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Abstract

The problem of assessing the value of a candidate is viewed here as
a multiple combination problem. On the one hand a candidate can be
evaluated according to different criteria, and on the other hand several
experts are supposed to assess the value of candidates according to each
criterion. Criteria are not equally important, experts are not equally com-
petent or reliable. Moreover levels of satisfaction of criteria, or levels of
confidence are only assumed to take their values in linearly ordered scales,
whose nature is rather qualitative. The problem is discussed within two
frameworks, the transferable belief model and the qualitative possibility
theory. They respectively offer a quantitative and a qualitative setting for
handling the problem, providing thus a way to emphasize what are the
underlying assumptions in each approach.

1 Introduction

1.1 Preamble

The purpose of this paper is essentially to show how to apply two uncertainty
modeling frameworks, the transferable belief model (TBM) and the qualitative
possibility theory (QPT) approaches, to a complex problem that combines, vol-
untarily, many difficulties. The problem concerns the assessment of the value of
a candidate evaluated by several experts using several criteria. Thus it exhibits
both a multiple criteria decision making and a data fusion facet. Moreover it
is assumed that for each criteria, there exists a unique value, usually pervaded
with uncertainty, which represents the true value of the candidate w.r.t. the
criterion. The example is only illustrative, and we do not claim the techniques
exemplified here are the best methods to solve the problem. Other approaches
more dedicated to multiple criteria or group decision could be defended as well.
In fact the example is envisaged mainly as a multiple sensor problem in the
TBM approach, while the QPT-based method distinguishes the fusion of expert
opinions from the multiple criteria aggregation. The paper shows how the two
representation frameworks can be used in practice, rather than discussing the
appropriateness of the solutions proposed w.r.t. the value assessment problem.

1.2 Introducing the example

The problem of assessing the value of a candidate (it may be a person, an object,
or any abstract entity for instance) is often encountered in practice. It is usually
a preliminary step before making a choice. Such a problem can be handled
in different manners depending on what kind of information the evaluation is
based. One may have expert generic rules which aim at classifying candidates
in different categories (e.g., ’excellent’,’good’, . . . ,’very bad’). One may have
a base of examples made of previous evaluations from which a similarity-based
evaluation of the new candidate can be performed. This corresponds to two
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popular approaches in Artificial Intelligence (namely, expert systems and case-
based reasoning), that one might also like to combine.

In the following, the value assessment problem is rather posed in terms of
multiple criteria evaluation, whose value for a given candidate can be more or
less precisely assessed with some level of confidence by various experts (whose
opinions are also to be fused). This problem is sometimes referred to as a
subjective evaluation process [Club CRIN Flou, 1997]. For a discussion of the
relation between the rule-based, case-based and criteria-based approaches, the
reader is referred to [Dubois and Prade, 1994b] and [Dubois and Prade, 1997].
Note that the problem considered in the following is not simply to rank-order
candidates on the basis of a set of criteria. Then pairwise comparisons could
lead to a simple outranking solution. The problem here is to design a procedure
where multiple experts assessments are faithfully represented and fused. As we
shall see different families of solutions are possible according to the way the
criteria are interacting.

An important issue in such a problem is that the assessment of the values
of the criteria for a candidate by an expert and their relevance for the selec-
tion itself are often pervaded with uncertainty and imprecision. Numerical or
qualitative modeling of the data can be considered. In this paper, we show how
the transferable belief model (TBM, [Smets, 1998]) and qualitative possibility
theory (QPT) can be applied to the value assessment problem, thus illustrating
the two types of approaches, and showing how the methods can be applied.
Moreover their underlying assumptions are laid bare.

The paper is organized in four main parts. The problem is first precisely
stated and the questions that it raises are pointed out. Then the two pro-
posed approaches are presented and illustrated on the same example. Lastly, a
comparative discussion of the two approaches is given.

2 The multiple expert multiple criteria assess-
ment problem

The value of a candidate for a given position has to be assessed by a decision
maker (DM). For this evaluation, m criteria are used. For each criterion, the
value of the candidate is assessed (maybe imprecisely) by n experts (or sources).
Criteria can be rank-ordered according to their importance for the position.
Their relation to the global ”goodness” score of the candidate for the position
may be also available. Each expert provides a precise or imprecise evaluation
for each criterion and a level of confidence is attached to each evaluation by the
expert who is responsible for it. The general reliability of each expert is also
qualitatively assessed by DM.

Some general comments about the problem which is so far informally stated,
have to be made. With a set of candidates, one may want to i) choose the
best one(s); ii) rank all candidates from best to worst; iii) give a partial order
between them, with possibly some incomparabilities; iv) cluster the candidates
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in several groups (e.g., good ones, bad ones, those with a weak point w.r.t.
one criterion etc.). In fact, many methods in decision analysis proceed by a
pairwise comparison of candidates which supposes all of them are known from
the beginning. In this paper, we look for the global evaluation of a candidate
which may be unique. If the problem were to rank-order candidates only, a
lexicographic approach (based on the comparison of vectors made of scores of
each candidate w.r.t. all criteria ordered according to their importance) might
be sufficient. However such an approach assumes that a complete order exists
between scores (which is not in agreement with the fact that the scores may be
imprecise and pervaded with uncertainty).

The overall assumption of the model underlying our example is that there
exist true scores for each individual criterion and for a global goodness, all
attached to the candidate, the last being a function of the first ones. The
problem is that these true values are unknown to the DM and must be estimated
from the expert opinions.

This approach is thus an estimation problem where the experts are consid-
ered as measurement tools or sensors that determine some kind of ‘objective’
parameters. Other approaches based on classical multiple criteria decision mak-
ing could of course have been defended. As already said, comparing the merits
of such other methods is not the purpose of this paper. We focus on how to
apply two particular methods, not on deciding which is good or bad.

2.1 Notations

We now introduce some notation. The candidate is denoted K, when necessary.
Criteria are numbered by i: i = 1, . . . ,m. The true (unknown) value of the level
of satisfaction of criterion i for the candidate K is denoted ci(K), with ci(K) ∈
Ls, where Ls is the ordinal scale of levels of satisfaction, e.g. Ls = {1, 2, 3, 4, 5}
with 1=very bad, . . . , 5=very good. An element of Ls is denoted by s.

Experts are numbered by j: j = 1, . . . , n. The function πj
i is a mapping

from Ls to Lπ. In the example we shall use Lπ = {∅, a, b, 1l} which is an ordinal
scale, where ∅ corresponds to impossibility, and 1l to total possibility. The true
(unknown) global score of K is denoted c(K) ∈ Ls. The confidence of the
decision maker in expert j when judging criterion i is denoted γij , and these
levels are defined on an ordinal scale Lγ which can be related to Lπ as we shall
see. The confidence of the decision maker in expert j’s opinions is denoted αj ,
j = 1, . . . , n, and the αj ’s are defined on an ordinal scale Lα. For instance,
Lα = {∅, u, v, 1l} with ∅ = not confident at all, u = not very confident, . . . , 1l =
very confident. The levels of importance of criteria are denoted βi, i = 1, . . . ,m,
and the βi also belong to an ordinal scale Lβ . For instance Lβ = {∅, e, f, g, 1l}
with ∅ = not important at all, e = not very important, . . . , 1l = very important.

