
This article was downloaded by: [164.15.10.70] On: 20 April 2018, At: 06:39
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

INFORMS Journal on Computing

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

The Multidimensional Knapsack Problem: Structure and
Algorithms
Jakob Puchinger, Günther R. Raidl, Ulrich Pferschy,

To cite this article:
Jakob Puchinger, Günther R. Raidl, Ulrich Pferschy, (2010) The Multidimensional Knapsack Problem: Structure and Algorithms.
INFORMS Journal on Computing 22(2):250-265. https://doi.org/10.1287/ijoc.1090.0344

Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2010, INFORMS

Please scroll down for article—it is on subsequent pages

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management
science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/ijoc.1090.0344
http://pubsonline.informs.org/page/terms-and-conditions
http://www.informs.org

INFORMS Journal on Computing
Vol. 22, No. 2, Spring 2010, pp. 250–265
issn 1091-9856 �eissn 1526-5528 �10 �2202 �0250

informs ®

doi 10.1287/ijoc.1090.0344
©2010 INFORMS

The Multidimensional Knapsack Problem:
Structure and Algorithms

Jakob Puchinger
NICTA Victoria Research Laboratory, Department of Computer Science and Software Engineering,

University of Melbourne, Melbourne, Victoria, 3010 Australia, jakobp@csse.unimelb.edu.au

Günther R. Raidl
Institute of Computer Graphics and Algorithms, Vienna University of Technology, A-1040 Vienna, Austria,

raidl@ads.tuwien.ac.at

Ulrich Pferschy
Department of Statistics and Operations Research, University of Graz, A-8010 Graz, Austria,

pferschy@uni-graz.at

We study the multidimensional knapsack problem, present some theoretical and empirical results about its
structure, and evaluate different integer linear programming (ILP)-based, metaheuristic, and collaborative

approaches for it. We start by considering the distances between optimal solutions to the LP relaxation and the
original problem and then introduce a new core concept for the multidimensional knapsack problem (MKP),
which we study extensively. The empirical analysis is then used to develop new concepts for solving the
MKP using ILP-based and memetic algorithms. Different collaborative combinations of the presented methods
are discussed and evaluated. Further computational experiments with longer run times are also performed to
compare the solutions of our approaches to the best-known solutions of another so-far leading approach for
common MKP benchmark instances. The extensive computational experiments show the effectiveness of the
proposed methods, which yield highly competitive results in significantly shorter run times than do previously
described approaches.

Key words : multidimensional knapsack problem; integer linear programming; heuristics
History : Accepted by Michel Gendreau, former Area Editor for Heuristic Search and Learning; received March

2007; revised July 2008; accepted April 2009. Published online in Articles in Advance August 18, 2009.

1. Introduction
The multidimensional knapsack problem (MKP) is
a well-studied, strongly NP-hard combinatorial opti-
mization problem occurring in many different appli-
cations. In this paper, we present some theoretical
and empirical results about the MKP’s structure and
evaluate different integer linear programming (ILP)-
based, metaheuristic, and collaborative approaches
for it. We will first give a short introduction to the
problem, followed by an empirical analysis based on
widely used benchmark instances. First, the distances
between optimal solutions to the linear programming
(LP) relaxation and the original problem are consid-
ered. Second, we introduce a new core concept for
the MKP, which we study extensively. The results
of this empirical analysis are then used to develop
new concepts for solving the MKP using ILP-based
and memetic algorithms. Different collaborative com-
binations of the presented algorithms are discussed
and evaluated. More extensive computational experi-
ments involving longer run times are also performed
to compare the solutions of our approaches to the best

solutions of a so-far leading parallel tabu search for
the MKP. Obtained results indicate the competitive-
ness of the new methods. Finally, we conclude with a
summary of the developed methods and an outlook
for future work.
The MKP can be defined by the following ILP:

(MKP) maximize z =
n∑

j=1

pjxj (1)

subject to
n∑

j=1

wijxj ≤ ci� i = 1� � � � �m� (2)

xj ∈ �0�1�� j = 1� � � � �n� (3)

A set of n items with profits pj > 0 and m resources
with capacities ci > 0 are given. Each item j con-
sumes an amount wij ≥ 0 from each resource i. The
0–1 decision variables xj indicate which items are
selected. According to (1), the goal is to choose a
subset of items with maximum total profit. Selected
items must, however, not exceed resource capacities;
this is expressed by the knapsack constraints (2).

250

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

16
4.

15
.1

0.
70

]
on

 2
0

A
pr

il
20

18
, a

t 0
6:

39
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Puchinger, Raidl, and Pferschy: The Multidimensional Knapsack Problem
INFORMS Journal on Computing 22(2), pp. 250–265, © 2010 INFORMS 251

A comprehensive overview of practical and the-
oretical results for the MKP can be found in the
monograph on knapsack problems by Kellerer et al.
(2004). Recent reviews of the MKP with different
focuses were given by Fréville (2004) and Fréville
and Hanafi (2005). Besides exact techniques for solv-
ing small to moderately sized instances, based on
dynamic programming (Gilmore and Gomory 1966,
Weingartner and Ness 1967) and branch and bound
(Shih 1979, Gavish and Pirkul 1985), many kinds of
metaheuristics have already been applied to the MKP
(Glover and Kochenberger 1996, Chu and Beasley
1998), including also several variants of hybrid evo-
lutionary algorithms (EAs). See Raidl and Gottlieb
(2005) for a recent survey and comparison of EAs
for the MKP. A notable preprocessing scheme was
recently proposed by Balev et al. (2008).
To our knowledge, the method currently yield-

ing the best results for commonly used benchmark
instances was described by Vasquez and Hao (2001)
and has been refined by Vasquez and Vimont (2005).
It is a hybrid approach based on tabu search. The
search space is reduced and partitioned via addi-
tional cardinality constraints, thereby fixing the total
number of items to be packed. Bounds for these
constraints are calculated by solving a modified
LP relaxation. For each remaining part of the search
space, tabu search is independently applied, starting
with a solution derived from the LP relaxation of
the partial problem. The improvement described in
Vasquez and Vimont (2005) lies mainly in an addi-
tional variable-fixing heuristic.
The current authors originally suggested a core con-

cept for the MKP in Puchinger et al. (2006). Prelim-
inary results with a metaheuristic/ILP collaborative
approach have been presented in Puchinger et al.
(2005). More details can also be found in the first
author’s doctoral thesis (Puchinger 2006). The current
article summarizes this previous work and extends it
to a large degree. In particular, it contains the com-
pletely new collaborative approach combining heuris-
tic and exact algorithms for the solution of the core
problem. Moreover, many additional computational
analyses have been performed showing more instruc-
tive details and new comparisons. Larger instances of
a different type with up to 2,500 items are now also
considered.

1.1. Benchmark Instances
Chu and Beasley’s benchmark library (see http://
people.brunel.ac.uk/∼mastjjb/jeb/info.html) for the
MKP (Chu and Beasley 1998) is widely used in
the literature and will also be the basis of most of
the experiments presented in this paper. The library
contains classes of randomly created instances for

each combination of n ∈ �100�250�500� items, m ∈
�5�10�30� constraints, and tightness ratios

� = ci

/ n∑
j=1

wij ∈ �0�25�0�5�0�75��

Resource consumption values wij are integers uni-
formly chosen from �0�1�000�. Profits are correlated
to the weights and generated as

pj =
m∑

i=1

wij/m + �500 rj��

where rj is a randomly uniformly chosen real number
from �0�1	. For each class, i.e., for each combination
of n, m, and �, 10 different instances are available. It
can be argued that these instances have uncorrelated
weight coefficients for every item, which may not
always be the case in real-world scenarios. However,
this class of instances is the only widely used bench-
mark library where the number of instances allows
a reasonable and statistically sound analysis. There-
fore, most papers dealing with the MKP stick to these
instances.
To also test the core concept for larger instances we

performed additional tests on a set of 11 benchmark
instances proposed by Glover and Kochenberger
(1996) (see http://hces.bus.olemiss.edu/tools.html).
The instance sizes range from 100 items and 15 con-
straints to 2,500 items and 100 constraints. A major
difference of these instances in comparison to those
of Chu and Beasley (1998) is the fact that the resource
consumption values are correlated, which is also
the case in many practical applications of the MKP.
We also performed experiments with metaheuristics
using those instances. Obtained results are ambiguous
and do not allow any serious conclusions; we there-
fore omit the details in §5. In fact, the small number of
only 11 instances hardly permits a statistical analysis
but encourages specific parameter tuning. Moreover,
no comparative values for the method by Vasquez
and Vimont (2005) are available.

2. The MKP and Its LP Relaxation
In the LP relaxation of the MKP, the integrality con-
straints (3) are replaced by

0≤ xj ≤ 1� j = 1� � � � �n� (4)

Basic LP theory implies the following important
property characterizing the structure of an optimal
solution xLP to the LP relaxation of the MKP (Kellerer
et al. 2004):

Proposition 1. There exists an optimal solution xLP

with at most min�m�n� fractional values.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

16
4.

15
.1

0.
70

]
on

 2
0

A
pr

il
20

18
, a

t 0
6:

39
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Puchinger, Raidl, and Pferschy: The Multidimensional Knapsack Problem
252 INFORMS Journal on Computing 22(2), pp. 250–265, © 2010 INFORMS

An interesting question, which arises for almost
any integer linear program, concerns the difference
between the ILP and the corresponding LP relaxation
with respect to optimal solutions’ values and their
structures. Concerning the latter, a probabilistic result
was given for the classical 0/1 knapsack prob-
lem (KP): Goldberg and Marchetti-Spaccamela (1984)
showed that the number of items that have to be
changed when moving from an optimal solution of
the KP’s LP relaxation to one of the integer problem
grows logarithmically in expectation with increasing
problem size for uniformly distributed profits and
weights.
For MKP, Dyer and Frieze (1989) showed for an

analogous probabilistic model that the aforemen-
tioned number of changes grows stronger than log-
arithmically in expectation with increasing problem
size.

