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Abstract - When Shafer introduced his theory of ev-

idence based on the use of belief functions, he proposed a

rule to combine belief functions induced by distinct pieces

of evidence. Since then, theoretical justifications of this so-

called Dempster’s rule of combination have been produced

and the meaning of distinctness has been assessed. We will

present practical applications where the fusion of uncertain

data is well achieved by Dempster’s rule of combination.

It is essential that the meaning of the belief functions used

to represent uncertainty be well fixed, as the adequacy of

the rule depends strongly on a correct understanding of the

context in which they are applied. Missing to distinguish

between the upper and lower probabilities theory and the

transferable belief model can lead to serious confusion, as

Dempster’s rule of combination is central in the transfer-

able belief model whereas it hardly fits with the upper and

lower probabilities theory.

Keywords: belief function, transferable belief model,

Dempster-Shafer theory, Dempster’s combination rules.

1 Introduction.

People working in the fusion of uncertain data have
been interested in the so-called Dempster-Shafer the-
ory essentially because of two of its tools:

• a nice and flexible way to represent uncertainty, be
it total ignorance or any form of partial or total
knowledge, that is more general than what the
probabilistic approach provides, and

• a rule to combine uncertain data, called the Demp-
ster’s rule of combination, that seems to provide
an excellent tool for data-aggregation.

Nevertheless, confusion in the understanding of the
exact nature of the model lead many authors to crit-
icize it as inadequate, if not erroneous. These criti-
cisms have permitted to clarify the exact nature of the
models that might be regrouped under the Dempster-
Shafer theory label.

We will try here to clarify what are these models
represented by Dempster-Shafer theory, hoping that
a correct understanding of their natures will lead to
correct applications

2 Belief functions based models.

Several models have been proposed that are based on
the mathematical object called a belief function. We
examine them, as confusing them is a major source of
misdirected criticisms.

2.1 Various models

2.1.1 The belief functions as mathematical ob-
jects.

The common mathematical object encountered in
every model that receive the ‘belief function’ or
‘Dempster-Shafer theory’ label is the belief function
itself. As such it is nothing but a Choquet capacity
monotone of infinite order. It means that a belief func-
tion, denoted bel, is a function from some power set on
the [0, 1] interval. Let Ω be a finite space, and let 2Ω

be its power set. Then bel : 2Ω → [0, 1] satisfies

bel(∅) = 0
∀n ≥ 1,∀A1, A2, ...An ⊆ Ω

bel(A1 ∪A2 ∪ ...An) ≥
∑

i

bel(Ai)...

...−
∑

i>j

bel(Ai ∩Aj)..− (−1)nbel(A1 ∩A2...An) (1)

As such these inequalities are hardly meaningful,
but the special case with n = 2 and A1 ∩ A2 = ∅ is
worth considering:

bel(A1 ∪A2) ≥ bel(A1) + bel(A2) if A1 ∩A2 = ∅.

This last relation just illustrates that the belief given
to the union of two disjoint subsets of Ω is larger or
equal to the sum of the beliefs given to each subset
individually.

When all the inequalities of relations (1) are re-
placed by equalities, the resulting function bel would
then be a classical probability function.

A belief function can also be mathematically defined
by introducing another set function, called the basic
belief assignment (bba for short) and denoted m, with
m : 2Ω → [0, 1] and:

∑

A⊆Ω

m(A) = 1. (2)



Note. We do not require m(∅) = 0 or equivalently
that bel(Ω) = 1, as initially required by Shafer. Our
approach is more general, and the gain in some cases
is even important, as illustrated in section 4.3.

Given a bba m, we can define bel so that

bel(A) =
∑

∅�=B⊆A

m(B), ∀A ⊆ Ω. (3)

The functions bel and m are in one-to-one correspon-
dence, and the function bel as defined is indeed a belief
function, i.e., satisfies relations (1).

Other functions have also been introduced, as often
they are more convenient than bel or m. They are all in
one-to-one correspondence with m, so they never add
nor loose any information. They are: the plausibility
function pl, the commonality function q and the the
implicability function b, where for all A ⊆ Ω:

pl(A) = bel(Ω) − bel(A) =
∑

B:A∩B �=∅
m(B). (4)

q(A) =
∑

B:A⊆B

m(B) (5)

b(A) = bel(A) + m(∅) =
∑

B⊆A

m(B) (6)

Up to now, we have only defined a mathematical
function, called the belief function (and all its related
functions). The next mathematical concept is Demp-
ster’s rule of combination.