2.2 Data for the example

For illustrative purpose we use the following example with m = 6 criteria and
n = 4 experts. Imagine that in some company, a new collaborator K has to be
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hired for the marketing department. Six criteria are used for assessing his qual-
ifications: analysis capacities (Ana), learning capacities (Lear), past experience
(Exp), communication skills (Com), decision-making capacities (Dec) and cre-
ativity (Crea). The four experts are the directors of Marketing (Mkt), Financial
(Fin), Production (Prod), and Human Resources (HR) departments. The data
are summarized in Table 1. Blanks correspond to missing values, i.e., the direc-
tor did not provide an evaluation for the considered criteria. In fact all missing
values correspond here to the criteria i for which the expert j is considered by
DM as not competent (γij = ∅). They may be assimilated to a [0, 5] assessment
as we equate ’no opinion’ to ’opinion not provided’, a natural assumption here.

On the one hand this example is intentionally complex as we want to illus-
trate the power and flexibility of the two approaches. On the other hand, the
way the criteria should be aggregated is unspecified. In real life, some of the
subtleties introduced here will be irrelevant, simplifying the computation of the
solution.

Cij Mkt D Fin D Prod D HR D
Ana 4 2
Lear [2,3] [1,5] 4 [2,4]
Exp 4
Com 4 4
Dec [1,5] [1,5] [1,2] 3
Crea 5 1

γij Mkt D Fin D Prod D HR D βi

Ana ∅ 1l 1l ∅ g
Lear b a b 1l e
Exp 1l ∅ ∅ ∅ e
Com 1l ∅ ∅ 1l 1l
Dec a a a a g
Crea 1l ∅ ∅ 1l 1l
αj 1l u u v

Table 1: Upper table: Assessment by each director on each criteria of candidate
K using Ls = 1, 2, 3, 4, 5. Lower table: Confidence of directors w.r.t. each
criteria

3 The TBM approach

To represent belief functions, we use the next notational convention: belΩY [PEV ]
(ω0 ∈ A) denotes the strength of the weighted opinion (called belief) held by
the agent Y about the fact that the actual world ω0 belongs to A, a subset
of the frame of discernment Ω, given the piece of evidence PEV . Thanks to
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the fact we use the same indexing for the basic belief assignments, the belief
functions and the plausibility functions induced by each other, we can just use
the notations mΩ

Y [PEV ], belΩY [PEV ] and plΩY [PEV ], the indexing indicating
their mutual links.

Many beliefs are used in this example. They are analogous to subjective
probabilities, except they do not satisfy the additivity rule of probability theory.
Their operational meaning and their assessment are obtained by methods similar
to those used by the Bayesians [Smets and Kennes, 1994].

3.1 DM’s beliefs on the real value of each criteria

In this section, we consider only candidate K and all beliefs are held by one
DM, so we can avoid mentioning them. Let ci be the actual (but unknown)
value of the level of satisfaction of criterion i. Let Cij denote the data collected
from director j on criteria i (for K), Cij being the intervals given in Table 1.
Missing data are equated to the whole interval [1, 5].

Let Π(Cij = a|ci = x) be the degree of (quantitative) possibility1 that
Director j states Cij = [a, a] with a ∈ {1, ..., 5} given ci = x with x ∈ {1, ..., 5}.
It represents the link between what the director will say and the actual value ci.
For simplicity’s sake, we use the same possibility function for every criteria and
every director. For each criteria, we assume that the possibility is 1 when a = x,
.5 when |a− x| = 1, and 0 otherwise. More complex possibility functions could
be used, the proposed one being only ’reasonable’. It reflects the idea that it
is (fully) possible that the director states the actual value, ’quite possible’ that
he states a value at one level deviation from the actual value, and impossible at
two level deviations (director can be wrong, but the error will be small).

A few classical relations are needed. We have:

if Π(A) = p then pl(A) = p, (1)
Π(X|Y )Π(Y ) = Π(Y |X)Π(X), (2)
Π(X) = max

x∈X
Π(x) (3)

We also assume a total a priori ignorance on Cij and ci, i.e.,

Π(Cij) = 1 ∀Cij and Π(ci) = 1 ∀ci. (4)

Using these relations, the degree of plausibility held by DM (before consid-
ering DM’s opinions about Director j’s opinions) that the actual value of ci is
in A ⊆ Lsi

where Lsi
is the domain of ci (equal to Ls in this example), given

what the Director j states about criteria i, is given by:

plLsi [Cij ](ci ∈ A) = Π(ci ∈ A|Cij) by (1)

1Here we use quantitative possibilities ranging in [0,1], whereas in the QPT approach,
only qualitative possibilities are considered. The link between plausibilities and possibilities
(pl = Π) requires that possibilities be somehow quantified.
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= max
x∈A

Π(ci = x|Cij) by (3)

= max
x∈A

Π(Cij |ci = x) by (2) and (4)

= max
x∈A,a∈Cij

Π([a, a]|ci = x) by (3)

Table 2 presents the focal elements of the basic belief assignments derived
from each informative Cij .

Director Criteria Cij Focus : m Focus : m
Mkt Lear [2,3] 1234 : .5 23 : .5
Mkt Exp 4 345 : .5 4 : .5
Mkt Com 4 345 : .5 4 : .5
Mkt Crea 5 45 : .5 5 : .5

Fin D Ana 4 345 : .5 4 : .5
Prod D Ana 2 123 : .5 2 : .5
Prod D Lea 4 345 : .5 4 : .5
Prod D Dec [1,2] 123 : .5 12 : .5
HR D Lear [2,4] 12345 : .5 234 : .5
HR D Com 4 345 : .5 4 : .5
HR D Dec 3 234 : .5 3 : .5
HR D Crea 1 12 : .5 1 : .5

Table 2: List of the individual informative Cij and the non zero basic belief
masses of mLsi [Cij ] induced on the space Ls = {1, 2, 3, 4, 5}. The basic belief
masses are presented as a pair where the first term is the list of the elements
of Ls that belong to the focal element and the second term is the value of the
mass itself.

The DM has some weighted opinions about the reliability of the assessment
provided by Director j on criteria i, represented by the coefficients γij (numer-
ically rescaled into gij = 0, 1, 2, 3 for γij = ∅, a, b, 1l, respectively). DM also has
some prior opinions about the importance that he should give to Director j’s
opinions when it comes to evaluating a candidate for a position like the open
one, opinions that were coded by αj (numerically rescaled into sj = 1, 2, 3 for
αj = r, s, 1l, respectively). All these opinions are transformed into discounting
factors that express how much belief DM should give to the beliefs induced by
the data produced by Director j on criteria i. The discounting factors dij are
decreasing when the α and γ values increase.

Discounting factors are meta-beliefs, i.e., beliefs over beliefs. They were in-
troduced in [Shafer, 1976], and their formal nature explained in [Smets, 1993a].
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Their real assessment is done as for any belief. For the purpose of the example,
we use the values obtained from the relation:

dij = 1 − .95 × (gij/3) × (.75 + .25 × (sj − 1)/2).

So dij = 1 in the worst case where gij = 0 and 0.05 in the best case where
gij = 3 and sj = 3. The dij used here are of course arbitrary. In real application,
their evaluation would be part of the whole assessment procedure.

Given the coefficients dij , DM discounts mLsi [Cij ] obtained from plLsi [Cij ]
derived just above into mLsi [Eij ] where:

mLsi [Eij ](A) = (1 − dij) ×mLsi [Cij ](A) if A �= [1, 5],

mLsi [Eij ]([1, 5]) = (1 − dij) ×mLsi [Cij ]([1, 5]) + dij

The basic belief assignment mLsi [Eij ], presented in Table 3 represents DM’s
beliefs about the actual value of ci given the piece of evidence Eij that is equal
to what Director j has stated and DM’s opinions about j’s opinions (the α’s
and the γ’s).