2.1. Empirical Analysis
Because there is so far only this negative result by
Dyer and Frieze (1989) on the distance of the LP opti-
mum and the optimum of the MKP, we performed an
empirical in-depth examination on smaller instances
of Chu and Beasley’s (1998) benchmark library, for
which we were able to compute optimal solutions x∗

(with n = 100 items, m ∈ �5�10� constraints, and n =
250 items, m = 5 constraints).
Table 1 displays the average distances between

optimal solutions x∗ of the MKP and optimal solu-
tions xLP of the LP relaxation

LP=
n∑

j=1

�x∗
j − xLP

j �� (5)

the integral part of xLP

LPint =
∑

j∈Jint

�x∗
j − xLP

j �� with

Jint = �j = 1� � � � �n � xLP
j is integral�� (6)

Table 1 Distances Between LP and Integer Optimal Solutions

�LP �LP int �LP frac �LP rounded �LP feasible

n m � %n %n %m %n %n

100 5 0�25 5�88 3�60 45�68 5�60 7�70
0�50 6�72 4�40 46�32 6�60 9�30
0�75 6�56 4�30 45�17 6�50 11�60

250 5 0�25 3�12 2�20 46�25 3�12 3�80
0�50 3�42 2�56 42�81 3�36 5�52
0�75 3�15 2�28 43�25 3�20 7�04

100 10 0�25 9�01 4�50 45�12 8�40 11�50
0�50 6�88 3�40 34�75 5�70 14�60
0�75 6�75 2�60 41�51 6�50 17�40

Average 5�72 3�32 43�43 5�44 9�83

Note. Average values over 10 instances per problem class and total averages.

and the fractional part of xLP

LPfrac = ∑
j∈Jfrac

�x∗
j − xLP

j �� with

Jfrac = �j = 1� � � � �n � xLP
j is fractional�� (7)

We further display the Hamming distance between x∗

and the arithmetically rounded LP solution xRLP. This
solution can be infeasible, because arithmetic round-
ing (rounding down if the decimal part is less than
or equal to 0.5 and rouding up else) can violate the
capacity constraints:

LProunded =
n∑

j=1

�x∗
j − xRLP

j � with

xRLP
j =
xLP

j − 0�5�� j = 1� � � � �n� (8)

Also shown is the Hamming distance between x∗ and
a feasible solution x′ created by sorting the items
according to decreasing LP-relaxation solution values
and applying a greedy-fill procedure

LPfeasible =
n∑

j=1

�x∗
j − x′

j �� (9)

All distances are displayed as percentages of the total
number of items (%n), except
LPfrac, which is dis-
played as a percentage of the number of knapsack
constraints (%m).
The distance
LPfeasible between heuristically

obtained feasible solutions and the optimal ones is
quite important and can grow up to an average of
17�4% of the number of items for the instance class
with 100 items, 10 constraints, and � = 0�75.
We further observe that
LProunded is almost always

smaller than 10% of the total number of variables
and is 5�44% on average. When the available time
for optimization is restricted, it therefore is reason-
able for these instances to reduce the search space
to a reasonably sized neighborhood of the solution
to the LP relaxation, or to explore this more promis-
ing part of the search space first. The most successful
algorithms for the MKP exploit this fact (Raidl and
Gottlieb 2005, Vasquez and Hao 2001, Vasquez and
Vimont 2005).
The distance between the integral parts
LPint

increases more slowly than the number of variables.
The distance between the fractional part and an opti-
mal MKP solution
LPfrac seems to depend on the
number of constraints (about 45% of the number of
constraints). This can partly be explained with the
result from Proposition 1. If we assume that our LP
solution is the one with, at most, min�m�n� fractional
values, the distance to the optimum of the fractional
values can never be larger than min�m�n�. The total
distance
LP does, therefore, depend more on the
number of constraints than on the number of vari-
ables that can also be observed in the shown results.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

16
4.

15
.1

0.
70

]
on

 2
0

A
pr

il
20

18
, a

t 0
6:

39
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Puchinger, Raidl, and Pferschy: The Multidimensional Knapsack Problem
INFORMS Journal on Computing 22(2), pp. 250–265, © 2010 INFORMS 253

2.2. Exploiting the LP Relaxation in Exact
Solution Procedures

Based on the empirical results of §2.1, it seems to
be worthwhile to guide a classical branch-and-bound
method to explore the neighborhood of the LP
relaxation first before exploring other regions of
the solution space. This approach has similarities with
the concepts of local branching (Fischetti and Lodi
2003) and relaxation-induced neighborhood search (Danna
et al. 2003).
In more detail, we focus the optimization to the

neighborhood of the arithmetically rounded LP solu-
tions. This is achieved by adding a single constraint
to the MKP, similar to the local branching constraints
from Fischetti and Lodi (2003). The following inequal-
ity restricts the search space to a neighborhood of
Hamming distance k (the value of k is defined by the
user) around the rounded LP solution xRLP:

�x�xRLP� = ∑
j∈SRLP

�1− xj� + ∑
jSRLP

xj ≤ k� (10)

where SRLP = �j = 1� � � � �n � xRLP
j = 1� is the binary sup-

port of xRLP.
In our implementation, we use CPLEX as a branch-

and-cut system and initially partition the search space
by constraint (10) into the more promising part, and
by the inverse constraint
�x�xRLP� ≥ k + 1 into a
second, remaining part. CPLEX is forced to first com-
pletely solve the neighborhood of xRLP before investi-
gating the remaining search space.
Alternatively, we can consider a variant of this con-

straint, which bounds only the deviation from the
integral values of the LP solution and does not restrict
variables with fractional LP values. In this case, we
replace (10) by

∑
j �xLPj =1

�1− xj� + ∑
j �xLPj =0

xj ≤ k� (11)

2.2.1. Computational Results. We performed an
experimental investigation on the hardest instances of
Chu and Beasley’s (1998) benchmark library with n =
500 items and m ∈ �5�10�30� constraints. The general-
purpose ILP-solver CPLEX 9.0 was used on a 2.4 GHz
Intel Pentium 4 PC.
Table 2 shows results when adding constraint (10)

with different values of k and limiting the CPU time
to 500 seconds. Listed are average percentage gaps
of obtained solution values z to the optimal objective
value zLP of the LP relaxation (%LP = 100 · �zLP − z�/
zLP). We display standard deviations as subscripts,
the numbers of times this neighborhood size yields
the best solutions of this experiment �#�, and average
numbers of explored nodes of the branch-and-bound
tree (Nnodes).

Obtained results indicate that forcing CPLEX to
first explore the more promising part of the search
space can be advantageous, because this could yield
better primal bounds earlier on during the branch-
and-bound search and thus allow a faster pruning
of the search tree. Especially for k = 25, which cor-
responds to 5% of the total number of variables, we
almost always obtain slightly better solutions than
with the standard approach. A one-sided Wilcoxon
signed-rank test over all the instances showed that
the k = 25 version provides better results than stan-
dard CPLEX with an error probability of 1�4%. For
k = 10, results were worse than those of CPLEX with-
out additional constraint; for k = 50, results are not
improved on average, whereas the mean number of
best solutions reached is higher.
Further experiments with constraint (11) showed

that the performance is worse than for the case
with (10); in particular, no significant improvements
upon the solution method without additional con-
straint could be observed. This may be because
the search space is not as strongly reduced as
it is with (10). Detailed results can be found in
Puchinger (2006).

3. The Core Concept
The core concept was first presented for the classical
0/1 knapsack problem (Balas and Zemel 1980) and
led to very successful KP algorithms (Martello and
Toth 1988; Pisinger 1995, 1997). The main idea is to
reduce the original problem to a core of items for
which it is hard to decide whether they will occur
in an optimal solution, whereas all variables corre-
sponding to items outside the core are initially fixed
to their presumably optimal values. The core concept
was also studied for bicriteria KP by Gomes da Silva
et al. (2008).

3.1. The Core Concept for KP
The (one-dimensional) 0/1 knapsack problem is the
special case of MKP arising for m = 1. Every item j
is associated with a profit pj and a single weight wj .
A subset of these items with maximal total profit has
to be packed into a knapsack of capacity c. The clas-
sical greedy heuristic for KP packs the items into the
knapsack in decreasing order of their efficiencies ej �=
pj/wj as long as the knapsack constraint is not vio-
lated. It is well known that the same ordering also
defines the solution structure of the LP relaxation,
which consists of three parts: the first part contains
all variables set to one; the second part consists of at
most one split item s, whose corresponding LP value is
fractional; and finally, the remaining variables, which
are always set to zero, form the third part.
For most instances of KP (except those with a very

special structure of profits and weights), the integer

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

16
4.

15
.1

0.
70

]
on

 2
0

A
pr

il
20

18
, a

t 0
6:

39
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Puchinger, Raidl, and Pferschy: The Multidimensional Knapsack Problem
254 INFORMS Journal on Computing 22(2), pp. 250–265, © 2010 INFORMS

Table 2 Results on Large MKP Instances When Including Constraint (10) to Search Only the Neighborhood of xRLP

No constraint k = 10 k = 25 k = 50

m � %LP # Nnodes %LP # Nnodes %LP # Nnodes %LP # Nnodes

5 0�25 0�0800�010 8 5�50E5 0�0790�009 9 5�58E5 0�0800�009 8 5�38E5 0�0790�008 8 5�38E5
0�50 0�0400�005 7 5�06E5 0�0400�006 7 5�09E5 0�0390�005 10 4�88E5 0�0390�005 10 4�92E5
0�75 0�0250�004 8 5�36E5 0�0250�003 9 5�49E5 0�0250�004 7 5�24E5 0�0250�004 7 5�28E5

10 0�25 0�2060�022 9 3�15E5 0�2210�024 4 3�00E5 0�2060�022 9 3�03E5 0�2060�022 9 3�06E5
0�50 0�0940�013 8 3�01E5 0�1020�012 5 2�87E5 0�0950�014 7 2�91E5 0�0940�014 8 2�93E5
0�75 0�0660�009 8 3�05E5 0�0680�007 5 2�98E5 0�0660�008 8 2�95E5 0�0660�008 9 2�98E5

30 0�25 0�5980�038 5 1�11E5 0�6010�036 1 1�02E5 0�5550�067 9 1�08E5 0�6050�042 4 1�09E5
0�50 0�2580�009 2 1�15E5 0�2580�024 5 1�07E5 0�2570�012 4 1�12E5 0�2570�010 4 1�12E5
0�75 0�1580�013 5 1�12E5 0�1620�014 4 1�07E5 0�1550�011 8 1�07E5 0�1590�012 4 1�07E5

Average 0�1690�013 6.7 3�17E5 0�1730�015 5.4 3�13E5 0�1640�017 7.8 3�07E5 0�1700�014 7.0 3�09E5

Notes. Average values over 10 instances per problem class and total averages, n = 500. In each row, the best average percentage gaps are printed
in bold.

optimal solution closely corresponds to this partition-
ing in the sense that it contains most of the highly effi-
cient items of the first part, some items with medium
efficiencies near the split item, and almost no items
with low efficiencies from the third part. Items of
medium efficiency constitute the so-called core.
The precise definition of the core of KP introduced

by Balas and Zemel (1980) requires the knowledge of
an optimal integer solution x∗. Assume that the items
are sorted according to decreasing efficiencies and let

a �=min�j � x∗
j = 0�� b �=max�j � x∗

j = 1�� (12)

The core is given by the items in the interval C =
�a� � � � � b�. It is obvious that the split item is always
part of the core.
The KP core (KPC) problem is derived from KP by

setting all variables xj with j < a to 1 and those with
j > b to 0. Thus, the optimization is restricted to the
items in the core with appropriately updated capacity
and objective. Obviously, the solution of KPC would
suffice to compute the optimal solution of KP, which,
however, has to be already partially known to deter-
mine C. Pisinger (1997) reported experimental inves-
tigations of the exact core size. He also studied the
hardness of core problems and gave a model for their
expected hardness in Pisinger (1999).
In an algorithmic application of the core con-

cept, only an approximate core including the actual
unknown core with high probability can be used.
A first class of core algorithms is based on an approx-
imate core of fixed size c = �s − �� � � � � s + �� with
various choices of �, e.g., � being a predefined con-
stant or � = √

n. An example is the MT2 algorithm by
Martello and Toth (1988). First the core is solved, then
an upper bound is derived to eventually prove opti-
mality. If this is not possible, a variable reduction is
performed that tries to fix as many variables as pos-
sible to their optimal values. Finally, the remaining
problem is solved to optimality.