2.1.2 Dempster’s rule of combination.

Shafer introduces also a rule to combine two belief
functions, called Dempster’s rule of combination. It is
an associative and commutative operation that maps a
pair of belief functions defined both on the same space
Ω into a new belief function on Ω. Let bel1 and bel2
be two belief functions on Ω, with m1 and m2 their
related bba’s. Then bel1 ∩ bel2 is defined through its
related bba m1∩2 where:

m1∩2(A) =
∑

B∩C=A

m1(B)m2(C), ∀A ⊆ Ω (7)

The same result can be conveniently expressed with
the commonality function.

q1∩2(A) = q1(A)q2(A) ∀A ⊆ Ω (8)

Usually the ⊕ symbol is used to denote Dempster’s
rule of combination, but for later symmetry we prefer
the ∩ symbol.

A special, but essential, case of Dempster’s rule of
combination is the so called Dempster’s rule of condi-
tioning. Let mA be so that mA(A) = 1 and all other
mA values are null. The result of the combination of
m with mA produces a new belief function, denoted
belA with:

belA(B) = bel(B ∪A) − bel(A). (9)

The concepts of belief functions and Dempster’s
rules makes what is classically denoted by Dempster-
Shafer theory. What are the meaning of these objects is
another problem that authors took too fast for granted

2.1.3 The representation of beliefs.

Shafer had the idea that

• bel represents a quantified belief about the ex-
act value of the actual world, i.e., the strength of
an agent’s opinion about the value of the actual
world,

• Dempster’s rule of conditioning is the appropriate
way to condition a belief function on a new piece
of evidence that states that the actual world does
not belong to some subset of worlds in Ω,

• Dempster’s rule of combination is the appropriate
way to combine the belief functions derived from
two ‘distinct’ sources of evidence.

Of course the concept of ‘belief’ is not easy to de-
fine, and confusion appears because of the different
understandings that can be given to this term. We
can describe three major families of models where be-
lief functions can appear, and where Dempster’s rules
may be appropriate. They are:

• the upper and lower probability models

• Dempster’s model and the hint model of Kohlas
and Monney

• the transferable belief model of Smets.

We examine successively these three models. But we
introduce first a new notation that has proved to be
very convenient in practical applications.

2.1.4 Notation

The full notation for bel and its related functions is:

belΩ,�
Y,t [ECY,t](ω0 ∈ A) = x.

It denotes that the degree of belief held by the agent
Y (shortcut for You) at time t that the actual world
ω0 belongs to the set A of worlds is equal to x, where
A is a subset of the frame of discernment Ω and A ∈ �
where � is a Boolean algebra of subsets of Ω. The
belief is based on the evidential corpus ECY,t held by
Y at t, where ECY,t represents all what agent Y knows
at t.

Fortunately, in practice many indices can be omit-
ted for simplicity sake. Usually � is 2Ω, the power set
of Ω. When � is not explicitly stated, it means that
bel is defined on 2Ω. ‘ω0 ∈ A’ is denoted as ‘A’. Y ,
t and/or Ω are omitted when the values of the miss-
ing elements are clearly defined from the context. So
belΩ[E](A) or even bel(A) are the most often used no-
tation. Furthermore, E is usually just a conditioning
event, and a subset of Ω. So the classical conditional
probabilities P (x|θ) for x ⊆ X and P (.|θ) are denoted
here as PX [θ](x) and PX [θ] (indicating the domain
avoids many errors).

In the above notation, bel can be replaced by any
of m, pl, q, b, etc... The indices should made it clear
what the links are



2.2 The upper and lower probability
models

In this context, one assumes

• either the existence of a probability function which
represents the agent’s beliefs but which values are
not precisely known, and all that can be stated
about the probability function is that it belongs
to a family Π of probability functions,

• or that the state of belief of an agent is defined by
such a family of probability functions.