Director Criteria dij Focus : m Focus : m Focus : m
Mkt Lear .367 1234 : .317 23 : .317 12345 : .367
Mkt Exp .050 345 : .475 4 : .475 12345 : .050
Mkt Com .050 345 : .475 4 : .475 12345 : .050
Mkt Crea .050 45 : .475 5 : .475 12345 : .050

Fin D Ana .287 345 : 356 4 : .356 12345 : .288
Prod D Ana .287 123 : .356 2 : .356 12345 : .288
Prod D Lea .525 345 : .238 4 : .238 12345 : .525
Prod D Dec .762 123 : .119 12 : .119 12345 : .763
HR D Lear .169 234 : .416 12345 : .584
HR D Com .169 345 : .416 4 : .416 12345 : .169
HR D Dec .723 234 : .139 3 : .139 12345 : .723
HR D Crea .169 12 : .416 1 : .416 12345 : .169

Table 3: List of discounting factors dij for the individual informative Cij and
the non zero basic belief masses of mLsi [Eij ] induced on the space Ls = {1, 2,
3, 4, 5}. The basic belief masses are presented as a pair where the first term is
the list of the elements of Ls that belong to the focal element and the second
term is the value of the mass itself.

Then DM combines the Directors’ opinions over Criteria i by applying the
(unnormalized) Dempster’s rule of combination to the discounted basic belief
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assignments. The resulting basic belief assignment mLsi [&jEij ], presented in
Table 4, represents DM’s beliefs about the actual value of ci.

mLsi [&jEij ] = ⊕jm
Lsi [Eij ]

Ana Lear Exp Com Dec Crea
Focus : m Focus : m Focus : m Focus : m Focus : m Focus : m
∅ : 0.381 ∅ : 0.075 4 : 0.475 4 : 0.475 ∅ : 0.016 ∅ : 0.790
2 : 0.102 3 : 0.075 345 : 0.475 345 : 0.475 2 : 0.016 1 : 0.021
3 : 0.127 23 : 0.166 12345 : 0.050 12345 : 0.050 12 : 0.086 12 : 0.021

123 : 0.102 4 : 0.162 3 : 0.122 5 : 0.080
4 : 0.102 34 : 0.111 23 : 0.016 45 : 0.080

345 : 0.102 234 : 0.149 123 : 0.086 12345 : 0.008
12345 : 0.083 1234 : 0.097 234 : 0.106

345 : 0.051 12345 : 0.551
12345 : 0.112

Table 4: For each criteria, list of non zero basic belief masses of mLsi [&jEij ]
obtained by combining the discounted basic belief assignments obtained from
each director. The basic belief masses are presented as a pair where the first
term is the list of the elements of Ls that belong to the focal element and the
second term is the value of the mass itself.

3.2 DM’s beliefs on the real value of the Goodness Score

The real problem for DM is not to assess the actual value of each criterion, but
to assess if candidate K is ’good’ for the position to be filled. So we introduce
a ’Goodness Score’, that will vary from 1 to 5, 1 for ’very bad’, 5 for ’very
good’. The relation between the Goodness Score and the value xi of criterion i
depends only on βi, the level of importance of criterion i. The values of fi(xi)
are tabulated in Table 5. E.g., when βi = g, DM accepts as ’good’ (score 5) a
candidate for whom the criterion value xi is 4 or 5. In practice, these values
must be assessed through an analysis of the compensatory relation between the
scores. E.g., it is as ’good’ to have a score 3 for a criterion which has importance
1l than to have a score 3 when the importance is g and to have a score 2 when
the importance is e.

Let fi(x) be the value of the Goodness Score when the score for Criteria i
is x and let fi(A) = {fi(x) : x ∈ A}. Then the belief over the value of the
criterion i is transformed into a belief mG[Ci] over the Goodness Score by:

mG[Ci](B) =
∑

A:fi(A)=B

mLsi [&jEij ](A)

for B ⊆ [1, 2, 3, 4, 5]
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βi 1 2 3 4 5
e 1 3 4 5 5
f 1 2 4 5 5
g 1 2 3 5 5
1l 1 2 3 4 5

Table 5: Values of the goodness score fi(x) given the score x of criteria i (from
1 to 5) and its level of importance βi

This just means that the basic belief mass mLsi [&jEij ](A) given to A is
transferred to the image of A under the transformation fi that holds between
the criterion value and the Goodness Score.

Ana Lear Exp Com Dec Crea
Focus : m Focus : m Focus : m Focus : m Focus : m Focus : m
∅ : 0.381 ∅ : 0.075 4 : 0.475 4 : 0.475 ∅ : 0.016 ∅ : 0.790
2 : 0.102 4 : 0.075 345 : 0.475 345 : 0.475 2 : 0.016 1 : 0.021
3 : 0.127 34 : 0.166 12345 : 0.050 12345 : 0.050 12 : 0.086 12 : 0.021

123 : 0.102 5 : 0.162 3 : 0.122 5 : 0.080
4 : 0.102 45 : 0.162 23 : 0.016 45 : 0.080

345 : 0.102 345 : 0.149 123 : 0.086 12345 : 0.008
12345 : 0.083 12345 : 0.210 234 : 0.106

12345 : 0.551

Table 6: For each criteria, list of non zero basic belief masses of mG[Ci] obtained
on the Goodness Score using the appropriate fi functions. The basic belief
masses are presented as a pair where the first term is the list of the elements
of Ls that belong to the focal element and the second term is the value of the
mass itself.

The basic belief assignment mG[Ci] derived from the basic belief assignment
mG[Ci] represents DM’s beliefs about the value of the Goodness Score of the
candidate given what DM collected about the criteria i. These basic belief
assignments are then combined on i by Dempster’s rule of combination.

mG[&iCi] = ⊕im
G[Ci]

The resulting basic belief assignment mG[&iCi] represents DM’s beliefs over
the value of the Goodness Score of candidate K given the collected information
and all DM’s a priori about the various criteria importance and the directors
competence.

3.3 Selecting a candidate

When it comes to decide which candidate to select, this last belief function is
then transformed into a (pignistic) probability, denoted BetPG, by the pignistic
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transformation (the meaning and the justification of this transformation are
detailed in [Smets and Kennes, 1994]). We have:

BetPG(A) =
∑

B⊆[1,2,3,4,5]

|A ∩B|
|B|

mG[&iCi](B)
1 −mG[&iCi](∅)

This probability function BetPG over the actual value of the Goodness Score
can then be used to order various candidates, using the classical methods de-
veloped in probability theory for such an ordering.

For the example under analysis, the non zero basic belief masses of mG[&iCi]
and of the pignistic probabilities BetPG are given in Table 7. In conclusion,
there is a strong support that this candidate is Good (score 5). An expected
Goodness Score can be computed, which value here is 4.61, and it could be used
to compare K with other candidates.

focal sets ∅ 4 5 {4,5}
mG[&iCi] .9858 .00276 .00988 .001537

mG[&iCi]Normalized 0 .34 .58 .08
BetPG 0 .38 .62

Table 7: Focal sets of mG[&iCi] and their masses on the Goodness Score, and
non zero values of BetPG on the singletons of G.

3.4 Contradiction analysis

The TBM offers the possibility to judge the magnitude of the conflict between
the belief functions that enter into a combination. This is achieved by the basic
belief mass m(∅) given to the empty set, the largest m(∅) the largest the conflict.
The value of the conflict observed when combining the directors’ opinions on a
criteria are listed in Table 8.

Ana Lear Exp Com Dec Crea
.38 .08 .00 .00 .02 .79

Table 8: For each criteria, value of the conflict between the basic belief assign-
ments combined to derive mLsi [&jEij ]. They are equal to mLsi [&jEij ](∅) listed
in table 4

There is no conflict among the directors when it comes to evaluate the criteria
Exp, what is obvious as there is only one expressed opinion, and Com where
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both opinions are equal. There is a small conflict for Dec and Lear. A large
conflict appears for what concern Ana, and still a larger one for Crea where the
two directors were fully conflicting.