Because the estimation of the core size remains
a weak point of fixed-core algorithms, Pisinger
proposed two expanding core algorithms. Expknap
(Pisinger 1995) uses branch and bound for enu-
meration, whereas Minknap (Pisinger 1997) applies
dynamic programming and enumerates at most the
smallest symmetrical core. For more details, we also
refer to Kellerer et al. (2004).

3.2. Efficiency Measures for MKP
Trying to apply a core concept to MKP, the sorting of
items raises an important question because in contrast
to KP, there is no obvious definition of efficiency any-
more. Consider the most obvious form of efficiency
for the MKP, which is a direct generalization of the
one-dimensional case (Dobson 1982):

e
simple
j = pj∑m

i=1 wij

� (13)

Different orders of magnitude of the constraints’ coef-
ficients are not considered, and a single constraint
may easily dominate all others. This drawback can be
avoided by scaling:

escaledj = pj∑m
i=1�wij/ci�

� (14)

Taking into account the relative contribution of the
constraints, Senju and Toyoda (1968) propose

estj = pj∑m
i=1 wij�

∑n
l=1 wil − ci�

� (15)

For more details on efficiency measures, we refer
to Kellerer et al. (2004), where a general form of
efficiency is defined by introducing relevance values
ri ≥ 0 for every constraint:

e
general
j = pj∑m

i=1 riwij

� (16)

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

16
4.

15
.1

0.
70

]
on

 2
0

A
pr

il
20

18
, a

t 0
6:

39
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Puchinger, Raidl, and Pferschy: The Multidimensional Knapsack Problem
INFORMS Journal on Computing 22(2), pp. 250–265, © 2010 INFORMS 255

These relevance values ri can also be interpreted as a
kind of surrogate multipliers. In the optimal solution
of the LP relaxation, the dual variable ui for every
constraint (2), i = 1� � � � �m, signifies the opportunity
cost of the constraint. Moreover, it is well known that
for the LP-relaxed problem, the dual variables are the
optimal surrogate multipliers and lead to the optimal
LP solution. Recalling the results of §2.1, it is therefore
an obvious choice to set ri = ui, yielding the efficiency
measure edualsj ; compare with Chu and Beasley (1998).
Finally, applying the relative scarcity of every con-

straint as a relevance value, Fréville and Plateau
(1994) suggested setting

ri =
∑n

j=1 wij − ci∑n
j=1 wij

� (17)

yielding the efficiency measure e
fp
j .

Rinnooy Kan et al. (1993) study the quality of
greedy heuristic solutions as a function of the rel-
evance values. They emphasize the importance of
using an optimal dual solution for deriving the rel-
evance values, because those values yield for the
greedy heuristic the upper bound z∗ + m · max�pj�,
where z∗ is the optimal solution value, and this bound
cannot be improved.

3.3. The Core Concept for MKP
The basic concept can be expanded from KP to MKP
without major difficulties. The main problem, how-
ever, lies in the fact that the core and the core problem
crucially depend on the used efficiency measure e. Let
x∗ be an optimal solution and assume that the items
are sorted according to decreasing efficiency e; then
define

ae �=min�j � x∗
j = 0� and be �=max�j � x∗

j = 1�� (18)

The core is given by the items in the interval Ce �=
�ae� � � � � be�, and the core problem is defined as

�MKPCe� maximize z = ∑
j∈Ce

pjxj + p̃ (19)

subject to
∑
j∈Ce

wijxj ≤ ci − �wi�

i = 1� � � � �m� (20)

xj ∈ �0�1�� j ∈ Ce� (21)

with p̃ =∑ae−1
j=1 pj and �wi =

∑ae−1
j=1 wij� i = 1� � � � �m.

In contrast to KP, the solution of the LP relaxation of
MKP does not consist of a single fractional split item,
but its up-to m fractional values give rise to a whole
split interval Se �= �se� � � � � te�, where se and te are the
first index and the last index of variables with frac-
tional values after sorting by efficiency e. Note that,
depending on the choice of the efficiency measure, the

split interval can also contain variables with integer
values. Moreover, sets Se and Ce can in principle have
almost any relation to each other, from inclusion to
disjointness. However, for a “reasonable” choice of e
they are expected to overlap to a large extent.
If the dual optimal solution values of the LP re-

laxation are taken as relevance values, the split inter-
val Se can be precisely characterized. Let xLP be the
optimal solution of the LP relaxation of MKP.

Theorem 1. For efficiency values edualsj there is

xLP
j =

⎧⎪⎪⎨
⎪⎪⎩

1 if ej > 1�

∈ 0�1	 if ej = 1�

0 if ej < 1�

(22)

Proof. The dual LP associated with the LP relax-
ation of MKP is given by

(D(MKP)) minimize
m∑

i=1

ciui +
n∑

j=1

vj (23)

subject to
m∑

i=1

wijui + vj ≥ pj�

j = 1� � � � �n� (24)

ui�vj ≥ 0� i = 1� � � � �m�

j = 1� � � � �n� (25)

where ui are the dual variables corresponding to
the knapsack constraints (2), and vj correspond
to the inequalities xj ≤ 1. For the optimal primal
and dual solutions, the following complementary
slackness conditions hold for j = 1� � � � �n (see any
textbook on linear programming, e.g., Bertsimas and
Tsitsiklis 1997):

xj

(m∑
i=1

wijui + vj − pj

)
= 0� (26)

vj�xj − 1� = 0� (27)

Recall that edualsj = pj/�
∑m

i=1 uiwij �. Hence,
ej > 1 implies pj >

∑m
i=1 wijui, which means that (24)

can only be fulfilled by vj > 0. Now, (27) immediately
yields xj = 1, which proves the first part of the
theorem.
If ej < 1, there is pj <

∑m
i=1 wijui, which together with

vj ≥ 0 makes the second factor of (26) strictly posi-
tive and requires xj = 0. This proves the remainder
of the theorem because nothing has to be shown for
ej = 1. �

It follows from Theorem 1 that Se ⊆ �j � ej = 1� j =
1� � � � �n�. Together with Proposition 1, this means that
there exists an optimal solution xLP, yielding a split
interval with size at most min�m�n�.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

16
4.

15
.1

0.
70

]
on

 2
0

A
pr

il
20

18
, a

t 0
6:

39
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Puchinger, Raidl, and Pferschy: The Multidimensional Knapsack Problem
256 INFORMS Journal on Computing 22(2), pp. 250–265, © 2010 INFORMS

It should be noted that the theorem gives only a
structural result, which does not yield an immediate
algorithmic advantage in computing the primal solu-
tion xLP, because knowing the dual optimal solution
is required.

3.4. Experimental Study of MKP Cores and
Core Sizes

To analyze the core sizes in dependence of differ-
ent efficiency values, we performed an empirical in-
depth examination on smaller instances of Chu and
Beasley’s (1998) benchmark library for which we were
able to compute optimal solutions x∗ (with n = 100
items, m ∈ �5�10� constraints, and n = 250 items, m = 5
constraints).
In Table 3 we examine cores generated by using

the scaled efficiency escaledj as defined in Equation (14),
the efficiency estj as defined in Equation (15), the effi-
ciency e

fp
j as defined in Equations (16) and (17), and

finally the efficiency edualsj setting the relevance val-
ues ri of Equation (16) to the optimal dual-variable
values of the MKP’s LP relaxation. Listed are average
values of the sizes of the split interval ��Se�� and of
the exact core ��Ce�� as a percentage of the number of
items n, the percentage of how much the split interval
covers the core (ScC) and how much the core covers
the split interval (CcS), and the distance between the
center of the split interval and the center of the core
�Cdist� as a percentage of n.

Table 3 Relative Sizes of Split Intervals and Cores and Their Mutual
Coverages and Distances for Efficiencies escaled

j , est
j , efp

j , and
eduals

j

escaledj estj

n m � �Se� �Ce� ScC CcS Cdist �Se� �Ce� ScC CcS Cdist

100 5 0�25 23�40 30�50 72�69 94�71 4�05 27�20 30�20 78�85 88�11 4�80
0�50 29�50 37�60 71�93 88�45 5�95 27�00 35�60 69�88 89�01 5�90
0�75 24�30 27�00 72�61 83�13 5�05 22�80 25�20 77�72 84�08 4�30

250 5 0�25 17�44 22�40 77�20 97�38 1�88 17�12 22�20 76�91 94�62 2�46
0�50 22�88 29�44 71�71 94�25 3�44 23�76 30�88 74�95 94�69 4�04
0�75 11�44 17�84 56�14 88�45 4�60 11�96 16�64 63�82 85�86 3�62

100 10 0�25 42�60 38�30 92�62 84�39 4�35 43�30 38�20 88�78 79�36 5�55
0�50 39�40 45�20 80�80 91�20 5�30 44�40 46�50 85�43 88�49 5�65
0�75 37�50 34�80 94�29 86�42 2�55 38�60 36�20 93�04 87�16 2�10

Average 27�61 31�45 76�67 89�82 4�13 28�46 31�29 78�82 87�93 4�27

e
fp
j edualsj

100 5 0�25 24�70 30�10 75�50 91�94 4�20 5�00 20�20 28�12 100�00 3�30
0�50 27�10 35�80 70�36 89�74 6�35 5�00 22�10 27�49 100�00 3�45
0�75 23�20 26�10 74�47 84�22 4�55 5�00 19�60 26�95 100�00 3�20

250 5 0�25 16�92 21�72 76�87 95�63 2�24 2�00 12�68 18�16 100�00 2�46
0�50 22�96 29�68 74�79 95�02 3�56 2�00 12�20 18�45 100�00 1�38
0�75 11�40 17�12 59�00 87�27 4�06 2�00 10�40 20�18 100�00 1�56

100 10 0�25 42�10 38�20 90�41 83�74 4�75 10�00 23�20 46�57 100�00 2�90
0�50 41�90 45�60 84�52 90�85 5�15 9�80 25�70 48�17 95�00 3�15
0�75 37�90 35�30 94�55 86�96 2�40 9�70 18�80 55�74 99�00 2�75

Average 27�58 31�07 77�83 89�49 4�14 5�61 18�32 32�20 99�33 2�68

Note. Average values over 10 instances per problem class and total averages.

