Abstract: The fundamental updating process in the transferable belief model is related to the concept of specialization and can be described by a specialization matrix. The degree of belief in the truth of a proposition is a degree of justified support. The Principle of Minimal Commitment implies that one should never give more support to the truth of a proposition than justified. We show that Dempster's rule of conditioning corresponds essentially to the least committed specialization, and that Dempster's rule of combination results essentially from commutativity requirements. The concept of generalization, dual to the concept of specialization, is described.

Keywords. Transferable belief model, belief function, Dempster-Shafer theory, dynamic of belief, specialization, Dempster's rule of conditioning, Dempster's rule of combination.

Words Count: 4469 words.

1. Introduction.

The dynamic of belief in the Dempster-Shafer theory is achieved by the application of Dempster's rule of conditioning and Dempster's rule of combination. Their appropriateness has been questioned (Levi 1983, Kyburg 1987, Pearl 1990, Voorbracht 1991). But most criticisms result from the fact that the Dempster-Shafer theory is understood as a special form of upper and lower probability theory.

In response to these criticisms, one of us (Smets 1988, 1991b, Smets and Kennes 1990) developed the transferable belief model (TBM), a model to quantify Your belief. The TBM is build without using any concept of probability, hence the criticisms against the use of Dempster's rules do not apply (Smets, 1991a). But there is still the question of explaining why they should be used. This paper presents such a justification.

We present the needed material about the TBM in section 2. In section 3, we introduce the Principle of Minimal Commitment. It consists in never giving more support to the
elements of the domain of our beliefs than justified. When necessary, it permits us to select the least informative belief function in a set of equally justified belief functions.

In section 4, we study the dynamic components of the TBM, and in particular the expansion process, i.e. the addition of a belief without retracting any old beliefs (Gardenfors 1988). In the TBM, this expansion process is modelled by **specialization** matrices, i.e. operators that reallocate the basic belief masses that quantify our beliefs. The justification of both Dempster's rules is presented in section 5. It proceeds as follows.

When conditioning on an event $A$, the updated beliefs should give a null plausibility to $\bar{A}$ as $\bar{A}$ becomes impossible. The specialization matrix that satisfies that requirement and that induces the minimal commitment updating leads to an updated belief identical to the one obtained by the application of Dempster's rules of conditioning.

It seems natural to require that combinations of pieces of evidence commute among them and with any conditioning. Dempster's rule of combination is the unique solution satisfying these commutativity requirements.

These results provide justifications for the use of Dempster's rules when beliefs must be expanded by new pieces of evidence.

2. **The transferable belief model.**

The transferable belief model covers the same domain of application as the subjective probability model except that beliefs are quantified by belief functions, not by probability functions. Let $\Omega$ be a finite set of elements, called the frame of discernment. At most one of the elements of $\Omega$ corresponds to the actual state of affair, but we do not know which one. We can only assess the degrees of belief that this particular element belongs to the various subsets of $\Omega$.

In the transferable belief model, a unitary amount of belief is postulated, and it is distributed over the subsets of $\Omega$. The part of belief $m(A)$ given to $A$, called a **basic belief mass** (bbm), quantifies the part of our belief that supports $A$ and does not support any strict subset of $A$ due to lack of information. The bbm $m(A)$ for $A \subseteq \Omega$ are non negative and

$$\sum_{A \subseteq \Omega} m(A) = 1.$$ 

The function $m:2^\Omega \rightarrow [0,1]$ is called a **basic belief assignment** (bba). The degree of belief $\text{bel}(A)$ allocated to a subset $A$ of $\Omega$ is the sum of the parts of beliefs $m(X)$ given to subsets $X$ of $A$ that are not subsets of $\bar{A}$:

$$\text{bel}(A) = \sum_{\emptyset \neq X \subseteq A} m(X)$$

The degree of plausibility $\text{pl}(A)$ quantifies the maximum amount of belief that might support $A$:
\[
\text{pl}(A) = \text{bel}(\Omega) - \text{bel}(\overline{A}) = \sum_{X \cap A \neq \emptyset} m(X)
\]

The **communality function** \( q:2^\Omega \rightarrow [0,1] \) is defined as

\[ q(A) = \sum_{A \subset B} m(B) \]

It does not have any practical interpretation but is most useful to represent Dempster's rule of combination (see below).