The overall conflict computed when combining the basic belief assignments
on the Goodness Score is .9858 (see Table 7). This conflict should convince the
DM that the opinions expressed by the directors are strongly conflicting and any
conclusion should be taken very cautiously as probably something went wrong
somewhere (as it just happens to be the case when looking to the data for the
Ana and Crea criteria).

3.5 Sensitivity analysis

The TBM allows also to perform a sensitivity analysis. We can consider what
would be the final pignistic probabilities and the mean Goodness Scores if we
had obtained more precise assessments for each director and each criteria. Ta-
ble 9 lists the mean Goodness Scores one would have obtained if the various
imprecise assessments had been precise, one by one. The considered values are
consistent with the collected intervals Cij . The largest difference, hence the
largest sensitivity, is observed for the data collected from the HR Director for
the Lear criteria. So this is the first criteria that deserves to be assessed more
precisely.

It is also possible to determine which data should be reconsidered in order to
reduce the conflicts. In the present example, it is obvious (see Table 8) that the
conflicts for Ana and Crea should be first settled. This would mean asking the
directors to reconsider their evaluations. This sensitivity analysis is not further
explored here as the problem is not at the level of the experts’ opinions pooling,
but at the experts’ opinions themselves.

3.6 Comparing several candidates

We present the data collected for four candidates in Tables 10 to 13, the first
being the one studied so far. We tabulate the collected data, the pignistic
probabilities, the mean Goodness Scores, the overall conflict, and the ’crude
mean’ one would obtain by just adding the values of the mid point of each Cij

interval without taking in consideration any weight.
The mean Goodness Score is the highest for the first candidate, but the

amount of overall conflict is so high that the next best candidate (the fourth)
should also be considered (mean Goodness Score = 4.50). It is obvious that the
collected data are not only too imprecise but also too much conflicting.

For illustrative purpose, we present the Crude mean scores. The fourth can-
didate would then be classified as the best candidate, and the first one ends up
in a bad position. Which is the best decision can only be assessed by the expert
who should considered the collected data and produce his/her own classification.
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Criteria Director Opinion Mean Score Difference
Lear Mkt 2 4.55 .07
Lear Mkt 3 4.62 .00
Lear Fin 1 4.61 .00
Lear Fin 2 4.57 .04
Lear Fin 3 4.58 .03
Lear Fin 4 4.65 .03
Lear Fin 5 4.66 .04
Lear HR 2 4.29 .32
Lear HR 3 4.47 .14
Lear HR 4 4.74 .13
Dec Mkt 1 4.61 .00
Dec Mkt 2 4.61 .00
Dec Mkt 3 4.61 .00
Dec Mkt 4 4.66 .04
Dec Mkt 5 4.70 .08
Dec Fin 1 4.61 .00
Dec Fin 2 4.61 .00
Dec Fin 3 4.61 .00
Dec Fin 4 4.65 .03
Dec Fin 5 4.68 .06
Dec Prd 1 4.61 .00
Dec Prd 2 4.61 .00

Table 9: For each ij, value of the mean Goodness Scores and their difference
with the observed score when the imprecise Cij ’s take one of the compatible
precise values. The Score are recomputed while keeping all Cij ’s unchanged
except the one considered.

4 The QPT approach

The problem stated in Section 2 raises three main questions: i) the representa-
tion of the precise or imprecise score of the candidate provided by each expert
for each criterion, including the expert’s confidence in his assessment; ii) the
fusion of expert opinions; iii) the multiple criteria aggregation. The first step is
easily handled in qualitative possibility theory [Dubois and Prade, 1998a] which
offers a representation framework for handling imprecise values pervaded with
qualitative uncertainty. This might be related to the processing of fuzzy marks
for students’ evaluation for which an (ad hoc) treatment was proposed recently
[Biswas, 1995]. An alternative would have been to map the ordinal scale on a
suitable cardinal scale by a method such as “Macbeth” [Bana and Vansnick].
However this approach requires in fact additional information.

In the following, ∨ and ∧ denote max and min on a given ordinal scale.
¬x for any x in a given ordinal scale L = {∅, s1, . . . , sk, 1l} denotes the value
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Cij Mkt D Fin D Prod D HR D G.Sc. BetP
Ana 4 2 1 .00 G. Mean 4.61
Lear [2,3] [1,5] 4 [2,4] 2 .00 Confl. .99
Exp 4 3 .00 Crude M. 3.08
Com 4 4 4 .38
Dec [1,5] [1,5] [1,2] 3 5 .62
Crea 5 1

Table 10: Assessment of a candidate by each director on each criteria. On the
right, BetP are the values of the pignistic probabilities given to the Goodness
Score (G. Sc.), G. Mean is the mean of the Goodness Score, Confl. is the value
of the overall conflict, and Crude M. is the” crude mean.

Cij Mkt D Fin D Prod D HR D G.Sc. BetP
Ana [2,4] [1,4] 1 .00 G. Mean 3.98
Lear [2,4] [1,3] [1,4] 2 2 .00 Confl. .91
Exp [4,5] 3 .06 Crude M. 3.13
Com [4,5] [4,5] 4 .89
Dec [1,3] [1,2] 4 [4,5] 5 .04
Crea 3 [4,5]

Table 11: Assessment of a candidate by each director on each criteria. See
legend of 10.

corresponding to the reversed scale (i.e. ¬∅ = 1l,¬si = sk−i+1). It is the
counterpart to 1 − x on the [0, 1] interval scale. To simplify the notation we
have denoted the top and bottom elements of each scale by the same symbols;
however this does not mean that they are the same.

4.1 Representing imprecise and uncertain scores

The evaluation of each criterion for candidate K and a given expert j may be
imprecise (either due to the fact that it is unclear to what precise extent K
satisfies criterion i or due to the possible lack of competence in i of the expert
j assessing the value). Each evaluation will be represented by a possibility
distribution (discounted in case of limited expertise) restricting the more or less
possible values of this evaluation. Let πj

ci(K) (πj
i for short) denote the possibility

distribution restricting the possible values of ci(K) according to expert j.
The possibility distribution (π.d.f. for short) of the true value of each score

on criterion i according to expert j, taking into account his competence, is
computed in the following way. Interval-valued scores (including single values)
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Cij Mkt D Fin D Prod D HR D G.Sc. BetP
Ana 4 [2,3] 1 .00 G. Mean 3.44
Lear [2,3] [2,4] 5 [2,4] 2 .00 Confl. .82
Exp [3,4] 3 .61 Crude M. 3.08
Com [2,4] [1,4] 4 .33
Dec [3,5] 1 3 [2,4] 5 .05
Crea [3,5] 3

Table 12: Assessment of a candidate by each director on each criteria. See
legend of 10.