Usually one will also assume that the family is con-
vex, in which case its lower envelop completely defined
the family. That lower envelop function of Π, denoted
P∗ is defined as

P∗(A) = min
P∈Π

P (A), ∀A ⊆ Ω

This function is usually a Choquet capacity mono-
tone of order two, and only in some special cases is it a
belief function. The applicability of Dempster’s rules
is usually unjustified. Indeed, suppose You learn from
one source that the unknown probability function be-
longs to a family Π1, and from a second source that it
belongs to a family Π2, it is obvious that if You trust
both sources of information, You would conclude that
the unknown probability function belongs to Π1 ∩ Π2.
The lower envelop of this new family is usually not a
belief function even if the lower envelop of Π1 and of
Π2 were belief functions. In this example, Dempster’s
rules should not be applied.

Many criticisms against Dempster-Shafer theory
were based on the use of Dempster’s rules in such upper
and lower probability contexts (Zadeh, 1986; Kyburg,
1987; Voorbracht, 1991).

As an example we just illustrate a case of con-
ditioning were both Dempster’s rule of conditioning
and another conditioning rule are justified, but where
these rules reflects different conditioning events. It
just shows that a blind application of some ‘universal’
rule is non-sensical.

Example. Imprecise Database.(Smets, 1998a)
Suppose a database with seven cases and one field con-
taining the age (table 1). It happens that the ages are
imprecisely known. The age can be interval valued like
for case 1 whose age is in the interval [13-17], or dis-
junctive like for case 2 whose age is either 15 or 40.
Because of the imprecision, some proportions cannot
be exactly known. Depending on the values given to
the actual ages of the seven cases, we can construct
a family of functions giving the proportion of cases
falling in every subset of the age domain Ω = [0, 100]
and compatible with the data.

Suppose the interval [20, 30] of Ω. In order to com-
pute the minimal and maximal proportions of cases
that belong to [20, 30], we determine those cases that
must belong to the interval whatever the values of their
actual age, and those who might belong to it. In table
1 the columns Nec and Pos (columns 3 and 4) indicate

those two groups of cases by a *. Cases 4 and 5 belong
to [20, 30] whatever the actual ages of these two cases.
Cases 4 to 7 might belong to it as it is possible that
the actual ages of these cases are in the interval [20,
30].

Let these two proportions be called the upper
and lower proportions, denoted Prop*([20-30]) and
Prop∗([20-30]), respectively. We have:
Prop∗([20-30]) = 2/7, Prop*([20-30]) = 4/7.

Suppose an individual will be selected from the
database and the selection procedure is such that every
individual has the same chance of being selected. Now
we can speak of probabilities: they result from the se-
lection procedure, and the probabilities happen to be
equal to the proportions because of the equiprobabil-
ity of being selected. What would be the probability
that should be given to the fact that the age of the se-
lected individual, denoted w0, would fall in the interval
[20-30]?

Due to the imprecision of the proportions that re-
sults from the imprecision in the data, we can only
build the family of probability functions compatible
with the available data. By construction, this family
is in one-to-one correspondence to the family of propor-
tion functions compatible with the data. Let Π denote
the family of probability functions Prob defined over
Ω and compatible with the data. For any subset of Ω,
we can only determine the upper and lower probabili-
ties, denoted Prob∗ and Prob∗, respectively, by taking
the extremes values given to that subset when Prob is
constrained within Π. We have:
Prob∗([20-30]) = minProb∈Π Prob([20-30]) = 2/7
Prob∗([20-30]) = maxProb∈Π Prob([20-30]) = 4/7

These probabilities are numerically equal to the cor-
responding proportions because of the equi-probability
of the sampling procedure. If the chance of being se-
lected had depended on the individual, this direct re-
lation between the probabilities and the proportions
would disappear.

Now suppose we receive the information that the se-
lected individual happens to be younger than 25 years
old. This is a factual (Dubois & Prade, 1998; Smets,
1998a) knowledge as it tells something about w0 itself.
Among other it tells that case 4 could not have been
the one selected. Depending on the values given to the
actual ages in agreement with the available data, we
can compute the upper and lower values that Prob([20-
30]|[0-25]) could achieve. This is done by taking every
probability function Prob that belongs to Π, comput-
ing Prob([20-30]|[0-25]) through the application of the
Bayesian conditioning rule, and finding the extreme
values these conditional probabilities could reach. It
can be shown that the conditional probability that the
age of the randomly selected individual is between 20
and 30 becomes:

Prob∗([20 − 30]|[0 − 25]) = ...