As expected from Theorem 1, the smallest split
intervals, consisting of the fractional variables only,
are derived with edualsj . They further yield the small-
est cores. Using any of the other efficiency mea-
sures results in substantially larger split intervals and
observed sizes; coverages and distances are roughly
comparable for them. The smallest distances between
the centers of the split intervals and the cores are also
obtained with edualsj for almost all instance classes. The
most promising information for devising approximate
cores is therefore available from the split intervals
generated with edualsj , on which we will concentrate
our further investigations.

4. Core-Based Algorithms
After establishing the definition of a core for the MKP
and investigating different approximate core sizes, we
now concentrate on methods for solving approximate
core problems and exploiting them for computing
near-optimal MKP solutions.

4.1. Exact Solution of Core Problems
To evaluate the influence of approximate core sizes
on solution quality and run time, we propose a
fixed core-size algorithm, where we solve approxi-
mate cores using CPLEX 9.0. We performed the exper-
iments on a 2.4 GHz Intel Pentium 4 computer.
In analogy to KP, the approximate core is gener-

ated by adding � items on each side of the center of
the split interval, which coincides fairly well with the
center of the (unknown) exact core. We created the
approximate cores by setting � to 0�1n, 0�15n, 0�2n,
2m+0�1n, and 2m+0�2n, respectively. As an efficiency
measure for the sorting of items from which we deter-
mine the approximate cores, we used edualsj (see §3.2
for the definition of efficiency measures). The differ-
ent values of � were chosen in accordance with the
results of the previous section, where an average core
size of about 0�2n has been observed. Eventual out-
liers and the distances between the centers of the core
and the split interval were the motivation for also con-
sidering the larger approximate core sizes. We further
used linear combinations of m and n because the core
sizes in general do not depend on the number of items
only, but also on the number of constraints. Table 4
lists average solution values and CPU times for com-
pletely solving the original problem, and percentage
gaps to these optimal values (%opt = 100 · �z∗ − z�/z∗),
numbers of times the optimum was reached (#), as
well as average CPU times as a percentage of the
times required for solving the original problem (%t)
for the approximate cores of different sizes.
The results of CPLEX applied to cores of different

sizes clearly indicate that smaller cores can be solved
substantially faster, and the obtained solution values
are only slightly worse than the optimal ones given

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

16
4.

15
.1

0.
70

]
on

 2
0

A
pr

il
20

18
, a

t 0
6:

39
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Puchinger, Raidl, and Pferschy: The Multidimensional Knapsack Problem
INFORMS Journal on Computing 22(2), pp. 250–265, © 2010 INFORMS 257

Table 4 Solving Approximate Cores of Different Sizes to Optimality

Orig. prob. � = 0�1n � = 0�15n � = 0�2n � = 2m + 0�1n � = 2m + 0�2nn

m � z t�s� %opt # %t %opt # %t %opt # %t %opt # %t %opt # %t

100 0�25 24�197 21 0�097 5 1 0�034 7 9 0�015 9 32 0�015 9 32 0�000 10 62
5 0�50 43�253 27 0�053 4 1 0�018 6 6 0�002 9 24 0�002 9 24 0�002 9 64

0�75 60�471 6 0�038 5 4 0�021 7 17 0�001 9 39 0�001 9 39 0�000 10 61
250 0�25 60�414 1�474 0�008 7 36 0�003 9 81 0�000 10 82 0�003 9 69 0�000 10 91

5 0�50 109�293 1�767 0�002 8 21 0�000 10 63 0�000 10 67 0�000 10 59 0�000 10 73
0�75 151�560 817 0�000 10 17 0�000 10 47 0�000 10 72 0�000 10 40 0�000 10 61

100 0�25 22�602 189 0�473 1 0 0�152 4 1 0�002 9 10 0�000 10 46 0�000 10 66
10 0�50 42�661 97 0�234 3 0 0�084 5 1 0�030 8 13 0�022 8 60 0�000 10 75

0�75 59�556 29 0�036 6 0 0�015 8 3 0�011 9 22 0�000 10 54 0�000 10 70

Average 63�778 492 0�105 5.4 9 0�036 7.3 25 0�007 9.2 40 0�005 9.3 47 0�000 9.9 69

Note. Average values over 10 instances per problem class and total averages.

by the Orig. prob. column. The best results concerning
run times were achieved with � = 0�1n, with which
the time could be reduced by factors ranging from
3 to 1,000. Despite this strong speedup, the obtained
solution values are very close to the respective optima
(≈0�1% on average). Solving the larger cores requires
more time, but almost all of the optimal solutions can
be reached with substantial time savings.
For large MKP instances the exact solution of an

approximate core often still consumes too much time.
Therefore, we also consider truncated runs of CPLEX
as approximate solution strategies. In our experi-
ments, we used the hardest instances of Chu and
Beasley’s (1998) benchmark library, with n = 500 items
and m ∈ �5�10�30� constraints, and imposed CPU
time limits of 5, 10, 100, and 500 seconds on the runs.
Table 5 lists the following average results over 10
instances per problem class: percentage gaps to the
optimal solution values of the LP relaxations (%LP),
standard deviations as subscripts, and numbers of
times this core size led to best solutions of these
experiments (#).
It can be observed that for all considered time

limits, CPLEX applied to approximate cores of any
tested size consistently yields better average results
than when applied to the original MKP. This has
been confirmed by one-sided Wilcoxon signed-rank
tests yielding error probabilities less than 1% for all
considered time limits and approximate core sizes.
The best average results for a time limit of 500
seconds are obtained with core sizes of � = 0�2n.
For instances with m ∈ �5�10�, better results are
achieved with smaller approximate cores, whereas
for m = 30 larger approximate cores are usually bet-
ter. Of course, the number of nodes explored in
the branch-and-bound tree increases with decreasing
problem/core size.
To test the scalability of our approach, we per-

formed further tests on the set of 11 instances pro-
posed by Glover and Kochenberger (1996). These

instances range from n = 100 and m = 15 up to
n = 2�500 and m = 100. We tested with approximate
core sizes � ∈ �0�1n�0�15n�0�2n�0�3n� and run times
of 5, 10, 100, and 500 seconds. The results of these
experiments are displayed in Table 6. Listed are per-
centage gaps (%LP) and the number of investigated
branch-and-bound nodes.
For each instance, overall best obtained objective

values are printed bold. The cases where solving an
approximate core led to equally good or better solu-
tions in comparison to the application of CPLEX to
the original problem are marked by light and dark
gray backgrounds, respectively.
These results confirm the trend that optimizing

approximate cores in general yields better solutions
than optimizing the original problem in the same
time. The longer the run times become, the better the
results on the original problems are. The instances
of Glover and Kochenberger (1996) are occasionally
argued to be more complicated to solve because of
their correlation between the resouce consumption
values. In fact, our results indicate that slightly higher
values for the approximate core size tend to be ben-
eficial here for small- to medium-size instances. In
particular, it turns out that a core size of � = 0�1n
yields rather inferior results for smaller instances
(≤200 items). In contrast, however, for larger instances
and in particular longer run times, � = 0�1n seems to
be very well suited again.
Considering for � ∈ �0�15n�0�2n�0�3n� and each run

time the number of instances (out of 11) where the
original problem yielded better solutions than the
core problem, it turns out that this number is usually
only 1, sometimes 2, but at most 3. The same holds
for the smaller core size � = 0�1n applied to larger
instances.

4.2. Heuristic Solution of Core Problems by
a Memetic Algorithm

As an alternative to truncated runs of CPLEX, we now
consider the application of a metaheuristic for heuris-

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

16
4.

15
.1

0.
70

]
on

 2
0

A
pr

il
20

18
, a

t 0
6:

39
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Puchinger, Raidl, and Pferschy: The Multidimensional Knapsack Problem
258 INFORMS Journal on Computing 22(2), pp. 250–265, © 2010 INFORMS

Table 5 Solving Approximate Cores of Different Sizes with Truncated CPLEX

Orig. prob. � = 0�1n � = 0�15n � = 0�2n

m � %LP # %LP # %LP # %LP #

t�s� = 5
5 0�25 0�1460�034 2 0�1120�024 9 0�1220�024 4 0�1200�023 3

0�5 0�0630�012 3 0�0530�011 8 0�0580�010 6 0�0600�014 6
0�75 0�0320�008 6 0�0300�006 7 0�0300�006 7 0�0310�008 7

10 0�25 0�3090�056 2 0�2750�030 4 0�2800�025 4 0�2730�031 5
0�5 0�1310�017 4 0�1200�018 6 0�1260�016 3 0�1280�015 2
0�75 0�0900�011 3 0�0810�009 5 0�0810�008 5 0�0820�006 3

30 0�25 0�7280�078 3 0�7100�014 2 0�6900�058 3 0�6800�052 3
0�5 0�3160�036 3 0�3020�017 3 0�2970�023 4 0�3080�021 3
0�75 0�1940�018 2 0�1830�016 4 0�1870�016 3 0�1850�016 4

Average 0�2230�030 3.1 0�2070�016 5.3 0�2080�021 4.3 0�2080�021 4.0

t�s� = 10
5 0�25 0�1180�020 3 0�1060�019 6 0�1110�018 7 0�1130�016 4

0�5 0�0610�013 3 0�0450�007 9 0�0490�008 6 0�0480�007 7
0�75 0�0320�008 5 0�0290�006 7 0�0290�006 6 0�0280�005 7

10 0�25 0�2950�048 2 0�2570�037 5 0�2660�027 3 0�2620�033 6
0�5 0�1260�013 2 0�1080�010 7 0�1170�011 5 0�1180�014 4
0�75 0�0880�010 2 0�0770�006 6 0�0770�007 6 0�0790�007 5

30 0�25 0�7150�073 2 0�6910�041 3 0�6860�055 3 0�6440�097 2
0�5 0�3080�027 3 0�2950�021 3 0�2940�024 4 0�3020�017 3
0�75 0�1810�027 3 0�1780�010 2 0�1800�019 4 0�1780�016 4