Cij Mkt D Fin D Prod D HR D G.Sc. BetP
Ana [4,5] [1,5] 1 .00 G. Mean 4.50
Lear [1,3] [4,5] 4 [2,3] 2 .00 Confl. .75
Exp [4,5] 3 .03 Crude M. 3.21
Com [3,5] [2,4] 4 .44
Dec [1,3] [4,5] 3 [2,3] 5 .53
Crea [1,5] [1,5]

Table 13: Assessment of a candidate by each director on each criteria. See
legend of 10.

are modeled by a possibility distribution taking the value 1l in the interval
and ∅ outside. Blanks (absence of answers) are interpreted as a possibility
distribution being 1l everywhere (modeling ”unknown”). The confidence level
γij is taken into account by a discounting process, defined as (π̃ denotes the
original possibility distribution function)

πj
i (s) = π̃j

i (s) ∨ ¬γij , ∀s ∈ Ls (5)

Note that the certainty level γij ∈ Lγ is turned into a possibility level ¬γij

over the scores not compatible with π̃j
i . Thus Lγ is Lπ reversed (this is the

usual equivalence between certainty of A and impossibility of not A).
Moreover, as in the TBM approach (3.1), it is admissible here to fuzzify

the measurements of each director, because the score scale {1,2,3,4,5} may be
thought as a discretized continuum, which means, e.g., that 3 is close to 4
in some sense, as when a director says ‘4’ we cannot fully exclude neither 3
nor 5. We use the same fuzzification as in section 3.1, except that the values
immediately close to the assessments receive the possibility ‘a’ (instead of .5 as
in section 3.1, values which are further away remain with a zero possibility. This
fuzzification takes place before applying (5). Thus π̃j

i should be the fuzzified

15



original possibility distribution in expression (5). This fuzzification and the
discounting lead to Table 14. In each cell the π.d.f is enumerated on Ls.

Mkt D Fin D Prod D HR D
Ana 1l1l1l1l1l ∅∅a1la a1la∅∅ 1l1l1l1l1l
Lear a1l1laa 1l1l1l1l1l aaa1la a1l1l1la
Exp ∅∅a1la0 1l1l1l1l1l 1l1l1l1l1l 1l1l1l1l1l
Com ∅∅a1la 1l1l1l1l1l 1l1l1l1l1l ∅∅a1la0
Dec 1l1l1l1l1l 1l1l1l1l1l 1l1lbbb bb1lbb
Crea ∅∅∅a1l 1l1l1l1l1l 1l1l1l1l1l 1la∅∅∅

Table 14: Opinions of directors on each criterion after fuzzification and dis-
counting.

4.2 Merging expert opinions

As already said, the global assessment requires two types of combination: a
multiple criteria aggregation problem, and the fusion of expert evaluations. So,
depending on the way the problem is presented, we may either think of i) first
computing the global evaluation of K according to each expert and then to
fuse these evaluations into a unique one, or ii) on the contrary, first fuse the
expert evaluations for each criterion, and then aggregate the “global” results
pertaining to each criterion. In general, the two procedures are not equivalent.
(i.e., expert opinion fusion and multiple criteria aggregation do not commute,
and the same holds for the TBM analysis). So it is important to understand
what is the meaningful order between the fusion and aggregation operations, or
if this remains unclear, to choose fusion and aggregation modes which commute.

At this point, it is worth emphasizing that expert opinion fusion and multiple
criteria aggregation are two operations which do not convey the same intended
semantics. The fusion of expert opinions aims at finding out what the possible
values of the genuine score of K for a given criterion are, and possibly to detect
conflicts between experts. Hopefully, some consensus should be reached at least
on values which are excluded as possible values of the score. The aggregation of
multiple criteria evaluations aims at assessing the global worth of the candidate
from his scores on the different criteria; then different aggregation attitudes
may be considered, e.g., conjunctive ones where each criterion is viewed as a
constraint to satisfy to some extent, or compensatory ones where trade-offs are
allowed.

In the following, we choose to merge expert’s opinions on each criterion
first, and then to perform a multiple criteria aggregation, since it might seem
more natural to use the experts first to properly assess the score according to
each criterion. Proceeding in the other way would assume that each expert is
looking for a global evaluation of the candidate (may be using his own criteria
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aggregation attitude) and the decision maker is only there for combining and
weighting expert’s evaluations.

Let us first merge the distributions pertaining to a single criterion. When
there is no major conflict between the assessments to be merged, a conjunctive
combination can be performed which singles out values of common agreement.
In QPT, possibility distributions are then combined by the min operation (here
denoted ∧), after having been discounted if necessary. When there is a strong
conflict, i.e., here when

for some i, conflicti = ∨s ∧j π
j
i (s) = 0, (6)

disjunctive combination is advisable in such a case2 [Dubois and Prade, 1994a].
Conjunctive fusion can be applied only if there is no conflict in the above
sense. A disjunctive combination means that the opinion of an important ex-
pert will not be forgotten, even if it conflicts with another important one. See
[Dubois and Prade, 1994a] for a general introduction to the logical view of in-
formation fusion and its encoding in the possibilistic framework by weighted
conjunctions and disjunctions.

However, unreliable estimates should be discounted both in the conjunctive
and in the disjunctive merging. The reliability wij attached to πj

i should be
both upper bounded by the confidence αj of DM in the expert j and the self-
confidence γij of the expert. This leads to take the weight wij as the conjunctive-
like combination of αj and γij , ∀i = 1, . . . , 6.

The weighted conjunction, applied to i without conflict, will be :

π′
i(s) =

∧
j

[(¬wij ∨ πj
i (s)], ∀s ∈ Ls. (7)

while the weighted disjunction is defined as:

π′
i(s) =

∨
j

[
wij ∧ πj

i (s)
]
, ∀s ∈ Ls, (8)

As said above, wij = γij ⊗ αj where ⊗ is a conjunction operator from
Lγ ×Lα to Lγ . Table 15 defines ⊗ on the basis of an implicit commensurateness
hypothesis of Lγ and Lα. Due to the idempotency of ∧ and ∨, the apparently
redundant treatment of the information encoded by the γij which are taken into
account both in (5), and in (7) - (8) for building the wij is innocuous. Table 16
gives the weights for all criteria and experts.

In fact, it is not clear if the weights are absolute or relative. Here we have
assumed they are absolute. In case they are relative, we could use a “nonmono-
tonic” conjunction or disjunction for discounting the part of the information
provided by less important experts which is in conflict with what is provided by
the more important ones; see [Dubois and Prade, 1994a] for details.

2Here we assume that a conflict occurs when the intersection of π.d.f.’s is empty. Note that
since the underlying space is ordered, and a fuzzification has been performed at the previous
step, conflicts are less often present (however one still occurs for criteria i = 6 (Crea)).

17



⊗ ∅ u v 1l
∅ ∅ ∅ ∅ ∅
a ∅ a a a
b ∅ a b b
1l ∅ a b 1l

Table 15: Definition of ⊗

wij Mkt D Fin D Prod D HR D
Ana ∅ a a ∅
Lear b a a b
Exp 1l ∅ ∅ ∅
Com 1l ∅ ∅ b
Dec a a a a
Crea 1l ∅ ∅ b

Table 16: Weights wij for all criteria and directors

We apply formula (7) to π.d.f’s of Table 14 (or (8) if (6) holds). We ob-
tain the π.d.f’s of Table 17 (left). Moreover, in case of disjunctive combination,
translating the lack of answer of a director (here due to a total lack of compe-
tence) by the π.d.f. expressing total ignorance (possibility = 1 on each score) is
not innocuous. Indeed in case of disjunctive combination, asserting the whole
set {1,...5} amounts to state that the expert considers for some reason that the
score can take any value in the set and that all of them are plausible: namely
the candidate is capable of the best as well as the worst w.r.t. the criterion.
This is not the same as being fully ignorant about the candidate. So in (8), the
scope of ∨ should be limited to the j’s for which we have an answer.