... =
Prob∗([20 − 25])

Prob∗([20 − 25]) + Prob∗([0 − 19])
= 1/6

Prob∗([20 − 30]|[0 − 25]) =



Table 1: Value of the age of seven individuals.

Case is < 25 All cases < 25
20-30 20-25 0-19 20-25 0-19 20-30

Case Age Nec Pos Nec Pos Pos Nec Age Incl Nec Pos
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
1 13-17 * * 13-17 *
2 15 or 40 * 15 *
3 11 or 50 * 11 *
4 27 * * -
5 21-23 * * * * * * 21-23 * * *
6 23 or 45 * * * 23 * * *
7 15-23 * * * * 15-23 * *

Total 2 4 1 5 3 4 6 2 3

... =
Prob∗([20 − 25])

Prob∗([20 − 25]) + Prob∗([0 − 19])
= 3/7.

Columns 5 to 8 of table 1 provide the details of the
needed data to compute these upper and lower prob-
abilities. This rule is called the ‘natural extension’ by
Walley (1991).

Let us forget about the previous conditioning event,
and suppose now You learn a piece of information that
states that none of the individuals in the database were
older than 25. This is a generic knowledge as it con-
cerns all the individuals in the database and not only
the selected one. In that case, the database is trans-
formed into a new data base, as given in columns 9
to 12 of table 1. For every case, the ‘age’ is obtained
by intersecting the previous subsets with the interval
[0-25]. Case 2 was known to be either 15 or 40. As
nobody was older than 25, we know now that case 2
is 15 years old, etc... For case 4, one might wonder
why he was initially in the data base. Indeed the in-
tersection is empty, he was known to be 27, and now
we learn that everybody was younger that 25. There
are two ways to handle that case. We can consider
it as an error and eliminate it from the database, in
which case only 6 cases are left over, all probabilities
are normalized, and:

Prob∗([20-30]|[0-25] ) = 2/6,
Prob∗([20-30]|[0-25] ) = 3/6.

We can also decide to keep it as an indication of
some incoherence in the database and not to normalize
the data, keeping 1/7 as an amount of conflict, in which
case:

Prob∗([20-30]|[0-25] ) = 2/7,
Prob∗([20-30]|[0-25] ) = 3/7.

This last conditioning corresponds to what would
have been obtained by the application of Dempster’s
rule of conditioning on the Prob∗ function.

Note that if the values of the database had been
known precisely, not only the upper and lower prob-
abilities would have been equal, but also the condi-
tional probabilities that would result from both the
factual and the generic knowledge would have been
both equal to the conditional probabilities obtained
by the application of the Bayesian rule of condition-
ing This degenerescence explains why the distinction

between generic and factual knowledge is not impor-
tant in probability theory.

2.3 The hint model.

Initially, Dempster (1967, 1968, 1972) studied belief
functions while trying to solve the problem of fidu-
cial inference. He introduced a model characterized by
three components:

• two finite spaces X and Y ,

• a probability measure P defined on X,

• a one-to-many mapping Γ : X → 2Y .

The question to be solved is the computation of the
probability on Y . Should we know all the conditional
probabilities on Y given each x ∈ X, the problem is
trivial. But it happens we do not know these condi-
tional probability functions. All we know is they are
zero when y /∈ Γ(x). If one consider all the possible
values for these conditional probability functions, one
can then deduce the family of probability functions on
Y , which lower envelop happens to be a belief function
. As such, Dempster’s model is then a special case of
upper and lower probability model. But it can also
get another understanding as shown by the hint model
developed by Monney and Kohlas (1995).

These authors assume Dempsters original structure
(X,P,Γ, Y ) where X and Y are two sets, P is a prob-
ability measure on X and Γ is a one-to-many mapping
from X to Y . They assume a question, whose answer
is unknown. The set y is the set of possible answers
to the question. One and only one element of Y is the
correct answer to the question. ‘The goal is to make
assertions about the answer in the light of the available
information. We assume that this information allows
for several different interpretations, depending on some
unknown circumstances. These interpretations are re-
grouped into the set X and there is exactly one cor-
rect interpretation. Not all interpretations are equally
likely and the known probability measure P on X re-
flects our information in that respect. Furthermore, if
the interpretation x ∈ X is the correct one, then the
answer is known to be in the subset Γ(x) ⊆ Y . Such
a structure H = (X,P,Γ, Y ) is called a hint... An in-
terpretation x ∈ X supports the hypothesis H ⊆ Y



if Γ(x) ⊆ H because in that case the answer is neces-
sarily in H. The degree of support of H is defined as
the probability of all supporting interpretation of H’
(Kohlas & Monney, 1995, page vi).