A **vacuous belief function** is a belief function such that \( \text{bel}(A) = 0 \ \forall A \neq \Omega \), and \( \text{bel}(\Omega) = 1 \). It quantifies our belief in a state of total ignorance. The corresponding bba (where \( m(\Omega) = 1 \)) and plausibility function (where \( \text{pl}(A) = 1 \ \forall A \subset \Omega \)), are called the **vacuous bba and plausibility function**.

Basic belief assignments, belief functions, plausibility functions and commonality functions are in one to one correspondance (Shafer 1976). The same indexing will be used to show which functions are linked together through that correspondance.

One should note that no normalization is introduced, \( m(\emptyset) \) may be positive, and \( \text{bel}(\Omega) \) and \( \text{pl}(\Omega) \) may be less than one. The conclusions still apply when normalization is introduced.

### 3. The Principle of Minimal Commitment.

Let \( \Omega = \{a, b, c\} \). Suppose You know only that My belief function over \( \Omega \) is such that \( \text{bel}_{\text{Me}}(\{a\}) = .3 \) and \( \text{bel}_{\text{Me}}(\{b,c\}) = .5 \), and You do not know the value I give to \( \text{bel}_{\text{Me}} \) for the other subsets of \( \Omega \). Suppose You have no other information on \( \Omega \) and You are ready to adopt My belief as Yours. How to build Your belief given these partial constraints. Many belief functions can satisfy them. If you adopt the principle that subsets of \( \Omega \) should not get more support than justified, then Your belief on \( \Omega \) will be such that \( m_{\text{You}}(\{a\}) = .3 \), \( m_{\text{You}}(\{b,c\}) = .5 \) and \( m_{\text{You}}(\{a,b,c\}) = .2 \). Among all belief functions compatible with the constraints given by known values of \( \text{bel}_{\text{Me}} \), \( \text{bel}_{\text{You}} \) is the one that gives the smallest degree of belief to every subsets of \( \Omega \). The principle evokes here is called the **Principle of Minimal Commitment**. It is really at the core of the TBM, where degrees of belief are degrees of 'justified' supports.

With un-normalized belief functions, the principle definition is essentially based on the plausibility function. Suppose two plausibility functions \( \text{pl}_1 \) and \( \text{pl}_2 \) such

\[ \text{pl}_1(A) \leq \text{pl}_2(A) \quad \forall A \subset \Omega. \]

We say that \( \text{pl}_2 \) is not more committed than \( \text{pl}_1 \) (and less committed if there is at least one strict inequality). The same qualification is extended to their related bba and belief functions. Among all belief functions on \( \Omega \), the least committed belief function is the vacuous belief function (i.e. its bba \( m(\Omega) = 1 \)).

---

1 'I' (or 'Me') is an agent different from 'You'.
When expressed with belief functions, the principle becomes:
\[
bel_1(A) + m_1(\emptyset) \geq bel_2(A) + m_2(\emptyset) \quad \forall A \subseteq \Omega.
\]

The concept of 'least commitment' permit the construction of a partial order \(\equiv\) on the set of belief functions (Yager 1986, Dubois and Prade 1986).

We write:
\[
pl_1 \equiv pl_2
\]
to denote that \(pl_1\) is equal to \(pl_2\) or more committed than \(pl_2\). By analogy the following notations \(m_1 \equiv m_2\) and \(bel_1 \equiv bel_2\) have the same meaning.

The **Principle of Minimal Commitment** consists in selecting the least committed belief function in a set of equally justified belief functions. The principle formalizes the idea that one should never give more support than justified to any subset of \(\Omega\). It satisfies a form of scepticism, of uncommitment, of conservatism in the allocation of our belief. In its spirit, it is not far from what the probabilists try to achieve with the maximum entropy principle (see Dubois and Prade 1987, Hsia, 1991, Smets 1991c).

### 4. The dynamic of the transferable belief model.

In order to build the operators for conditioning and combinations, we formalize the concept of evidential corpus (see Levi 1980 for a similar corpus). We define EC as the **evidential corpus**, i.e. the set of all Your evidence at a given time. Two EC are said to be equivalent (relative to \(\Omega\)) if the bba they induce on \(\Omega\) are equal to each other, even after they have been updated by the addition of any new piece of evidence to EC. We say that an evidence \(E\) is compatible with EC if EC \(\cup E\) / \(\bot\) where \(\bot\) is the contradiction. We say that an evidence \(E\) is vacuous (relative to \(\Omega\)) if EC and EC \(\cup E\) are equivalent (relative to \(\Omega\)) for every EC. A tautology is a typical example of a vacuous evidence.