We notice that some distributions are no longer normalized (i.e., no score
is fully possible at level 1l). In the case of the disjunctive combination, this
is only because the weights are not normalized, i.e. ∨jwij < 1l for some i’s,
which means that the DM cannot be fully confident in any director for assessing
some criteria (namely Ana, Lear and Dec). This is a little paradoxical, since
it would be natural that the DM employs at least one fully reliable expert per
criterion! In the case of the conjunctive combination, resulting distributions
are unnormalized in case of partial conflicts. Thus, we should either use the
unnormalized distributions to fully keep track of the problem, or normalize
them in a suitable way. Here, we choose the second solution, and propose
the following approach.3 We consider that the maximum of the distribution,

3Normalization has some advantage for the next step of the procedure. Due to the use
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Ana aaaaa
Lear abbaa
Exp ∅∅a1la
Com ∅∅a1la
Dec bbbbb
Crea ba∅a1l

Ana 1l1l1l1l1l
Lear b1l1lbb
Exp ∅∅a1la
Com ∅∅a1la
Dec 1l1l1l1l1l
Crea ba∅a1l

Table 17: Merged opinions of directors on criteria (left); Merged opinions after
normalization (right)

denoted h, reflects the uncertainty level, considered to be ¬h in the information.
This means that the amount of conflict is changed into a level of uncertainty and
the minimum level of the modified distributions will be ¬h. Then, we make an
additional hypothesis that the scale is an interval scale (which is questionable!)
so that the profile of the distribution is not changed. Specifically:

πi(s) = π′
i(s) + ¬(∨sπ

′
i(s)) (9)

It means that + in (9) is defined by si + sj = smin(k+1,i+j) on a scale {s0 =
∅, s1, . . . , sk, sk+1 = 1l}. The result is shown in Table 17. A slightly different
method would be to keep possibility degrees equal to ∅ at ∅, since π′

i(s) = ∅
means that all experts agree on the fact that the value s is impossible.

4.3 Criteria aggregation

The way of aggregating the criteria evaluations is not at all specified in the
statement of the problem. The aggregation of preferences expressed by the
criteria and their levels of importance is not viewed here as another multiple
source information fusion problem as in Section 3 where the “Goodness” of
the candidate was estimated by the conjunctive combination of the basic belief
assignments modeling the Goodness of the candidate according to each criterion.
In the following the aggregation of criteria is viewed as a problem different from
data fusion, where we are not trying to estimate the true value of a parameter,
but rather to express how the levels of satisfaction of each criterion contribute
to the global level of satisfaction, just allowing for trade-offs. However the
aggregation function (which is not at all part of the QPT model) is almost
unspecified here. Moreover, the evaluations attached to each criterion are not
pointwise here, but rather imprecise and pervaded with uncertainty.

Only qualitative levels of importance βi are provided for each criterion i.
Even with ordinal scales, different attitudes can be thought of. The aggregation

of the extension principle in the final step (see (12)), we need to normalize, otherwise the
resulting π.d.f. will be truncated by the height of the smallest distribution, and thus would
continue to keep track of the lack of reliability of a part of the information, but would have its
profile modified, since the nuances between more or less high degrees of possibility are lost.
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may be purely conjunctive (based on weighted “min” operation), or somewhat
compensatory (using a median operation for instance). It might be also disjunc-
tive if at least one important criterion has to be satisfied, then it is modeled by
a weighted maximum. More general aggregation attitudes can be captured by
Sugeno’s integral [Sugeno, 1977];[Grabisch et al., 1995]. Let us assume that the
DM has a somehow compensatory attitude.

Here we use the only associative qualitative compensatory aggregation oper-
ator, namely the median. Indeed, min(x, y) ≤ median(x, y, α) ≤ max(x, y) for
any α belonging to the domain of x and y. Thus we shall take α to be the middle
point of the scale, i.e., 3, since it will be applied to Ls = {1, 2, 3, 4, 5}; Due to its
associativity, the median operation can be easily generalized to the aggregation
of n terms, namely median(x1, x2, α) becomes median(∧kxk,∨kxk, α). However
we have still to take into account the importance levels of the criterion. So
the global score s after aggregation will be taken to be equal to median(c, d, α)
where c (resp. d) is a weighted conjunction (resp. disjunction) computed as
follows.

With our notations, in the case of precise scores, the global score combination
with the weighted minimum method is obtained by:

c =
6∧

i=1

[(¬βi)∨̃ci] (10)

where ∨̃ is a disjunctive operator from Lβ ×Ls to Ls. Table 18, left part, gives
the definition of this operator.

Computed with the weighted maximum, the global score would be:

d =
6∨

i=1

[(βi)∧̃ci] (11)

where ∧̃ is given in right part of Table 18.

∨̃ ∅ e f g 1l
1 1 2 3 4 5
2 2 2 3 4 5
3 3 3 3 4 5
4 4 4 4 4 5
5 5 5 5 5 5

∧̃ ∅ e f g 1l
1 1 1 1 1 1
2 1 2 2 2 2
3 1 2 3 3 3
4 1 2 3 4 4
5 1 2 3 4 5

Table 18: Definition of ∨̃ and ∧̃

The “fuzzy” evaluations provided by the π.d.f.’s should now be aggregated.
A natural manner to proceed is to extend multiple criteria aggregation tech-
niques to such non-scalar evaluations (this can be done both if this step is done
before or after the fusion step). At the technical level, this is done using an
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extension principle [Zadeh, 1975] which makes it possible to extend any func-
tion/operation f to any fuzzy arguments. Namely,

f(π1, . . . , πm)(s) = ∨s=f(s1,... ,sm)π1(s1) ∧ . . . ∧ πm(sm)

where πi(si) is the possibility degree of score si according to π.d.f. πi.
Here f is the aggregation function f(c1, ..., c6, β1, ..., β6) = median(c, d, 3).

We have for any s ∈ Ls and candidate K,

πK(s) =
∨

s=median(3,
∧6

i=1[(¬βi)∨̃ci],
∨6

i=1[βi∧̃ci]

(π1(c1) ∧ · · · ∧ π6(c6)) (12)

Applying this formula to our data, we finally obtain the distribution given in
Table 19.

score 1 2 3 4 5
possibility degree ∅ ∅ 1l 1l ∅

Table 19: Possibility distribution πK of the final score

The result can be interpreted by saying that the candidate K is certainly
not a very good candidate nor a bad or average one, and K is between medium
and good. Let us briefly comment the result. The most important criteria are
Com and Crea, where the scores are respectively 4, and 1 or 5 (with possibility
1l). This explains why the global value 5 is impossible, since it is not reached
by one important criterion. Moreover the score on criterion Dec which is rather
important, is around 3, while the other important criterion Ana has a score
from 2 to 4. This explains why only intermediate values 3 and 4 are possible for
the global score, with a median-based , i.e ., a compensatory operation, at the
multiple criteria aggregation step. In this peculiar example the π.d.f.’s which is
obtained for the score is {0,1}-valued. In Table 20, where other candidates are
considered, π.d.f.’s with intermediate possibility degrees are obtained as well.

Results for the three other candidates considered in Section 3.6 are displayed
in Table 20. The result obtained above is a possibility distribution πK restricting
the possible values of the global evaluation of K. Then a fuzzy ranking method
should be used for assessing to what extent it is certain, and to what extent it
is possible that K1 has a score larger than K2, on the basis of πK1 and πK2 in
case of several candidates [Dubois and Prade, 1983].
Remark. Note that if weighted min combinations would be used both in

the expert opinion fusion and in the multi-criteria aggregation then the two
combinations commute, at least with precise scores. In the general case the
multiple criteria aggregation and the expert opinion fusion are not expected to
commute, as suggested by the simple following example. Let us suppose we
have two criteria and two experts (cij is the grade for the criterion i according
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to expert j):

c11 = 1; c12 = 5.
c21 = 5; c22 = 1.