The hint theory corresponds to Dempsters original
approach. Kohlas and Monney call their measure a
degree of support, instead of belief, to avoid personal,
subjective connotation, but degrees of support and de-
grees of belief are mathematically equivalent and con-
ceptually very close. In the hint theory, the primi-
tive concept is the hint from which degrees of supports
are deduced, whereas the transferable belief modeland
Shafer’s initial approach (Shafer, 1976) both consider
the degrees of belief as a primitive concept.

The approach of Cholvy (see these proceedings) can
be seen as a special case of the hint model.

2.4 Probabilities on modal proposi-
tions.

Ruspini (1986, 1987) and Pearl (1988) have suggested
that bel(A) should be understood as the probabil-
ity that A is known or proved, respectively. This
extension of the domain of the probability functions
from the propositional logic domain to the modal
propositional logic domain leads indeed to belief func-
tions. Let bel(p) = Proba(p is known) or bel(p) =
Proba(p is proved), then bel, seen as a function on
the propositions, is a belief function. The problem
with this approach is that Dempster’s rules need a jus-
tification these authors did not provide (see (Smets,
1991, 1993b)). So what they propose is quite lim-
ited and does not cover what is usually understood
as Dempster-Shafer theory as it lacks the concept of
conditioning and combination that really makes what
is called Dempster-Shafer theory.

3 The transferable belief model.

3.1 Scope.

The TBM (for transferable belief model) provides
a model for the representation of quantified beliefs
(Smets & Kennes, 1994; Smets, 1998b). One assumes
that there are several possible worlds, one of them cor-
responding to the actual world, but the agent, denoted
You hereafter (but it may be a robot, a sensor...), does
not know which among the possible worlds is the ac-
tual one. All You can state is the strength of Your
opinion / belief that the actual world belong to this
or that subset of Ω. The value bel(A) represents the
agent’s belief that the actual world belongs to A ⊆ Ω.

Beware that no concept of probability measure un-
derlies the description of the TBM. We are presenting a
theory for the representation of quantified beliefs that
can exist without regard to the concept of probability
functions. We only assume that degrees of beliefs are
represented by a number, like in bel(A) = .67, that
satisfies some ‘natural’ constraints.

A study of the rationality properties that should
be satisfied by a function which purpose is to quan-

tify someone’s beliefs leads to the use of belief func-
tions (Smets, 1997, 1993c). These axiomatic studies
lead also to the derivation of Dempster’s rule of condi-
tioning. From this construction, we have derived (and
often justified) many other concepts like :

• the conjunctive combination rule (that is Demp-
ster’s rule of combination) to compute belΩ[E1 ∧
E2] from belΩ[E1] and belΩ[E2] (see relation 7),

• the disjunctive rule of combination to compute
belΩ[E1∨E2] from belΩ[E1] and belΩ[E2], (see sec-
tion 3.5)

• the specialization concept: mass given to a set is
redistributed among its subsets, (see section 3.4)

• the least commitment principle: ‘never give more
support than justified’ what means that we should
select the belief function which values of pl(A) are
as large as possible for every A ⊆ Ω,

• the cautious combination rule: a conjunctive com-
bination rule that is associative, commutative and
idempotent, and accepts possible correlations be-
tween the sources (see section 3.6)

• the generalized Bayesian theorem to compute
belΘ[x] for {belX [θi] : θi ∈ Θ}, (see section 3.10)

• the measure of information content,

• the concept of doxastic independence,

• the pignistic transformationto build the proba-
bility function needed for taking ‘optimal’ deci-
sions using the expected utility theory, (see section
3.9)...

The TBM is a largely extended model inspired by
what is described in Shafer’s book (note that some of
Shafer’s later papers enhance other interpretations).

3.2 Credal and pignisitc levels.

The TBM is based on the assumption that beliefs man-
ifest themselves at two mental levels: the ‘credal’ level
where beliefs are entertained and the ‘pignistic’ level
where beliefs are used to make decisions (from ‘credo’
I believe and ‘pignus’ a bet, both in Latin).