Among others, change in Your beliefs can be due to expansion, i.e. the addition to EC of an evidence that is compatible with EC. We analyse in detail the expansion process within the TBM where it is represented by two rules: the **Dempster rule of conditioning** and the **Dempster rule of combination**. We explain first the nature of the two rules before introducing the concept of a specialization matrix that will represent the general operator corresponding to the expansion.

Consider first the expansion of Your EC by the fact that all elements of \(\overline{A}\) are impossible. It corresponds to the conditioning process on \(A\). As You learn that the elements in \(\overline{A}\) are now impossible, the bba \(m(X)\) that was supporting \(X\) supports now \(X \cap A\), so \(m(X)\) is transferred to \(X \cap A\). This transfer of bba results in the unnormalized **Dempster rule of conditioning**. The updated bba \(m_A\) and belief function \(bel_A\) are:
Now let EC be Your evidential corpus and let E be a non-vacuous evidence (relative to Ω). We say that E is distinct from EC if there is no non-vacuous evidence F such that E ⊆ F and EC ⊆ F.

Let the evidence E be distinct from the evidential corpus EC. Let m₀ and m₁ be the bba on Ω induced by EC and E, respectively. The problem is to build the bba m₀₁ induced by EC∪E. Shafer (1976) proposed to compute m₀₁ from m₀ and m₁ by applying **Dempster's rule of combination**. The ⊕ symbol is also used to denote this combination. So

\[ m₀₁ = m₀ ⊕ m₁ \]

and

\[ \text{bel }₀₁ = \text{bel }₀ ⊕ \text{bel }₁ \]

where bel₀₁ is the belief function induced by the bba m₀₁ with

\[ m₀₁(A) = \big\| \text{su}(Y \cap Z = \emptyset \ Y, Z \\supset \ 1 \ A), m₀(A \cup Y) m₁(A \cup Z) \big\| \quad \forall A \subseteq \Omega \]

In particular one has:

\[ q₀₁(A) = q₀(A) q₁(A) \quad \forall A \subseteq \Omega \]

Both rules have already received some justifications presented without assuming any underlying probabilistic model. For the conditioning rule, Nguyen and Smets (1991) show that Bel(A|B) is the minimal commitment solution for the belief of the conditional object A|B (Goodman, Nguyen et al., 1991, Goodman, Gupta et al.1991). For the combination rule, Smets (1990), Klawonn and Schwecke (1990), Dubois and Prade (1986) provide sets of algebraic requirements that justify it. Another justification based on the concepts of commutative specialization is presented here.

### 5. Specializations.

The concept of specialization is at the core of the transferable belief model interpretation of the belief allocation by belief functions. Let m₀ be a bba induced on Ω by Your initial EC. The impact of adding a new evidence E to EC induces a change in Your beliefs characterized by a redistribution of the initial m₀ such that the bbm m(A) given to the subset A of Ω is distributed among the subsets of A. Let s(A,B)∈ [0, 1] be the proportion of m(A) that flows into B ⊆ A when the new evidence E is added to EC. In order to conserve the whole mass m(A) after this transfer, the s(A,B) must satisfy:

\[ \sum_{B \subseteq A} s(A, B) = 1 \quad \forall A \subseteq \Omega \]

As masses can flow only to subsets, then s(A,B) = 0 \ ∀ B \not\subseteq A. The matrix S of the coefficient s(A,B) for A,B ⊆ Ω is called a **specialization matrix** on Ω (see Yager 1986, Dubois and Prade 1986, Kruse and Schwecke 1990, Moral 1985, Delgado and Moral 1987).
After the expansion of EC by E, the initial bba $m_0$ is transformed into the new bba $m$ such that:

$$m(A) = \sum_{X \subseteq \Omega} s(X,A) \cdot m_0(X)$$

The bba $m$ is called a specialization of $m_0$. We write $m = m_0 \cdot S$ to represent the specialization of $m_0$ into $m$ by $S$.

Whenever a bba $m$ is a specialization of a bba $m_0$, then $m$ is at least as committed as $m_0$ (Yager 1986). So $m_0 \cdot S \supseteq m_0$ for any bba $m_0$ and any specialization matrix $S$ (all defined on $\Omega$).