If we first aggregate the criteria by some median operation, we may find 3 for
each expert, since according to each expert the candidate is very good on one
criterion and very bad on the other. Then fusing the global expert opinions we
find 3. If we rather start by fusing the expert opinions, we find ”1 or 5” in both
cases, since they are conflicting. Note that the result will be the same at this
step for the following very different data set:

c11 = 1; c12 = 5.
c21 = 1; c22 = 5.

We have just forgotten, when we will apply some extended aggregation operation
to ”1 or 5” and ”1 or 5” that the pairs (1,1) and (5, 5) are impossible (with the
first set of data).

4.4 Qualitative expected values

.
The assessment problem can be viewed as a decision to be made under un-

certainty. Namely, the relevance of the criteria defines a candidate profile, i.e.,
a kind of utility function, while the value of the candidate K is ill-known with
respect to each criterion (once expert opinions have been fused). Viewing the
problem in this way, it is natural to compute to what extent it is certain (or
it is possible) that the candidate K (whose level assessment may be pervaded
with imprecision and uncertainty for each criteria) satisfies the criteria at the
required level; see [Dubois and Prade, 1995] for an axiomatic view of the cor-
responding qualitative decision procedure. It corresponds to a fuzzy pattern
matching problem [Dubois et al., 1988] in practice.

For each criterion i, we build a satisfaction profile µi, e.g., µi(s) = ¬βi ∨ s.
µi means that the greater the score, the better the candidate, and that the
satisfaction degree is lower bounded by ¬βi which is all the greater as i is less
important. Then the certainty that K satisfies the profile is given by

∧i ∧s (µi(s) ∨ ¬πci(K)(s)) (13)

where πci(K) is supposed to be normalized. The possibility that K satisfies the
profile is

∧i ∨s (µi(s) ∧ πci(K)(s)) (14)

where πci(K) has been obtained by fusing the expert opinions first, at the level of
each criterion. The possibility degree (very optimistic) should be only used for
breaking ties in case of equality of the certainty degrees for different candidates.
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The aggregation by ∧i of the elementary certainty and possibility degrees can
be justified in the possibility framework (definition of a join possibility distri-
bution of non-interactive variables [Zadeh, 1975], when the global requirement
is interpreted in terms of a weighted conjunction of elementary requirements
pertaining to each criterion). The expression (13) and (14) can be viewed as
possibilistic ‘lower and upper expectations’.

When a median-based aggregation is used, the possibility and the necessity
measures are no longer ∧i-decomposable as in (13) and (14) and we would have
to compute directly the possibility and the necessity that the global satisfaction
profile (again computed from the µi by application of the extension principle)
is satisfied giving the joint π.d.f. ∧iπCi(K).

What is computed remains in the spirit of the approach detailed before.
Instead of obtaining a possibility distribution we obtain two scalar evaluations
for which it should be possible to show that they summarize this possibility
distribution (in a sense to be made precise at the theoretical level). Anyway
both approaches first compute the πci(K)’s and are based on the choice of an
aggregation function.

Note also that we are not obliged to combine the different evaluations πci(K)

pertaining to each criterion (once we have fused the expert grades). We may
summarize each possibility distribution by a “lower expected value”, and then
compare lexicographically tuples made of the scalar evaluations thus obtained
for each criterion (the scalar evaluations being ordered in the tuple according
to the importance of the criteria), for different candidates.

5 General discussion

The use of the two approaches for dealing with the same (class of) problems
has raised two types of issues which are now briefly considered; namely first a
comparison of the approaches, and second how each approach could be validated.

5.1 Outline of a comparison

The reader may observe some agreement between the results obtained by the
belief function approach and by the possibilistic approach, when considering
the possibility distributions and the mass functions which are obtained, before
computing the expected values (see Table 20). This is not too surprising if we
consider the two flowcharts summarizing the two approaches, which are rather
similar (see Tables 22 and 23). However the remaining discrepancies between
results are largely due to the different views which are chosen at the multiple
criteria aggregation step.

In QPT-based approach, merging opinions and aggregating criteria are en-
visaged as two different problems. Merging opinions is performed by min-based
combination of the π.d.f.’s, as prescribed by QPT, when there is no conflict.
When a conflict exists, it means that at least one of the opinions is totally wrong,
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K G. Sc. 1 2 3 3-4 4 4-5 5 Conclusions Mean G.
1 QPT ∅ ∅ 1l 1l ∅ best

TBM .33 .99 .57 4 or 5 4.61
2 QPT ∅ ∅ 1l b ∅

TBM .05 .94 .87 4, maybe 3 3.98
3 QPT ∅ b 1l 1l ∅

TBM .49 .93 .21 3 or 4 3.44
4 QPT a b 1l 1l ∅

TBM .37 .95 .47 4 or 5 4.50

Table 20: Results for the 4 candidates K = 1, 2, 3, 4 which data are presented
in Tables 10 to 13. Goodness Scores from 1 to 5, with the QPT outcomes
graded 0, a, b, 1, and the value of belG for the intervals really supported. Score
4-5 means the score is 4 or 5. Presented conclusions are those derived from
‘common sense’ given the QPT or the TBM outcomes. For QPT, case 1 > case
3 > case 4 and case 1 > case 2, but case 2 and cases 3 or 4 are not comparable.
Last column is the mean Goodness Score computed in the TBM.

and a max-based disjunction is performed in order to save the provided infor-
mation. Then the weighting of the conjunction or of the disjunction amounts
to a preliminary discounting or truncation of the π.d.f.’s according to the con-
fidence in the sources. Aggregating criteria supposes to know if trade-offs exist
or not. There exists a large panoply of different possible aggregation attitudes,
even when dealing with qualitative scales. This contrasts with the view used in
the TBM-based approach where only Dempster rule of combination, which is
conjunctive, is used here. However belief functions viewed as set functions could
have been used for describing multiple criteria aggregations based on Choquet
integrals, where sets of criteria can be weighted [Grabisch and Roubens, 2000].
In case other aggregation operations would be chosen at the multiple criteria
aggregation step, with the QPT approach, results which are rather different
could be obtained. For instance, choosing a weighted min-combination at the
aggregation step, would lead to results where low scores would not be excluded
(see Table 21 for the results which would be obtained for the first candidate).

score 1 2 3 4 5
possibility degree b 1l 1l 1l 0

Table 21: Possibility distribution π of the final score

The other discrepancies between the results obtained in Sections 3 and 4
with the two approaches may have several reasons.

• The QPT approach using a qualitative possibility scale cannot use any di-
rect counterpart of the product used in the TBM approach. Moreover us-
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ing the possibility theory approach with a [0,1] scale will open the door to
the use of adaptative merging operators [Dubois and Prade, 1994b] which
provide a softer adaptation between the conjunctive and the disjunctive
attitudes (using the degree of conflict as a weighting factor).

• Moreover, when introducing the Goodness Score in the belief function
approach, the underlying idea is that we are all the less demanding for
reaching the maximum level of satisfaction as the criterion is less impor-
tant. This is not the understanding chosen in the possibilistic approach
(remember that the problem is not completely specified). Rather, the
unimportant criteria were considered as somewhat satisfied even if they
were not at all satisfied. In fact there are different possible ways of under-
standing the weighting of the criteria, in a qualitative conjunctive setting.
Let ci(K) be the supposedly precise value of score of K, according to
criterion i. Indeed, we can i) modify ci(K) into ¬βi∨̃ci(K) as we did,

or ii) modify ci(K) into
{

5 if ci(K) ≥ βi

ci(K) if ci(K) < βi
(βi is interpreted as

a threshold level to reach in order to be fully satisfied, taking advantage
of the commensurateness hypothesis underlying Table 18), iii) or we may
even think of ¬βi as a “bonus” to be added to ci(K). Once the type of
weighted conjunction has been chosen, it has to be extended to the π.d.f.’s
πi, since the precise value of ci(K) is not available. Choosing the option
(ii) above in the QPT approach instead of (i) would be similar to the idea
of Goodness Score as defined in the TBM approach.