Usually these two levels are not distinguished and
probability functions are used to quantify beliefs at
both levels. The justification for the use of probability
functions is usually linked to ”rational” behavior to be
held by an ideal agent involved in some decision con-
texts (Ramsey, 1964; Savage, 1954; DeGroot, 1970).
This result is accepted here, except that these proba-
bility functions quantify the uncertainty only when a
decision is really involved.

At the credal level, we defend that beliefs are rep-
resented by belief functions. When a decision must be
made, the beliefs held at the credal level induce a prob-
ability function at the pignistic level. This probability
function is needed to compute the expected utilities



and we call it the pignistic probability function, de-
noted by BetP . The transformation between the belief
function and the pignistic probability function is called
the pignistic transformation (see section 3.9).

3.3 Belief and plausibility.

In the TBM, the bba receives a natural interpretation.
For A ⊆ Ω, m(A) is that part of Your belief that sup-
ports that all You know is that the actual world ω0

belongs to A, and that, due to lack of information,
does not support any strict subset of A.

If some further pieces of evidence become available
to You and You accept them as valid, and if their only
impact bearing on Ω is that they imply that the actual
world ω0 does not belong to B, then the mass m(A)
initially allocated to A is transferred to A∩B. Indeed,
some of Your belief (quantified by m(A)) was allocated
to A, and now You accept that ω0 /∈ B, so that mass
m(A) is transferred to A ∩ B (hence the name of the
model). The resulting new basic belief assignment is
the one obtained by the application of Dempster’s rule
of conditioning (relation (9)).

The degree of belief bel(A) quantifies the total
amount of justified specific support given to A. The
degree of plausibility pl(A) for A ⊆ Ω quantifies the
maximum amount of potential specific support that
could be given to A.

3.4 The conjunctive combination of
two belief functions.

In the TBM, if m1 and m2 are the two bba’s produced
by two distinct sources of information, and You con-
sider that both sources are fully reliable (so You believe
what they state), then the two bba’s are conjunctively
combined by the equivalent of Dempster’s rule of com-
bination (relation (7)).

This rule is justified through the concept of special-
ization. It is assumes that whenever a new piece of
information is accepted, the basic belief mass m(A)
previously given to A ⊆ Ω is distributed among the
subsets of A. Indeed that mass m(A) represents a part
of belief that supports A and might support anything
more specific than A, should we get some new informa-
tion, and this is just what happens. We get some new
information, so m(A) is going to be redistributed to the
subsets of A (of course it may also stay allocate to A).
Such an operation is what is called a ‘specialization’
(Yager, 1983).

One way to justify Dempster’s rule of combination
is as follows (Klawonn & Smets, 1992). Other justi-
fications have been provided, but the next one seems
the simplest one.

If You assume that learning that A ⊆ Ω is true, then
You must define a new bba on Ω built as a specializa-
tion of the initial bba. You want that after specializa-
tion, the plausibility given to A be null, (indeed, now
You know that A is impossible, so its plausibility must
be zero). Among all the specializations that satisfy
this requirement there is a least committed one i e

one that gives as few support to every propositions. It
correspond to the principle ‘never give more support
than justified’. In that case the least committed solu-
tion that satisfies pl(A) = 0 is the solution described
by Dempster’s rule of conditioning (relation 9).

If then You want to build a conjunctive combination
rule that is associative and commutative, and commute
with the conditioning operation, the solution is again
unique, and corresponds to Dempster’s rule of combi-
nation (relation 7). This last relation can also, and
very conveniently, be written as:

f1∩2(A) =
∑

B⊆Ω

f1[B](A)m2(B), ∀A ⊆ Ω

where f can be any of m, bel, pl, q, b.
These results explain the essential role played by

Dempster’s rules in data fusion. The associativity an
commutativity are usually required for data fusion, and
are just those constrains that lead to Dempster’s rules.

3.5 The disjunctive combination of two
belief functions.

But the conjunctive combination rule is not the only
rule for combining belief functions. Sometimes, You
receive two bba’s, and You are not sure both sources
are reliable. If all You know is that at least one of
the sources is reliable, You end up with the disjunctive
rule of combination, i.e., a combination rule where the
product of the masses m1(A1)m2(A2) is given, not to
A1∩A2 as in the conjunctive case, but to A1∪A2. The
result, denoted m1∪2 where the ∪ symbol indicates the
disjunctive nature, is :

m1∪2(A) =
∑

B∪C

m1(B)m2(C), ∀A ⊆ Ω (10)

b1∪2(A) = b1(A)b2(A), ∀A ⊆ Ω (11)

The last relation shows the interest of b, the impli-
cability function.