It is easy to show that the effects of both Dempster's rules can be obtained by specialization matrices.

Let $m:2^\Omega \rightarrow [0,1]$ be a bba and $\Sigma$ be the set of specialization matrices on $\Omega$.

1) To obtain **Dempster's rule of conditioning**, let $C \subseteq \Omega$ and let $S_C$ be the specialization matrix such that

$$s_C(A,B) = \begin{cases} 1 & \text{if } B = A \cap C \\ 0 & \text{otherwise} \end{cases}$$

Let $m_C$ be the bba obtained after conditioning the bba $m$ on $C$ by Dempster's rule of conditioning. Then $m_C = m \cdot S_C$. We call $S_C$ the C-conditionating specialization matrix. We define $\Sigma_{\text{cond}} \subseteq \Sigma$ as the set of C-conditionating specializations where $C \subseteq \Omega$.

2) To obtain **Dempster's rule of combination**, let $m$ be a bba on $\Omega$ and let $S_m$ be a specialization matrix with coefficients

$$s_m(A,B) = m_A(B) \quad \forall A,B \subseteq \Omega$$

where $m_A$ is the bba obtained after conditioning the bba $m$ on $A$ by Dempster's rule of conditioning. The coefficients $s_m(A,B)$ satisfy:

$$s_m(\Omega,B) = m(B) \quad \forall B \subseteq \Omega$$

and

$$s_m(A,B) = \sum_{X \subseteq A} s_m(\Omega,B \cup X) \quad \forall B \subseteq A$$

otherwise

Suppose two bba $m$ and $m'$. One can prove that $m' \oplus m = m' \cdot S_m$.

$S_m$ is called the **Dempsterian specialization matrix associated with $m$** as it updates any $m'$ on $\Omega$ into $m' \oplus m'$. We define $\Sigma_D \subseteq \Sigma$ as the set of the Dempsterian specialization matrices.

In particular, if $m$ is such that $m(C) = 1$ (the bba that corresponds to a conditioning on $C$), then $S_C = S_m$, so $\Sigma_{\text{cond}} \subseteq \Sigma_D$. 

Specialization 27/7/99
We consider that the expansion procedure by the specialization is one of the fundamental ideas for the dynamic part of the transferable belief model. Accepting that every expansion is defined by a specialization matrix, we will show that:

1. When conditioning on $A \subseteq \Omega$, $S_A \in \Sigma_{\text{cond}}$ is the specialization matrix that induces the least committed updated plausibility on $\Omega$ such that the updated plausibility given to $\overline{A}$ is 0. The requirement $pl(\overline{A})=0$ after expansion translates the fact that all elements of $\Omega$ in $\overline{A}$ are impossible.

2. $\Sigma_D$ is the largest family of specialization matrices that commute and that includes $\Sigma_{\text{cond}}$. The commutativity translates the idea that the expansion by two pieces of evidence should lead to the same result whatever the order with which they are considered. It is classically required for any expansion operator (Gardenfors 1988).

6. **Dempster's rules in the view of specializations.**

We first show that $S_A \in \Sigma_{\text{cond}}$ is the specialization matrix that induces the least committed updated plausibility on $\Omega$ such that the updated plausibility given to $\overline{A}$ is 0.

**Theorem 1: Dempster's rule of conditioning.**

Let $C \subseteq \Omega$ and let $\Sigma^* = \{S \in \Sigma \mid \forall m: m'=m \cdot S \text{ then } pl'(\overline{C})=0\}$, where $pl'$ denotes the plausibility function induced by $m'=m \cdot S$. Let $S_C$ be the $C$-conditionating specialization matrix with

- $s_C(A,B)=1$ if $B=A \cap C$ and
- $s_C(A,B)=0$ otherwise.

Then $S_C \in \Sigma^*$ and the bba $m \cdot S_C$ is the least committed bba among the bba $m \cdot S$ for $S \in \Sigma^*$:

$m \cdot S_C \leq m \cdot S \quad \forall S \in \Sigma^*$.