• The value assessment problem considered here is probably not the best
type of examples for exhibiting the benefit of one of the specificities of
the TBM approach, namely the capability of putting masses on subsets
of values which are not singletons. More generally, this capability might
be of interest both at the merging step and at the aggregation step (then
leading to a Choquet integral-based evaluation as already mentioned).

The example also raises the issue of the difference between a value asserted
by the expert as “unknown” (interval [1, 5] in the example), and the absence
of answer by the expert for a criterion evaluation. Even if in both cases, the
result is that the evaluation is actually unknown, the reason of the absence of
answer may be either that the director feels himself totally incompetent and
does not answer (as already discussed), or that the criterion does not really
apply to Mr. K (according to the expert). This will call for a richer evaluation
framework where the evaluation assessment can take its value in an extended
domain {1, 2, 3, 4, 5} ∪ {does_not_apply}. Then it creates further difficulties,
especially when comparing candidates...

For summarizing the main differences between the belief function (TBM)
and the possibility-based approaches (QPT) on the value assessment problem,
it is clear that the possibilistic method can handle poor data expressed in a
qualitative, non-numerical, way whereas the belief function framework may more
easily capture reinforcements and compensatory effects. In the QPT approach,
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the propagation of imprecision and uncertainty in the combination process has
been emphasized, while the TBM approach has privileged the decision step by
computing expected values.

5.2 Brief discussion on the validation issues

The validation of an approach used in practice involves several aspects according
to which an approach may be judged and compared to others.

A first type of validation is the practical one (not always easy to perform).
It consists in checking the ‘correctness’ of the results provided by the system
by comparing them to those produced by a panel of experts (w.r.t. to the
information actually provided to the system). One must nevertheless be careful
that the experts might not provide a golden standard. This approach produces a
measure of concordance between two systems, not always a measure of quality.
Furthermore a system may provide correct results without being considered as
genuinely ‘useful’ by the experts. Anyway this type of validation is usually
done on systems which are already developed at an operational level. The real
pragmatic validation should be carried on as it is done in medicine, through a
clinical trial where several methods are compared on many real examples and
their values assessed by comparing the final results.

But other aspects should be also considered before. In the following we
distinguish between those pertaining to normative, empirical, computational
and explanatory issues.

From a normative validation point of view, we can see our problem as made of
two main steps : i) the combination of pieces of information coming from differ-
ent experts, ii) then a decision step made on the basis of the imprecise/uncertain
information obtained at the end of step i with respect to a (multiple criteria)
value function, as pointed out at the end of Section 4. ‘Normative’ refers to
the existence of postulates which, once accepted, necessarily lead to a spe-
cific method. Regarding the combination of uncertain information, there are
no genuine normative approaches available although there exist characteriza-
tion theorems in various frameworks. Thus the min-based combination is the
only conjunctive idempotent attitude, whereas Dempster’s rule of combination
is not idempotent (even though there exist other combination rules that are
more cautious and idempotent). Concerning the decision step, the situation
is a bit different since there exist well established normative frameworks. Re-
garding decision under uncertainty, one has been recently proposed for von
Neumann-Morgensten and Savage-like justifications of the possibility theory-
based approach [Dubois and Prade, 1995], [Dubois et al., 1998b]. For the TBM,
the pignistic transformation produces a probability used for decision making; its
justification is detailed in [Smets and Kennes, 1994] and the avoidance of any
Dutch-book is explained in [Smets, 1993b].

Regarding empirical validation, we face a cognitive problem. Is the rep-
resentation framework used cognitively meaningful? Are the operations per-
formed on the representation meaningful? Preliminary (positive) elements
of answers concerning the possibility theory framework can be found in
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[Raufaste and Da Silva Neves, 1998].
Concerning the computational issue, the two methods presented are clearly

computationally manageable in practice (even if one is simpler). The fact that
Dempster’s rule of combination is NP complex is not a real issue here as the
kind of data expected are simple and the involved belief functions have few
components, making the computation tractable in practice.

Lastly, it is also important to judge the (potential) explanation capabili-
ties. Are the results provided by the system easy to explain to the user if
necessary? E.g., why the value of the candidate is finally assessed as such?
Such explanation capabilities are presented in [Farreny and Prade, 1992] and
in [Xu and Smets,1996] for the QPT and the TBM, respectively. Generally,
the qualitative framework of possibility theory allows for a logical reading and
processing of the evaluations [Benferhat et al., 1997].

6 Concluding remarks

In this paper, we have taken advantage of a generic value assessment problem for
discussing the different facets of the problem and raising the various difficulties
and hypotheses which should be made at each step for computing a meaningful
evaluation through two models, the QPT and the TBM.

The purpose of the paper was twofold: first identifying and discussing various
facets of a value assessment problem, and second showing how two different
approaches (which have in common the capability of modeling imprecision) can
handle the problem in manners which are in fact quite parallel.

The statement of the problem contains no numerical data, but only ordinal
assessments. Owing to the qualitative framework of possibility theory , the QPT
provides a natural approach. However note that it is important to consider
the nature of the scales which are used in order to know what operations are
meaningful on them. Moreover commensurateness hypotheses are necessary.

With the TBM, numbers (the beliefs) are needed. They are in fact analogous
to those a probability approach would ask for. The difference between the TBM
and a probability approach is that the TBM accepts and uses the data just as
they are, without introducing extraneous data. E.g., a probability approach
would allocate (equal) probabilities to each of the individual values of the scores
when the score is only known as a non-degenerate interval.

Sensitivity analysis can be performed, where either the values of the param-
eters (TBM) or the aggregation operators (QPT) are slightly modified and the
robustness of the conclusions can be assessed. Furthermore the DM can also de-
termine the sensitivity of the results if more precise data were collected. Given
this information, the DM could efficiently ask to a specific expert to provide a
better estimate of the candidate score for a specific criterion, avoiding getting
”useless” data.
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The TBM flowchart

Start

Quantitative Poss ↓
Poss(Expert says Cij | actual value ci)

Poss = pl ↓ Poss(A|B) = pl[B](A) = pl[A](B)

mactual value ci [What expert i states about criteria j]

Numerical discounting ↓ discounting

mactual value ci [What i states about j, My opinion about i for j]
↘↓↙

Distinctness
⊕

conjunctive combination

mactual value ci [What all state about j, My opinion about experts]

f:criteria→goodness ↓ extension principle

mGoodness[All I know about criteria ci]
↘↓↙

Distinctness
⊕

conjunctive combination

mGoodness[All I know]

↓ pignistic transformation

BetP over Goodness of candidate K

Numerical scale ↓ expected utility

Expected Goodness of candidate K

Table 22: The TBM flowchart. On the left, the needed assessments and as-
sumptions. On the right of the arrows, the used operators.
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The QPT flowchart

Start

Qualitative Possibilities ↓ representation of fuzzified data

Poss(actual value ci | Expert says Cij)

Qual. opinion on i for j↓ discounting

Poss(actual ci | Expert says Cij , My opinion about i for j)
↘↓↙

Merging expert opinions: weighted min (max if conflict)

Disj. combi. if conflict ↓
Normalization of merged opinions

Define aggregation rule ↓ extension principle on median-based aggregation.

Satisfaction pattern : Poss(score | All I know & aggregation rule)

↓
Optimistic and pessimistic expectations about global value of K.

Table 23: The QPT flowchart. On the left, the needed assessments and assump-
tions. On the right of the arrows, the used operators.
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