Average 0�2140�026 2.8 0�1980�018 5.3 0�2010�019 4.9 0�1970�024 4.7

t�s� = 100
5 0�25 0�0940�019 3 0�0820�012 8 0�0860�013 7 0�0890�015 5

0�5 0�0440�005 4 0�0400�005 7 0�0410�004 9 0�0420�005 8
0�75 0�0270�006 7 0�0260�004 9 0�0260�004 9 0�0260�004 8

10 0�25 0�2210�030 4 0�2130�020 7 0�2080�022 6 0�2140�026 5
0�5 0�1010�013 4 0�0950�011 8 0�0990�011 6 0�0990�009 6
0�75 0�0720�008 3 0�0680�008 4 0�0690�008 4 0�0690�008 5

30 0�25 0�6300�051 1 0�6460�048 0 0�6090�047 2 0�5860�085 7
0�5 0�2710�015 4 0�2700�017 2 0�2730�012 2 0�2650�019 5
0�75 0�1670�016 1 0�1650�013 4 0�1700�016 3 0�1630�016 4

Average 0�1810�018 3.4 0�1780�013 5.4 0�1760�015 5.3 0�1730�021 5.9

t�s� = 500
5 0�25 0�0800�010 5 0�0750�008 9 0�0760�008 9 0�0760�010 8

0�50 0�0400�005 6 0�0390�005 7 0�0390�005 9 0�0390�006 9
0�75 0�0250�004 6 0�0240�003 10 0�0250�004 8 0�0250�004 8

10 0�25 0�2060�022 1 0�1980�021 5 0�1950�023 6 0�1980�023 4
0�50 0�0940�013 4 0�0880�009 8 0�0900�009 6 0�0920�012 5
0�75 0�0660�009 4 0�0650�009 5 0�0640�007 7 0�0650�008 7

30 0�25 0�5980�038 2 0�6210�034 0 0�5660�049 4 0�5370�061 6
0�50 0�2580�009 2 0�2460�021 3 0�2430�027 4 0�2500�024 2
0�75 0�1580�013 2 0�1510�013 6 0�1600�011 1 0�1510�013 5

Average 0�1690�013 3.6 0�1670�014 5.9 0�1620�016 6.0 0�1590�018 6.0

Notes. Average values over 10 instances per problem class and total averages, n = 500, time limits of 5, 10, 100, and 500 seconds.
In each row, the best average percentage gaps are printed in bold.

tically solving core problems of large MKP instances
within reasonable time. From another perspective,
this approach can also be seen as a study of how the
reduction to MKP cores influences the performance of
metaheuristics. The hope is that the core concept also
enables us in this case to find better solutions within
given time limits.

We consider a state-of-the-art memetic algorithm
(MA) for solving the MKP and again apply it
to differently sized approximate cores. The MA is
based on Chu and Beasley’s (1998) principles and
includes some improvements suggested in Raidl
(1998), Gottlieb (1999), and Raidl and Gottlieb (2005).
The framework is steady state and the creation of ini-

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

16
4.

15
.1

0.
70

]
on

 2
0

A
pr

il
20

18
, a

t 0
6:

39
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Puchinger, Raidl, and Pferschy: The Multidimensional Knapsack Problem
INFORMS Journal on Computing 22(2), pp. 250–265, © 2010 INFORMS 259

Table 6 Solving Approximate Cores of Different Sizes with Truncated CPLEX, Glover-Kochenberger (1996) Benchmark Set

Orig. prob. �= 0�1n �= 0�15n �= 0�2n �= 0�3n

n m Obj Nnodes Obj Nnodes Obj Nnodes Obj Nnodes Obj Nnodes

t�s�= 5
100 15 0�263 29�557 0�554 1�007 0�501 9�268 0�263 2�725 0�263 24�016

100 25 0�583 13�276 0�810 747 0�533 1�719 0�533 15�322 0�533 19�042

150 25 0�398 7�963 0�486 10�104 0�398 26�554 0�415 17�623 0�398 13�166

150 50 0�668 2�878 1�117 3�049 0�582 13�892 0�599 8�078 0�565 4�673

200 25 0�295 5�731 0�308 28�759 0�255 16�696 0�255 13�155 0�295 10�072

200 50 0�560 1�985 0�521 17�882 0�430 8�256 0�404 5�026 0�508 3�318

500 25 0�106 1�655 0�101 11�271 0�106 7�961 0�106 5�502 0�101 3�391

500 50 0�201 485 0�201 3�248 0�243 2�407 0�185 1�619 0�206 966

1,500 25 0�037 289 0�032 3�191 0�039 2�048 0�037 1�366 0�030 701

1,500 50 0�077 2 0�065 859 0�060 507 0�067 319 0�081 133

2,500 100 0�112 0 0�086 0 0�066 0 0�075 0 0�084 0

t�s�= 10
100 15 0�263 29�557 0�554 1�007 0�501 9�268 0�263 2�725 0�263 24�016

100 25 0�583 27�393 0�810 747 0�533 1�719 0�533 15�322 0�508 40�401

150 25 0�380 16�732 0�486 10�104 0�398 56�984 0�398 36�078 0�398 26�561

150 50 0�668 6�339 1�117 3�049 0�565 29�870 0�582 17�641 0�565 10�040

200 25 0�295 12�001 0�295 72�445 0�255 34�233 0�255 26�744 0�242 20�595

200 50 0�469 4�334 0�521 38�558 0�430 17�412 0�404 10�756 0�508 7�126

500 25 0�101 4�178 0�101 23�031 0�106 16�733 0�096 11�542 0�080 7�625

500 50 0�201 1�321 0�201 7�216 0�243 5�330 0�185 3�803 0�206 2�424

1,500 25 0�037 865 0�032 6�653 0�039 4�857 0�037 3�351 0�030 1�879

1,500 50 0�077 199 0�065 2�001 0�060 1�358 0�067 954 0�065 551

2,500 100 0�082 0 0�086 41 0�066 0 0�068 0 0�076 0

t�s�= 100
100 15 0�263 29�557 0�554 1�007 0�501 9�268 0�263 2�725 0�263 24�016

100 25 0�533 309�993 0�810 747 0�533 1�719 0�533 15�322 0�458 195�889

150 25 0�380 180�789 0�486 10�104 0�380 190�920 0�345 399�922 0�327 272�864

150 50 0�565 68�090 1�117 3�049 0�513 191�459 0�461 211�827 0�565 109�941

200 25 0�242 121�883 0�281 79�609 0�242 378�119 0�255 277�355 0�242 206�943

200 50 0�456 49�095 0�508 132�496 0�430 205�375 0�404 119�730 0�430 78�021

500 25 0�096 48�584 0�090 229�000 0�096 170�792 0�090 121�344 0�080 82�100

500 50 0�201 18�763 0�195 84�821 0�190 57�975 0�185 44�511 0�174 30�438

1,500 25 0�034 15�362 0�025 81�001 0�034 54�664 0�032 40�921 0�030 27�673

1,500 50 0�067 5�409 0�065 28�373 0�060 19�029 0�060 14�990 0�063 10�210

2,500 100 0�063 201 0�069 4�554 0�066 2�299 0�066 1�041 0�069 950

t�s�= 500
100 15 0�263 29�557 0�554 1�007 0�501 9�268 0�263 2�725 0�263 24�016

100 25 0�458 944�476 0�810 747 0�533 1�719 0�533 15�322 0�458 195�889

150 25 0�257 929�892 0�486 10�104 0�380 190�920 0�345 2�094�931 0�327 1�333�451

150 50 0�530 353�671 1�117 3�049 0�513 191�459 0�461 1�576�936 0�496 581�966

200 25 0�242 612�130 0�281 79�609 0�242 2�148�333 0�255 1�347�741 0�242 1�017�448

200 50 0�417 245�609 0�508 132�496 0�404 1�097�270 0�404 646�145 0�404 390�232

500 25 0�096 243�026 0�090 1�126�323 0�075 848�853 0�080 603�189 0�070 400�001

500 50 0�169 96�813 0�169 456�310 0�190 291�099 0�169 224�554 0�174 159�790

1,500 25 0�032 83�251 0�025 393�755 0�027 264�968 0�023 195�736 0�025 142�998

1,500 50 0�067 31�623 0�049 145�821 0�056 98�285 0�060 80�401 0�056 57�045

2,500 100 0�062 4�683 0�057 26�596 0�058 17�219 0�060 10�283 0�059 8�833

Note. Time limits of 5, 10, 100, and 500 seconds.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

16
4.

15
.1

0.
70

]
on

 2
0

A
pr

il
20

18
, a

t 0
6:

39
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Puchinger, Raidl, and Pferschy: The Multidimensional Knapsack Problem
260 INFORMS Journal on Computing 22(2), pp. 250–265, © 2010 INFORMS

tial solutions is guided by the solution to the LP relax-
ation of the MKP, as described in Gottlieb (1999). Each
new candidate solution is derived by selecting two
parents via binary tournaments, performing uniform
crossover on their characteristic vectors x, flipping
each bit with probability 1/n, performing repair if a
capacity constraint is violated, and always applying
local improvement. If such a new candidate solution
is different from all solutions in the current popula-
tion, it replaces the worst of them.
Both repair and local improvement are based on

greedy first-fit strategies and guarantee that any
resulting candidate solution lies at the boundary of
the feasible region, on which optimal solutions are
always located. The repair procedure considers all
items in a specific order � and removes selected items
(xj = 1→ xj = 0) as long as any knapsack constraint is
violated. Local improvement works vice versa: it con-
siders all items in the reverse order �� and selects
items not yet appearing in the solution as long as no
capacity limit is exceeded.
Crucial for these strategies to work well is the

choice of the ordering �. Items that are likely to
be selected in an optimal solution must appear near
the end of �. Following the results of §3.4, it is
most promising to determine � by ordering the items
according to efficiency measure edualsj , as has already
been suggested in Chu and Beasley (1998).
As in the case of truncated CPLEX, CPU time lim-

its of 5, 10, 100, and 500 seconds were imposed on
the MA. Because the MA usually converges much
earlier, it has been restarted every 1�000�000 itera-
tions, always keeping the so-far best solution in the
population. The hardest benchmark instances of Chu
and Beasley’s (1998) library with n = 500 were used.
The population size was 100. Table 7 shows average
results of the MA applied to the original problem and
to approximate cores of different sizes. Similarly, as
for the truncated CPLEX experiments, listed are per-
centage gaps (%LP), standard deviations as subscripts,
and numbers of times each core size yielded the best
solutions of these experiments (#).
As observed with truncated CPLEX, the use of

approximate cores also leads, in the case of the MA,
to consistently better average solution qualities for
all tested time limits. This was confirmed by one-
sided Wilcoxon signed-rank tests yielding error prob-
abilities of less than 0�001% for all tested time lim-
its, except for t = 500, where the error probabilities
are less than 1%. Obviously, the core size has a sub-
stantial influence on the number of iterations the MA
can carry out within the allowed time: with the core
sizes of 0�1n, 0�15n, and 0�2n, about 3.6, 2.9, and 2.3
times, respectively, more iterations were performed
than when applying the MA to the original problem.