**Proof.** Let $m$ be a bba over $\Omega$. Let $S \in \Sigma^*$. Let $m'=m \cdot S$. One must have

\[
0 = pl'(\overline{C}) = \sum_{B \cap C \neq \emptyset} m'(B) = \sum_{B \cap C \neq \emptyset} \sum_{B \subseteq A} m(A) \cdot s(A,B)
\]

It must be true for all bba $m$ on $\Omega$. Therefore $s(A,B)=0$ for all $B$ satisfying $B \cap C$ and for all $A \subseteq \Omega$. Let $S$ be such a specialization matrix.

\[
pl'(D) = \sum_{B \cap D \neq \emptyset} \sum_{B \subseteq A} m(A) \cdot s(A,B) = \sum_{B \subseteq A} m(A) \sum_{B \cap C \neq \emptyset} s(A,B) \leq \sum_{A \cap D \cap C \neq \emptyset} m(A)
\]

For any $m$, let $pl_C$ be the plausibility function induced by $m_C=m \cdot S_C$. 

**Specialization** 27/7/99
\[
\text{pl}_C(D) = \sum_{B \cap D \neq \emptyset} m_C(B) = \sum_{B \cap D \neq \emptyset} \sum_{A \cap C \cap D \neq \emptyset} m(A) s_C(A, B) = \sum_{A \cap C \cap D \neq \emptyset} m(A)
\]

So whatever the bbm \( m \) on \( \Omega \), \( \forall D \subset \Omega \), \( \text{pl}_C(D) \geq \text{pl}'(D) \). So \( \text{pl}_C \) is the least committed plausibility function among those induced by \( m \cdot S \) for \( S \in \Sigma^* \). QED

Since Dempster’s rule of conditioning is idempotent, so are the conditioning specialization matrices.

**Lemma 1**: The specializations matrices \( S \in \Sigma_{\text{cond}} \) are idempotent.

We prove that \( \Sigma_D \) is the largest set of specialization matrices that commute among themselves and that includes \( \Sigma_{\text{cond}} \).

**Theorem 2**: Dempster’s rule of combination.

Let \( S_1 \in \Sigma \) such that for all \( C \subset \Omega \): \( S_1 S_C = S_C S_1 \) with \( S_C \in \Sigma_{\text{cond}} \). Then \( S_1 \in \Sigma_D \) holds.

**Proof**: Let \( S_{1,C} = S_1 S_C \) with elements \( s_{1,C}(A, B) \):

\[
s_{1,C}(A, B) = \sum_{D \subset \Omega} s_1(A, D) \cdot s_C(D, B) = \sum_{X \subset C \cap A} s_1(A, B \cup X) \cdot s_C(B \cup X, B)
\]

\[
= \sum_{X \subset C \cap A} s_1(A, B \cup X) \quad \text{if } B \subset C
\]

\[
= 0 \quad \text{otherwise}
\]

Let \( S_{C,1} = S_C S_1 \) with elements \( s_{C,1}(A, B) \):

\[
s_{C,1}(A, B) = \sum_{D \subset \Omega} s_C(A, D) \cdot s_1(D, B) = s_1(A \cap C, B)
\]

Thus for all \( A, B, C \subset \Omega \), one must have:

\[
s_1(A \cap C, B) = \sum_{X \subset C \cap A} s_1(A, B \cup X) \quad \text{if } B \subset C
\]

\[
= 0 \quad \text{otherwise}
\]

If we set \( A = \Omega \), we obtain for all \( B, C \subset \Omega \),

\[
s_1(C, B) = \sum_{X \subset C} s_1(\Omega, B \cup X) \quad \text{if } B \subset C
\]

\[
= 0 \quad \text{otherwise}
\]

which implies that \( S_1 \) is Dempsterian. QED

Since the Dempster rule of combination is associative and commutative, the Dempsterian specialization matrices commute.
Theorem 3: If $S_{m_1}, S_{m_2} \in \Sigma_D$, then $S_{m_1} \cdot S_{m_2} = S_{m_2} \cdot S_{m_1}$.

**Proof:**

\[ m_0 \cdot S_{m_1} \cdot S_{m_2} = (m_0 \oplus m_1) \cdot S_{m_2} = m_0 \oplus m_1 \oplus m_2 = m_0 \oplus m_2 \oplus m_1 = (m_0 \oplus m_2) \cdot S_{m_1} = m_0 \cdot S_{m_2} \cdot S_{m_1} \]

QED

**Note:** Let $m$ be a bba on $\Omega$, with $q$ its related commonality function. Let $S_m$ be the Dempsterian specialization matrix generated by $m$. Let $T$ be the matrix that transforms a bba into a commonality function, where the elements $t_{A,B}$ of $T$ are:

\[
t_{A,B} = \begin{cases} 
1 & \text{if } B \subseteq A \subseteq \Omega \\
0 & \text{otherwise}
\end{cases}
\]

