Vasquez and Hao [180] presented another hybrid

and effective strategy. They introduced an addi-

tional constraint
Pn

j¼1 xj ¼ k on the cardinality of

an optimal solution which allows pruning a subset

of the feasible domain. LP-rounding solutions are

computed for each suitable value of parameter k,
and after that, a local TS using a dynamic tabu list

is performed around these starting points (other
efficient strategies are found in Glover [71],

Fr�eeville and Plateau [57] to compute suitable val-

ues of k). Until now, they reported the best solu-

tions in quality with the difficult test beds of

Glover and Kochenberger and Chu and Beasley.

But the amount of computational time is rather

high and that remains a handicap for solving very
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large instances exceeding a thousand of variables
and more than ten constraints.

Evolutionary algorithms is another important

stream of metaheuristics. The early papers have not

successfully proved that genetic algorithms were an

effective heuristic tool for the MKP. Khuri et al.

[107] extended previous work for the single con-

straint knapsack problem [106]. They developed a

GA with standard operators and a fitness function
which penalizes the unfeasible strings. A similar

study is given in Battiti and Tecchioli [14], which

provided also comparisons with others metaheu-

ristics. Thiel and Voss [175] showed that a standard

GA using a direct search in the complete search

space is not able to obtain good solutions for the

MKP, except for small problems. Moreover, they

investigated the combination of GA with tabu
search and obtained promising results when ap-

plied to test problems of moderate size. Chu and

Beasley [28] gave the first successful implementa-

tion of GA�s by restricting the genetic algorithms to

search only the feasible search space. Extended

numerical comparisons with CPLEX (version 4.0)

and other heuristic methods showed the robust

behavior of the method for obtaining high-quality
solutions within a reasonable amount of compu-

tational time. These results have been improved

recently by incorporating local optimization to

focus the search process on the boundary of the

feasible region [79,156]. Finally, Haul and Vob
enhanced the performance of GA�s by using sur-

rogate constraints [89].

The use of neural networks to solve the MKP
was pioneered by Battiti and Tecchioli [14] and

Ohlsson et al. [142]. Through the reported nu-

merical experiments, NN appeared to be of limited

practical interest. In particular, due to the strategic

choice of a penalty function which transforms the

MKP into an unconstrained problem, NN tends to

produce final solutions that violate constraints.

Parallelization of metaheuristics is a field in
growing expansion (see Toulouse et al. [176] for a

comprehensive survey). As parallel branch-and-cut

and parallel branch-and-price methods, this re-

search area is certainly a promising way to tackle

very large-scale instances. Nevertheless, only very

few papers have addressed the MKP. Niar and

Fr�eeville [141] presented a parallel implementation
of TS using a synchronous communication scheme.
Parallelism focused on the exploration of the so-

lution domain, by maintaining different indepen-

dent/dependent search paths. Numerical results

showed that parallel cooperative search allows

both reducing CPU time and setting dynamically

strategic TS parameters.
5. Conclusion

Wehave tried to convey themessage that passing

from one to more than two constraints generates

a significant gap in difficulties. Regarding exact

solutions, the MKP has been studied less as a gen-

eralization of the knapsack than as a special case of

0–1 linear program. So, very few specialized pro-
cedures are available. They meet limited success,

except in the bidimensional case where surrogate

relaxations offer promising insight. On the other

hand, the computational improvements of the

1990s, that have integrated heuristics, preprocess-

ing and probing techniques, branch-and-bound and

strong valid inequalities, lead to significant im-

provements in the exact solving. However, even
with the more effective solvers, the largest sizes of

instances for which exact solutions are given, do not

exceed a few hundred variables as soon as the

number of constraints increases. In contrast, and

always due to its attractive �progressive complexity�,
both linked to the number of variables and con-

straints, many special-purpose heuristic algorithms

have been developed to provide competitive alter-
natives to branch-and-bound or branch-and-cut

algorithms with a time limit. Enhanced versions of

tabu search provide, to date, the best near-optimal

solutions with the more difficult test beds. At the

same time, less expensive CPU time requirements

and robust heuristics are available, most of them

based on mathematical programming foundations

as LP-relaxations and dynamic programming.
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