The larger number of candidate solutions the MA
can examine when it is restricted to a core problem
seems to be one reason for the usually better final
solutions. Most of the best results for all considered
run time limits were obtained with � = 0�1n and � =
0�15n, thus, with relatively small approximate cores.
In summary, we applied CPLEX and an MA

to approximate cores of hard-to-solve benchmark
instances and observed that using approximate cores
of fixed size instead of the original problem clearly
and consistently improves the average solution qual-
ity when using different time limits between 5 and
500 seconds.

5. Collaborative Approaches
So far, we have looked individually at ILP-based
and metaheuristic methods for solving the MKP
and corresponding approximate core problems. Now
we consider a hybrid architecture in which the
ILP-based approach and the MA are performed in
(quasi-)parallel and continuously exchange informa-
tion in a bidirectional asynchronous way. In general,
such hybrid systems have drawn much attention over
the recent years because they often significantly out-
perform the individual “pure” approaches; see, e.g.,
Puchinger and Raidl (2005) for an overview.
The basic concept is to run CPLEX and the

MA from §4.2 in parallel on two individual
machines/CPUs or in a pseudoparallel way as indi-
vidual processes on a single machine. Interprocess
communication takes place over standard TCP/IP-
socket connections. In the following experiments, we
used only a single-CPU 2.4 GHz Intel Pentium 4 PC.
The two processes are started at the same time, and
their pseudoparallel execution is handled by the oper-
ating system.
We consider primal and dual information to be

exchanged between the algorithms, as explained
in §5.1. Different variants of the collaborative combi-
nation are experimentally compared for the complete
MKP in §5.2. In §5.3, we put our attention back to core
problems of different sizes, also approaching them by
collaboration.

5.1. Information Exchange
If a new so-far best solution is encountered by one of
the algorithms, it is immediately sent to the partner. If
the MA receives such a solution, it is included into its
population by replacing the worst solution, as in the
case of any other newly created solution candidate. In
CPLEX, a received solution is set as a new incumbent
solution, providing a new global lower bound, pos-
sibly enabling the fathoming of further branch-and-
bound (B&B) tree nodes.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

16
4.

15
.1

0.
70

]
on

 2
0

A
pr

il
20

18
, a

t 0
6:

39
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Puchinger, Raidl, and Pferschy: The Multidimensional Knapsack Problem
INFORMS Journal on Computing 22(2), pp. 250–265, © 2010 INFORMS 261

Table 7 Solving Approximate Cores of Different Sizes with the MA

Orig. prob. � = 0�1n � = 0�15n � = 0�2n

m � %LP # %LP # %LP # %LP #

t�s� = 5
5 0�25 0�0990�015 2 0�0910�006 6 0�0920�008 5 0�0970�014 4

0�5 0�0500�009 1 0�0430�006 6 0�0440�006 5 0�0430�004 5
0�75 0�0310�004 2 0�0260�002 7 0�0260�003 7 0�0290�005 5

10 0�25 0�2690�034 1 0�2450�025 4 0�2420�015 4 0�2430�027 5
0�5 0�1200�015 3 0�1120�008 5 0�1130�011 7 0�1150�012 5
0�75 0�0780�008 3 0�0730�007 8 0�0740�006 5 0�0750�007 4

30 0�25 0�6960�053 1 0�6560�028 4 0�6520�051 2 0�6480�055 5
0�5 0�2900�020 1 0�2850�019 2 0�2730�027 8 0�2840�025 2
0�75 0�1770�018 3 0�1700�014 7 0�1720�018 5 0�1760�017 4

Average 0�2010�019 1.9 0�1890�013 5.4 0�1880�016 5.3 0�1900�018 4.3

t�s� = 10
5 0�25 0�1030�030 0 0�0810�014 6 0�0880�014 3 0�0880�015 5

0�5 0�0470�011 1 0�0410�004 8 0�0430�006 2 0�0440�006 3
0�75 0�0300�005 2 0�0260�003 8 0�0270�003 6 0�0260�003 7

10 0�25 0�2640�038 1 0�2260�020 6 0�2350�025 3 0�2410�018 3
0�5 0�1160�011 2 0�1070�011 8 0�1070�009 6 0�1100�013 4
0�75 0�0740�007 3 0�0720�005 6 0�0700�006 9 0�0750�006 3

30 0�25 0�6550�045 2 0�6270�049 4 0�6090�079 7 0�6310�058 4
0�5 0�2900�025 1 0�2740�019 4 0�2640�025 5 0�2670�031 5
0�75 0�1710�015 3 0�1660�013 4 0�1710�015 3 0�1670�015 6

Average 0�1950�018 1.7 0�1800�015 6.0 0�1790�020 4.9 0�1830�019 4.4

t�s� = 100
5 0�25 0�0850�011 3 0�0750�009 9 0�0770�008 8 0�0790�009 5

0�5 0�0420�006 3 0�0390�004 8 0�0400�004 8 0�0400�004 5
0�75 0�0260�002 3 0�0240�003 9 0�0240�003 9 0�0250�004 6

10 0�25 0�2300�016 0 0�2090�023 7 0�2160�011 5 0�2160�015 5
0�5 0�1010�011 3 0�0990�007 5 0�0970�011 6 0�1000�009 4
0�75 0�0690�006 5 0�0670�006 7 0�0680�006 5 0�0690�006 5

30 0�25 0�6240�042 3 0�5950�073 5 0�5930�072 4 0�6020�076 3
0�5 0�2720�019 0 0�2570�014 7 0�2620�022 3 0�2560�019 6
0�75 0�1660�013 3 0�1580�012 7 0�1610�011 5 0�1580�010 7

Average 0�1800�014 2.6 0�1690�017 7.1 0�1710�016 5.9 0�1720�017 5.1

t�s� = 500
5 0�25 0�0780�011 6 0�0730�008 10 0�0740�008 9 0�0740�008 9

0�50 0�0400�004 6 0�0390�004 9 0�0390�004 9 0�0400�004 7
0�75 0�0250�003 7 0�0240�003 9 0�0240�003 10 0�0240�003 9

10 0�25 0�2080�019 5 0�2020�017 5 0�2020�013 6 0�2080�018 4
0�50 0�0990�007 2 0�0930�007 6 0�0910�010 8 0�0930�009 5
0�75 0�0660�005 6 0�0650�005 8 0�0670�005 4 0�0680�006 4

30 0�25 0�6040�046 1 0�5730�078 5 0�5750�063 5 0�5690�068 6
0�50 0�2540�021 3 0�2570�015 1 0�2460�019 7 0�2530�021 3
0�75 0�1590�012 4 0�1560�013 5 0�1570�012 3 0�1570�011 5

Average 0�1700�014 4.4 0�1650�017 6.4 0�1640�015 6.8 0�1650�017 5.8

Notes. Average values over 10 instances per problem class and total average values, n = 500; time limits of 5, 10, 100, and 500 seconds. In each
row, the best average percentage gaps are printed in bold.

Additionally, when CPLEX finds a new incumbent
solution, it also sends the current dual-variable val-
ues associated with the knapsack constraints, which
are devised from the LP relaxation of the node in the
B&B tree currently being processed, to the MA. When
receiving these dual-variable values, the MA recal-

culates the efficiencies and the item ordering � for
repair and local improvement, as described in §4.2.

5.2. Applying Collaborative Approaches
to the MKP

The computational experiments were performed, as
before, with a total CPU time limit of 500 seconds. The

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

16
4.

15
.1

0.
70

]
on

 2
0

A
pr

il
20

18
, a

t 0
6:

39
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Puchinger, Raidl, and Pferschy: The Multidimensional Knapsack Problem
262 INFORMS Journal on Computing 22(2), pp. 250–265, © 2010 INFORMS

Table 8 Results of Collaborative Strategies

No cooperation Equal cooperation Skewed cooperation

CPLEX MA CPLEX_MA CPLEX_MA_D CPLEX_MA CPLEX_MA_D

m � %LP # %LP # %LP # %LP # %LP # %LP #

5 0�25 0�0800�010 6 0�0780�011 7 0�0790�010 6 0�0770�010 7 0�0780�010 6 0�0780�008 8
0�50 0�0400�005 7 0�0400�004 9 0�0410�004 5 0�0410�003 5 0�0390�005 8 0�0390�005 10
0�75 0�0250�004 7 0�0250�003 8 0�0250�004 8 0�0250�004 7 0�0250�004 7 0�0250�004 7

10 0�25 0�2060�022 4 0�2080�019 5 0�2070�016 2 0�2030�022 5 0�2050�015 3 0�1990�015 5
0�50 0�0940�013 5 0�0990�007 3 0�0930�012 5 0�0980�009 2 0�0950�012 3 0�0960�013 4
0�75 0�0660�009 4 0�0660�005 4 0�0670�008 3 0�0670�007 4 0�0660�008 5 0�0660�008 2

30 0�25 0�5980�038 3 0�6040�046 3 0�5940�035 3 0�5960�034 3 0�5920�039 3 0�5740�065 5
0�50 0�2580�009 2 0�2540�021 5 0�2570�012 4 0�2550�009 4 0�2540�019 3 0�2570�011 4
0�75 0�1580�013 3 0�1590�012 6 0�1580�011 3 0�1560�011 7 0�1580�010 2 0�1560�011 4

Average 0�1690�013 4.6 0�1700�014 5.6 0�1690�012 4.3 0�1690�012 4.9 0�1680�013 4.4 0�1660�015 5.4

Notes. Average values over 10 instances per problem class and total averages, n = 500. In each row, the best average percentage
gaps are printed in bold.