It can be shown that 1°) the communalities $q(A)$: $A \subseteq \Omega$, are the diagonal elements and the eigenvalues of $S_m$ and 2°) the lines of $T^{-1}$ are the eigenvectors of $S_m^{-1}$. One has the representation:

\[ S_m = T \Lambda T^{-1} \]

where $\Lambda$ is a diagonal matrix with elements $\lambda_{A,A} = q(A)$, $A \subseteq \Omega$. Among others, this property may be useful when $m(\Omega) = 0$, in which case the theory of generalized inverses described in matrix calculus can be helpful.

7. An alternate characterization of Dempster's rule of combination.

To understand this theorem, consider that $\text{My EC}$ induces the bba $m_0$ on $\Omega$. I want to build a specialization matrix $S$ ready to combine the impact of any new evidence distinct from $\text{EC}$, i.e. to specialize any new bba $m$ on $\Omega$. Let $\Sigma_0$ be the set of the specialization matrices $S$ such that the application of $S$ on any $m$ on $\Omega$ would be at least as committed as $m_0$. One of the elements of $\Sigma_0$ is $S_{m_0}$, the Dempsterian specialization matrix generated by $m_0$. For any bba $m$ on $\Omega$, the bba $m \cdot S_{m_0}$ is less committed than the other bba $m \cdot S$ that could be obtained by the use of the other specialization matrices $S$ of $\Sigma_0$. Dempster's rule of combination satisfies that form of minimal commitment.

**Theorem 4:** Let $m_0$ be a bba on $\Omega$. Let $\Sigma_0 = \{ S \in \Sigma | \forall m: m \cdot S \not\approx m_0 \}$.

Then $S_{m_0} \in \Sigma_0$ and $\forall S \in \Sigma_0$, $\forall m$, $m \cdot S \not\approx m \cdot S_{m_0}$.

**Proof:**

$S_{m_0} \in \Sigma_0$ holds, since $m \cdot S_{m_0} = m \oplus m_0 \not\approx m_0$. Let $S_0 = S_{m_0}$. Let $S \in \Sigma_0$. For $A \subseteq \Omega$, we define the bba $m_S^{(A)}$ by $m_S^{(A)}(B) = s(A,B)$ with corresponding plausibility function $pl_S^{(A)}$.

Let $m$ be the bba with $m(A)=1$.

$m \cdot S = m_S^{(A)}$ and therefore $m_S^{(A)} \not\approx m_0$ implying

$m_S^{(A)} = m_S^{(A)}(\emptyset \setminus A) \not\approx m_0(\emptyset \setminus A) = m_S^{(A)}$. (*)

Now let $m$ be an arbitrary bba on $\Omega$. Let $pl'$ be the plausibility function correpsonding to $m \cdot S$.

---

1 The row vector $t$ is an eigenvector of the matrix $S$ if $t \cdot S = \lambda \cdot t$ where $\lambda$ is a scalar.
\[
\text{pl}'(A) = \sum_{B \cap A \neq \emptyset} \sum_{B \subseteq C} m(C) \ s(C,B) = \sum_{C \cap A \neq \emptyset} \sum_{B \subseteq C} m(C) \ s(C,B) \\
= \sum_{C \cap A \neq \emptyset} m(C) \ pl^S_C(A) \leq \sum_{C \cap A \neq \emptyset} m(C) \ pl^S_0(A) = \text{pl}''(A)
\]

where pl'' denotes the plausibility function corresponding to m_0 S_0 and the inequality results from (**). QED

8. Generalization to contraction of beliefs and disjunctive combinations.

The presentation centered around the expansion process. But it can be adapted in a direct way to the inverse process of contraction, i.e. the change in belief where a belief is eliminated from the evidential corpus EC. The specialization matrices encountered in the expansion processes are replaced by de-specialization matrices. The de-specialization matrices are the (matricial) inverse of the specialization matrices. In contrast with the specialization matrices, they should not be applied to any bba, but only to a subset of bba that depends on the de-specialization matrix. This constraint reflects the fact that one can not eliminate from EC an evidence that had not been previously added to EC.