To see the origin of thus rule, consider one sources
states the actual world is in A1 and second source
states it is in A2, and You only know that one of them
is reliable but You don’t know which one, all You can
conclude is that the actual world is in A1 ∪A2.

In particular, this disjunctive rule can be used to
compute belX [θ1 ∪ θ2] from belX [θ1] and belX [θ2].

3.6 The cautious conjunctive combina-
tion.

Still other cases can be considered, the most important
one being probably the cautious conjunctive combina-
tion, a combination rule that is not only commutative
and associative but also idempotent. It is a rule able
to cope with correlated sources of information.

Suppose You have two sources of evidence who ex-
press their beliefs about the value of the actual world.
Let m1 and m2 be two bba’s on Ω. We do not assume
the two pieces of evidence underlying these two bba’s
are ‘distinct’. Each bba may result from some infor-
mation common for both sources and some individual



information. Thus we do not assume that the sources
are distinct. They may be ‘correlated’, they can even
repeat the same information twice as they are in fact
just one source (but You did not know it).

The aim is to build a new bba, that will be denoted
m1∧2, from m1 and m2. To achieve this we consider,
for i = 1 and 2, all the bba’s that could be built from
mi by its conjunctive combination with any bba on Ω.
So let for i = 1, 2,

Bi = {m : m on Ω,m = mi ∩m∗

for m∗ belief function on Ω}.

Bi are the belief functions reachable from mi by com-
bining it with any belief function on Ω.

All we know is that the result of the ‘combination’ of
m1 and m2 must be in B1∩B2. In particular, m1∩m2

belongs to that family. Not knowing which element
of B1 ∩ B2 is appropriate, the cautious attitude con-
sists in selecting the least committed elements of that
family. This is the idea of the ‘cautious conjunctive
combination rule’. Solutions have been found in sev-
eral important cases, but finding the least committed
solution is not yet fully solved for the general case.

3.7 Discounting.

Suppose a source tells You that the belief functionon Ω
is m, but You are not sure the source is really reliable
(maybe it refers to another question than the one You
are interested in). Suppose You believe at level α that
the source is reliable, and 1 − α it is not, then Your
belief m∗ on Ω becomes :

m∗(A) = α m(A), ∀A �= Ω (12)
m∗(Ω) = 1 − α + α m(Ω). (13)

This is just an application of the disjunctive rule of
combination and was called the discounting by Shafer.
Its interest comes from the possibility to ‘discount’
sources of information when You feel they are not fully
reliable.

Beware that combination and discounting do not
commute, so the order with which they are applied is
important.

3.8 Distinctness.

The concept of ‘disitinct’ pieces of evidence is usually
left undefined. We propose that it means in fact that
once You know the bba m1 produced by one source
of information, what You know about the domain of
the bba that could be produced by another source is
unchanged in comparison to what it was before You
learn the value of m1 (see also (Smets, 1992, 1998b)).

3.9 Decision making.

When a decision must be made, we use the expected
utility theory, what implies the need to construct a
probability function on Ω. This is achieved by the
so-called pignistic transformation which transforms a
belief function into a probability function called the

pignistic probability and denoted by BetP . The na-
ture of this transformation and its full justification is
described in Smets and Kennes (1994).

The value of the pignistic probability if given by :

BetP (A) =
∑

X⊆Ω

|A ∩X|
|X|

m(X)
1 −m(∅) (14)

where |A| denotes the number of worlds in the set A.
It is easy to show that the function BetP so ob-

tained is indeed a probability function. Decisions are
then achieved by computing the expected utilities of
the acts using BetP as the probability function needed
to compute the expectations. Why this probability
function is adequate for decision making and its use
to provide an operational definition to the values of a
belief function is detailed in Smets and Kennes (1994).