MA and CPLEX were started at the same time and
were each given 250 seconds (equal case), or a running
time was assigned by a 2:1 ratio, terminating the MA
after 167 seconds and performing CPLEX with a time
limit of 333 seconds (skewed case). We studied these
two variants because preliminary tests with the coop-
erative approach suggested that the MA often was the
main contributor in finding improved solutions dur-
ing the early stages of the optimization process.
Table 8 compares the results of the independent

application of CPLEX and the MA to those of
equal and skewed cooperation. Regarding informa-
tion exchange, we further differentiate between the
case where only so-far best solutions are exchanged
(CPLEX_MA) and the case where, additionally, dual-
variable values are sent from CPLEX to the MA
(CPLEX_MA_D). Subscripts again display standard
deviations.
Results indicate a small but significant advan-

tage for the cooperative strategies. Use of the
skewed collaboration scheme and the additional ex-
change of dual-variable values improved the solu-
tion quality obtained, on average, for almost all
instance classes. Interestingly, when the MA was exe-
cuted independently, it achieved the highest num-
ber of best solutions obtained, whereas it yielded,
on average, the worst solution quality. The best
average solution quality and the second-highest num-
ber of obtained best solutions is achieved with
CPLEX_MA_D using the skewed cooperation strat-
egy. A one-sided Wilcoxon signed-rank test showed
that, in general, CPLEX_MA_D/skewed achieves bet-
ter results than CPLEX with an error probability of
1�5% and better results than the MA with an error
probability of 5�3%.
In our next experiments, we focused the optimiza-

tion of CPLEX to the more promising part of the search

space in the neighborhood of the solution to the LP
relaxation, as we already did in §2.2. The local branch-
ing constraint (10) is added to the ILP formulation
(1)–(3) of the MKP, and only if this restricted problem
could be solved to optimality within the time limit,
CPLEX continues with the remainder of the problem.
Table 9 shows the results of the collaboration between
the MA and this locally constrained CPLEX (LC). The
neighborhood-size parameter k was set to 25, which
yielded on average the best results in §2.2. Again,
we considered the variants with exchange of so-far
best solutions only (LC_MA) and with the additional
exchange of dual-variable values (LC_MA_D). Both
cases were tested with equal and skewed coopera-
tion strategies. For comparison purposes, we also list
results of LC and the MA performed alone. Subscripts
have the same meanings as before.
These results do not allow clear conclusions. The

best average solution quality over all instance classes
is observed when using LC alone; however, a one-
sided Wilcoxon signed-rank test showed that this
difference is statistically insignificant. This result
primarily comes from the extraordinary good solu-
tions obtained for m = 30, � = 0�25. For the remaining
instance classes, LC_MA_D provides better or equal
results, which can be seen by the highest average
number of times it obtained the best solutions. Again,
the skewed collaboration strategy provides slightly
better results than the equal strategy.

5.3. Applying Collaborative Approaches to
MKP Cores

Table 10 shows results of the collaboration between
the MA and CPLEX applied to approximate core
problems of different sizes (� = 0�15n and � = 0�2n);
efficiency measure edualsj was used. We list the results
for the variant where so-far best solutions and dual

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

16
4.

15
.1

0.
70

]
on

 2
0

A
pr

il
20

18
, a

t 0
6:

39
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Puchinger, Raidl, and Pferschy: The Multidimensional Knapsack Problem
INFORMS Journal on Computing 22(2), pp. 250–265, © 2010 INFORMS 263

Table 9 Results of Collaborative Strategies with Locally Constrained CPLEX

No cooperation Equal cooperation Skewed cooperation

LC MA LC_MA LC_MA_D LC_MA LC_MA_D

m � %LP # %LP # %LP # %LP # %LP # %LP #

5 0�25 0�0800�009 6 0�0780�011 7 0�0770�010 7 0�0800�011 7 0�0750�007 10 0�0780�010 7
0�50 0�0390�005 9 0�0400�004 8 0�0400�004 7 0�0390�005 7 0�0390�004 8 0�0390�005 8
0�75 0�0250�004 7 0�0250�003 7 0�0250�003 9 0�0250�003 6 0�0250�004 7 0�0250�004 9

10 0�25 0�2060�022 3 0�2080�019 5 0�2060�017 2 0�2000�019 5 0�2020�012 3 0�2020�021 4
0�50 0�0950�014 3 0�0990�007 2 0�0950�012 4 0�0920�013 6 0�0920�013 5 0�0940�011 4
0�75 0�0660�008 4 0�0660�005 5 0�0670�006 5 0�0660�008 5 0�0660�007 5 0�0650�008 6

30 0�25 0�5550�067 7 0�6040�046 3 0�5940�041 4 0�6070�039 2 0�5910�036 2 0�5710�067 5
0�50 0�2570�012 2 0�2540�021 3 0�2510�019 6 0�2570�012 3 0�2510�010 5 0�2600�012 2
0�75 0�1550�011 6 0�1590�012 4 0�1560�011 5 0�1540�010 6 0�1560�09 5 0�1550�011 8

Average 0�1640�017 5.2 0�1700�014 4.9 0�1680�014 5.4 0�1690�013 5.2 0�1660�011 5.6 0�1650�016 5.9

Notes. Average values over 10 instances per problem class and total averages, n = 500. In each row, the best average percentage
gaps are printed in bold.

variable values are exchanged with the skewed coop-
eration strategy (CPLEX_MA_D). For comparison, the
table also contains the results of the independently
performed CPLEX and MA.
When solving approximate cores of different sizes,

the cooperative approach cannot always improve
average results of the individual algorithms. Consider-
ing the core size � = 0�15n, the collaborative approach
dominates the individual algorithms, as confirmed
by a one-sided Wilcoxon signed-rank test yielding an
error probability of less than 5%. In the case of � =
0�2n, results are not as clear anymore because restrict-
ing the search space to cores enables the individual
algorithms to find very high-quality solutions.

6. Comparison to Currently
Best Solutions

To compare the approaches we developed to the tabu
search-based approach from Vasquez and Vimont

Table 10 Results of Collaborative Strategies Applied to MKP Cores of Different Sizes

CPLEX MA CPLEX_MA_D

� = 0�15n � = 0�2n � = 0�15n � = 0�2n � = 0�15n � = 0�2n

m � %LP # %LP # %LP # %LP # %LP # %LP #

5 0�25 0�0760�008 6 0�0760�010 6 0�0740�008 8 0�0740�008 8 0�0760�011 6 0�0750�007 7
0�50 0�0390�005 8 0�0390�006 7 0�0390�004 8 0�0400�004 7 0�0390�005 8 0�0390�005 7
0�75 0�0250�004 8 0�0250�004 8 0�0240�003 9 0�0240�003 8 0�0240�003 8 0�0250�004 8

10 0�25 0�1950�023 6 0�1980�023 5 0�2020�013 3 0�2080�018 1 0�1970�022 5 0�2020�019 3
0�50 0�0900�009 5 0�0920�012 4 0�0910�010 4 0�0930�009 3 0�0880�009 7 0�0890�009 6
0�75 0�0640�007 7 0�0650�008 8 0�0670�005 2 0�0680�006 1 0�0650�007 5 0�0650�008 6

30 0�25 0�5660�049 3 0�5370�061 5 0�5750�063 2 0�5690�068 3 0�5490�070 5 0�5480�064 3
0�50 0�2430�027 4 0�2500�024 2 0�2460�019 2 0�2530�021 1 0�2410�029 3 0�2460�025 3
0�75 0�1600�011 0 0�1510�013 6 0�1570�012 2 0�1570�011 1 0�1540�009 2 0�1540�010 4

Average 0�1620�016 5.2 0�1590�018 5.7 0�1640�015 4.4 0�1650�017 3.7 0�1590�018 5.4 0�1600�017 5.2

Notes. Average values over 10 instances per problem class and total averages, n = 500. In each row, the best average percentage
gaps are printed in bold.

(2005), which yielded the best-known results for the
benchmark instances used, we tested some of our
methods on a dual AMD Opteron 250 machine with
2.4 GHz, with total CPU times of 1,800 seconds.
Table 11 lists the results of Vasquez and Vimont

(2005), CPLEX without additional constraints
(CPLEX), CPLEX applied to approximate cores
generated with edualsj and � = 0�25n (CPLEX C),
CPLEX_MA_D applied to the same cores with the
skewed cooperation strategy (CPLEX_MA_D C s), and
finally, a version with the equal cooperation strategy
and 7,200 seconds per algorithm (CPLEX_MA_D C el).
Because we used a dual-processor machine, the paral-
lel approaches were actually executed in parallel, and
wall clock times of about 900, 1,200, and 7,200 sec-
onds, respectively, were needed per instance. Shown
are average percentage gaps to the optimal objective
values of the LP relaxations (%LP), corresponding
standard deviations as subscripts, the number of

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

16
4.

15
.1

0.
70

]
on

 2
0

A
pr

il
20

18
, a

t 0
6:

39
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Puchinger, Raidl, and Pferschy: The Multidimensional Knapsack Problem
264 INFORMS Journal on Computing 22(2), pp. 250–265, © 2010 INFORMS

Table 11 Solving the MKP with Different Variants and Total CPU Times of 1,800 Seconds per Instance, for the Last Column
of 14,400 Seconds, Compared to Best-Known Approach

Vasquez and Vimont (2005) CPLEX CPLEX C CPLEX_MA_D C s CPLEX_MA_D C el

m � %LP # t�s� %LP # %LP # %LP # %LP #

5 0�25 0�0740�010 8 47�469 0�0730�008 9 0�0730�008 9 0�0730�008 9 0�0720�009 10
0�50 0�0380�005 7 20�486 0�0380�005 10 0�0380�005 10 0�0380�005 9 0�0380�005 10
0�75 0�0240�003 10 24�883 0�0240�003 8 0�0240�003 9 0�0240�003 9 0�0240�003 10

10 0�25 0�1740�016 9 34�964 0�1900�020 2 0�1890�019 2 0�1850�019 3 0�1790�017 4
0�50 0�0820�004 8 26�333 0�0870�012 4 0�0830�011 6 0�0820�009 6 0�0800�008 8
0�75 0�0570�009 10 21�156 0�0630�007 2 0�0610�008 3 0�0610�007 3 0�0580�009 7

30 0�25 0�4820�045 10 97�234 0�5460�052 1 0�5440�040 1 0�5340�057 3 0�5020�055 3
0�50 0�2100�015 10 113�418 0�2370�022 0 0�2340�017 0 0�2350�016 0 0�2290�016 0
0�75 0�1350�008 10 148�378 0�1500�011 0 0�1470�013 2 0�1480�012 1 0�1430�010 3

Average 0�1420�013 9.1 59�369 0�1560�016 4.0 0�1550�014 4.7 0�1530�015 4.8 0�1470�015 6.1

Notes. Average values over 10 instances per problem class and total averages, n = 500. In each row, the best average percentage
gaps are printed in bold.

times this algorithm yielded the best solution for these
experiments (#), and for Vasquez and Vimont (2005),
we further display the average running times in
seconds on an Intel Pentium 4 computer with 2 GHz.
The detailed results of this experiment can be found in
the Online Supplement (available at http://joc.pubs.
informs.org/ecompanion.html).
With respect to our approaches, the obtained results

provide a similar overall picture as in the previous
sections. The parallel approach with the skewed coop-
eration strategy can slightly improve the results of the
individual algorithms. Our approaches yield mostly
similar and sometimes even better solutions than the
tabu search from Vasquez and Vimont (2005) for the
m = 5 class, with substantially shorter running times.
For the classes with m ∈ �10�30�, the results provided
in Vasquez and Vimont (2005) are mostly better than
those of our approach in terms of solution quality but
at much higher computational costs.
The results achieved by our parallel approach with

14,400 seconds of total CPU time are slightly better
than those of Vasquez and Vimont (2005) for m = 5.
For m = 10, our results are sometimes slightly worse
than the state of the art, whereas for the instances with
m = 30, we were not able to obtain the best-known
solutions. Most of them are achieved by the approach
proposed in Vasquez and Vimont (2005). However, the
main drawback of this approach is its huge running
time of more than 80 hours for the largest OR-library
instances. On the other hand, our approach reaches
only very minor additional improvements if its run-
ning time is increased extensively.