Pieces of evidence are combined conjunctively in the expansion: the aim is to compute the belief function bel_E and F induced by the conjunction 'E and F' of two pieces of evidence E and F from the belief functions bel_E and bel_F induced by each piece of evidence. In the retraction, the process is also a form of conjunctive combination. Eliminating evidence E from the EC that contains E and F consists in adding the information 'eliminate E'. It aims at computing bel_F from bel_E and F and bel_E (in practice an easy task when commonality functions are considered as \( \forall A \subseteq \Omega \ q_F(A) = q_{E \text{ and } F}(A) / q_{E}(A) \)).

One can define the dual processes of disjunctive combination of evidence. The typical example is illustrated by the case where You know bel_E and bel_F, but you can add only 'E or F' to EC. You must established bel_E or F from bel_E and bel_F. The disjunctive rule of combination has been defined and justified in Smets (1991c), the major result being that the product of bbm \( m_E(A) \) and \( m_F(B) \) is transfered to \( A \cup B \) in \( m_{E \text{ or } F} \), and \( \forall A \subseteq \Omega \ bel_E \text{ or } F(A) = bel_E(A) \ bel_F(A) \).

The dual of the specialization matrix is called a generalization matrix G. It is also a stochastic matrix where the elements g(A,B) are null \( \forall A \not\subseteq B \subseteq \Omega \). It represents the fact that a bbm m(A) is distributed among the supersets of A. The dual of the conditioning process is called the enlargement process. Let m' be the enlargement on A of a bba m. Then the conditioning of m' on any subset X \( \cup \ Y \) of \( \Omega \) with X \( \subseteq A \) and Y \( \subseteq A \) will give the same result whatever Y \( \subseteq A \). The enlargement transforms m into m' where the elements of A become 'undiscernable' (in that no subset of A receives a support that is not given to the whole A).

Table 1 summarizes the dual relations.
Finally it can also be shown that the dual and the inverse relations are in one-to-one correspondance. To any de-specialization matrix corresponds a generalization matrix, and vice versa. So we do not have four processes, but only two. Which of each pair of equivalent approaches is more convenient depends on the context.

<table>
<thead>
<tr>
<th>evidence combination</th>
<th>conjunctive</th>
<th>disjunctive</th>
</tr>
</thead>
<tbody>
<tr>
<td>from bel_E and bel_F</td>
<td>bel_E and F</td>
<td>bel_E or F</td>
</tr>
<tr>
<td>expansion matrices</td>
<td>specialization</td>
<td>generalization</td>
</tr>
<tr>
<td>retraction matrices</td>
<td>de-specialization</td>
<td>de-generalization</td>
</tr>
<tr>
<td>single fact</td>
<td>conditioning</td>
<td>enlargement</td>
</tr>
<tr>
<td>combination</td>
<td>de-conditioning</td>
<td>de-enlargement</td>
</tr>
<tr>
<td></td>
<td>conjunctive rule</td>
<td>disjunctive rule</td>
</tr>
</tbody>
</table>


We provide justifications for Dempster's rule of conditioning and Dempster's rule of combination based on the following assumptions:
1. the expansion of any evidential corpus EC by an evidence E induces an updating from a prior bba m_0 into a posterior bba m_1 such that m_1 is a specialization of m_0.
2. if the evidence E says that all elements in \( \overline{A} \subset \Omega \) are impossible, then the specialization m_1 should be such that pl_1(\( \overline{A} \))=0, and the least committed specialization m_1 is the one obtained by applying Dempster's rule of conditioning on m_0.
3. the result of the expansion of Your EC by two pieces of evidence should be independent of the order with which the two pieces of evidence are taken in consideration. Therefore commutativity is required for the specialization matrices that represent these expansions, including those describing the conditioning process. The only specialization matrices satisfying these commutativity requirements are such that the result of their application is the same as the one obtained by the application of Dempster's rule of combination.

Acknowledgement.
This research has been supported by the ESPRIT II Basic Research Project 3085 (DRUMS) which is funded by the European Communities.

Bibliography.
SMETS Ph. (1991c) Belief Functions : the Disjunctive Rule of Combination and the Generalized Bayesian Theorem. TR/IRIDIA/91-1
Let ECØ denote the empty (vacuous) evidential corpus, i.e. the one obtained in the absence of any evidence (or at least of any evidence relevant to Your belief on the frame of discernment \( \Omega \) under consideration). Let \( m_0 \) be the bba induced by Your EC on a given frame of discernment \( \Omega \).

We say that E belongs to EC if \( \text{EC} \models E \).