7. Conclusions
We started by studying the distance between LP-
relaxed and optimal solutions of the MKP. For the
benchmark instances used, we empirically observed

that theses distances are small, i.e., <10% of the prob-
lem size on average, and depended on the number of
variables as well as on the number of constraints. This
fact was explored for solving hard-to-solve bench-
mark instances, where we restricted our search to
explore this more promising neighborhood of the LP
relaxations first, which improved the performance of
CPLEX applied to those instances.
We presented the new core concept for the multi-

dimensional knapsack problem, extending the core
concept for the classical one-dimensional 0/1 knap-
sack problem. An empirical study of the exact core
sizes of widely used benchmark instances with differ-
ent efficiency measures was performed. The efficiency
value using dual-variable values as relevance factors
yield the smallest possible split intervals and the small-
est cores. We further studied the influence of restrict-
ing problem solving to approximate cores of differ-
ent sizes, and observed significant differences in terms
of run time when applying the general-purpose ILP-
solver CPLEX to approximate cores or to the original
problem, whereas the objective values remained very
close to the respective optima. The approach was also
applied to the largest currently available test instances.
We then applied CPLEX, as well as a memetic

algorithm, to the core problems of larger bench-
mark instances, and they provided clearly and consis-
tently better results than solving the original problems
within the given fixed run time.
Finally, we studied several collaborative combina-

tions of the presented MA and the ILP-based ap-
proaches, where these algorithms are executed in par-
allel and exchanged information in an asynchronous
way. These collaborative approaches were given the
same total CPU times as the individual algorithms, and
they were able to obtain superior solutions in some of
the tested variants. In general, we were able to achieve
competitive results compared to best-known solutions
needing significantly lower running times.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

16
4.

15
.1

0.
70

]
on

 2
0

A
pr

il
20

18
, a

t 0
6:

39
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Puchinger, Raidl, and Pferschy: The Multidimensional Knapsack Problem
INFORMS Journal on Computing 22(2), pp. 250–265, © 2010 INFORMS 265

The structural analysis of LP-relaxed and optimal
solutions of combinatorial optimization problems can
lead to interesting results, such as the core con-
cept, which in turn can be used in different ways
for improving the solution quality of already avail-
able algorithms. In the future, we want to investigate
whether the core concept can be usefully extended
to other combinatorial optimization problems. Finally,
the cooperation of metaheuristics and ILP-based tech-
niques has once again proven to be highly promising.
Collaborative approaches often manage to achieve
better or equally good results as the individual algo-
rithms within the same total CPU time. Using these
approaches in a parallel computing environment (e.g.,
multiprocessor machines or clusters) could lead to
strongly improved solution quality using the same
wall-clock times as the individual algorithms.

Acknowledgments
NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communica-
tions and the Digital Economy, and the Australian Research
Council through the ICT Centre of Excellence program. This
work is partly supported by the European RTN ADONET
under Grant 504438 and the “Hochschuljubiläumsstiftung”
of Vienna, Austria, under Contract H-759/2005. The authors
thank the anonymous referees for valuable comments and
suggestions, which helped a lot to improve the paper.

References
Balas, E., E. Zemel. 1980. An algorithm for large zero-one knapsack

problems. Oper. Res. 28(5) 1130–1154.
Balev, S., N. Yanev, A. Fréville, R. Andonov. 2008. A dynamic pro-

gramming based reduction procedure for the multidimensional
0-1 knapsack problem. Eur. J. Oper. Res. 186(1) 63–76.

Bertsimas, D., J. N. Tsitsiklis. 1997. Introduction to Linear Optimiza-
tion. Athena Scientific, Nashua, NH.

Chu, P. C., J. E. Beasley. 1998. A genetic algorithm for the multidi-
mensional knapsack problem. J. Heuristics 4(1) 63–86.

Danna, E., E. Rothberg, C. Le Pape. 2003. Integrating mixed inte-
ger programming and local search: A case study on job-shop
scheduling problems. Fifth Internat. Workshop on Integration
of AI and OR Techniques in Constraint Programming for Com-
binatorial Optim. Problems (CP-AI-OR 2003), Montreal, 65–79.
http://www.crt.umontreal.ca/cpaior.

Dobson, G. 1982. Worst-case analysis of greedy heuristics for inte-
ger programming with nonnegative data. Math. Oper. Res. 7(4)
515–531.

Dyer, M. E., A. M. Frieze. 1989. Probabilistic analysis of the multi-
dimensional knapsack problem. Math. Oper. Res. 14(1) 162–176.

Fischetti, M., A. Lodi. 2003. Local branching. Math. Programming
Ser. B 98(1–3) 23–47.

Fréville, A. 2004. The multidimensional 0-1 knapsack problem: An
overview. Eur. J. Oper. Res. 155(1) 1–21.

Fréville, A., S. Hanafi. 2005. The multidimensional 0-1 knapsack
problem—Bounds and computational aspects. Ann. Oper. Res.
139(1) 195–227.

Fréville, A., G. Plateau. 1994. An efficient preprocessing procedure
for the multidimensional 0-1 knapsack problem. Discrete Appl.
Math. 49(1–3) 189–212.

Gavish, B., H. Pirkul. 1985. Efficient algorithms for solving the mul-
ticonstraint zero-one knapsack problem to optimality. Math.
Programming 31(1) 78–105.

Gilmore, P. C., R. E. Gomory. 1966. The theory and computation of
knapsack functions. Oper. Res. 14(6) 1045–1075.

Glover, F., G. A. Kochenberger. 1996. Critical event tabu search for
multidimensional knapsack problems. I. H. Osman, J. P. Kelly,
eds. Metaheuristics: Theory and Applications. Kluwer Academic
Publishers, Boston, 407–427.

Goldberg, A. V., A. Marchetti-Spaccamela. 1984. On finding the
exact solution of a zero-one knapsack problem. STOC ’84: Proc.
16th Annual ACM Sympos. Theory Comput., ACM Press, New
York, 359–368.

Gomes da Silva, C., J. Clímaco, J. R. Figueira. 2008. Core prob-
lems in bi-criteria �0�1�-knapsack. Comput. Oper. Res. 35(7)
2292–2306.

Gottlieb, J. 1999. On the effectivity of evolutionary algorithms for
multidimensional knapsack problems. C. Fonlupt, J.-K. Hao, E.
Lutton, E. Ronald, M. Schoenaver, eds. Artificial Evolution: Proc.
Fourth Eur. Conf., Lecture Notes in Computer Science, Vol. 1829.
Springer, Berlin, 23–37.

Kellerer, H., U. Pferschy, D. Pisinger. 2004. Knapsack Problems.
Springer, Berlin.

Martello, S., P. Toth. 1988. A new algorithm for the 0–1 knapsack
problem. Management Sci. 34(5) 633–644.

Pisinger, D. 1995. An expanding-core algorithm for the exact 0–1
knapsack problem. Eur. J. Oper. Res. 87(1) 175–187.

Pisinger, D. 1997. A minimal algorithm for the 0–1 knapsack prob-
lem. Oper. Res. 45(5) 758–767.

Pisinger, D. 1999. Core problems in knapsack algorithms. Oper. Res.
47(4) 570–575.

Puchinger, J. 2006. Combining metaheuristics and integer program-
ming for solving cutting and packing problems. Ph.D. thesis,
Institute of Computer Graphics and Algorithms, Vienna Uni-
versity of Technology, Vienna.

Puchinger, J., G. R. Raidl. 2005. Combining metaheuristics and exact
algorithms in combinatorial optimization: A survey and clas-
sification. J. Mira, J. R. Álvarez, eds. Artifical Intelligence Knowl-
edge Engineering Applications: A Bioinspired Approach. Proc. First
Internat. Work-Conference on the Interplay Between Natural and
Artificial Comput., Lecture Notes in Computer Science, Vol. 3562.
Springer, Berlin, 41–53.

Puchinger, J., G. R. Raidl, M. Gruber. 2005. Cooperating memetic
and branch-and-cut algorithms for solving the multidimen-
sional knapsack problem. Proc. Sixth Metaheuristics Internat.
Conf. (MIC 2005), Vienna, 775–780.

Puchinger, J., G. R. Raidl, U. Pferschy. 2006. The core concept for the
multidimensional knapsack problem. J. Gottlieb, G. R. Raidl,
eds. Evolutionary Comput. Combinatorial Optim.—EvoCOP 2006,
Lecture Notes in Computer Science, Vol. 3906. Springer, Berlin,
195–208.

Raidl, G. R. 1998. An improved genetic algorithm for the multi-
constrained 0–1 knapsack problem. D. Fogel et al., eds. Proc.
Fifth IEEE Internat. Conf. Evolutionary Comput., IEEE Press,
Piscataway, NJ, 207–211.

Raidl, G. R., J. Gottlieb. 2005. Empirical analysis of locality, heri-
tability and heuristic bias in evolutionary algorithms: A case
study for the multidimensional knapsack problem. Evolution-
ary Comput. J. 13(4) 441–475.

Rinnooy Kan, A. H. G., L. Stougie, C. Vercellis. 1993. A class of gen-
eralized greedy algorithms for the multi-knapsack problem.
Discrete Appl. Math. 42(2-3) 279–290.

Senju, S., Y. Toyoda. 1968. An approach to linear programming with
0–1 variables. Management Sci. 15(4) B-196–B-207.

Shih, W. 1979. A branch and bound method for the multicon-
straint zero-one knapsack problem. J. Oper. Res. Soc. 30(4)
369–378.

Vasquez, M., J.-K. Hao. 2001. A hybrid approach for the 0–1 multi-
dimensional knapsack problem. Proc. Internat. Joint Conf. Arti-
ficial Intelligence 2001 (IJCAI-01), Seattle, 328–333.

Vasquez, M., Y. Vimont. 2005. Improved results on the 0–1 multidi-
mensional knapsack problem. Eur. J. Oper. Res. 165(1) 70–81.

Weingartner, H. M., D. N. Ness. 1967. Methods for the solution of
the multidimensional 0/1 knapsack problem. Oper. Res. 15(1)
83–103.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

16
4.

15
.1

0.
70

]
on

 2
0

A
pr

il
20

18
, a

t 0
6:

39
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