3.10 The Generalized Bayesian Theo-
rem.

In probability theory, Bayes theorem permits the com-
putation of a probability over some space Θ given the
value of some variable x ∈ X from the knowledge of the
probabilities over X given each θi ∈ Θ, and some a pri-
ori probability function over Θ. The same ideas have
been extended in the TBM context where we will build
a belief function over Θ given an observation x ⊆ X
and the knowledge of the belief function over X given
θi ∈ Θ and a vacuous a priori, i.e., an a priori describ-
ing a state of total ignorance (therefore solving the
delicate problem of choosing the appropriate a priori).

Suppose the finite spaces X and Θ. Suppose that
for each θi ∈ Θ, there is a basic belief assignment on
X, denoted mX [θi]. Given this set of basic belief as-
signments, what is the belief induced on Θ if You come
to know that x ⊆ X holds?

In statistics, this is the classical inference problem
where Θ is a parameter space and X an observation
space. In target detection, θi is an hypothesis and x
the observation. In diagnosis, θi is the causal event,
the disease, the failure, and x is the observable, the
symptom, the collected data...

The Generalized Bayesian Theorem (GBT) per-
forms the same task as the Bayesian theorem but
within the TBM context. The major point is that the
needed prior can be a vacuous belief function, what
is the perfect representation of total ignorance. No
informative prior belief is needed, avoiding thus one
of the major criticisms against the classical approach,
in particular when used for diagnostic applications. Of
course, should some a priori belief over Θ be available,
it would be combined by the conjunctive combination
rule with the result obtained by the GBT. Whenever
this a priori belief is considered, before or after apply-
ing the GBT, the result is the same.

Given the set of basic belief assignments mX [θi]
known for every θi ∈ Θ and their related functions



then for x ⊆ X and for every A ⊆ Θ:

bΘ[x](A) =
∏

θi∈A

bX [θi](x) (15)

plΘ[x](A) = 1 −
∏

θi∈A

(1 − plX [θi](x)) (16)

qΘ[x](A) =
∏

θi∈A

plX [θi](x) (17)

where [x] is the piece of evidence that states ‘x holds’.
Should You have some non vacuous beliefs on Θ,

represented by mΘ[E0], than this belief is simply com-
bined with mΘ[x] by the application of the conjunctive
rule of combination.

This rule has been derived axiomatically by Smets
(1978, 1986, 1993a) and by Appriou (1991). When the
belief function on X given θi is a probability function,
as it will often be the case for practical applications,
we just replace belX [θi](x) and plX [θi](x) by P (x|θi).

Some particular cases are worth mentioning.

Case 1. We consider the case of two ‘independent’ ob-
servations x defined on X and y defined on Y , and the
inference on Θ obtained from their joint observation.

Suppose the two variables X and Y satisfy the Con-
ditional Cognitive Independence property defined as:

plX×Y [θi](x, y) = plX [θi](x)plY [θi](y),
∀x ⊆ X, ∀y ⊆ Y,∀θi ∈ Θ.

When plX [θi] and plY [θi] are probability functions,
this property is just the classical conditional indepen-
dence property.

The GBT could be applied in two different ways.
Let bΘ[x] and bΘ[y] be computed by the GBT (with

a vacuous a priori belief on Θ) from the set of basic
belief assignment mX [θi] and mY [θi] known for every
θi ∈ Θ. We then combine by the conjunctive rule of
combination these two functions in order to build the
belief bΘ[x, y] on Θ induced by the pair of observations.

We could as well consider the basic belief assign-
ment mX×Y [θi] built on the space X × Y thanks to
the Conditional Cognitive Independence property, and
compute bΘ[x, y] from it using the GBT.

Both results are the same, a property that is
essential and at the core of the axiomatic derivations
of the rule.

Case 2. If for each θi ∈ Θ, bX [θi] is a probability func-
tion P (.|θi) on X, then the GBT for |θi| = 1 becomes:

plΘ[x](θi) = P (x|θi), ∀x ⊆ X.

That is, on the singletons θi of Θ, plΘ[x] reduces to
the likelihood of θi given x. The analogy stops there
as the solution for the likelihood of subsets of Θ are
different.

If, furthermore, the a priori belief on Θ is also a
probability function P0(θ), then the normalized GBT
becomes:

belΘ[x](A) =

∑
θi∈A P (x|θi)P0(θi)∑

P (x|θi)P0(θi)
= P (A|x)

i.e. the (normalized) GBT reduces itself into the clas-
sical Bayesian theorem (as it should), which explains
the origin of its name.

4 Applying the TBM to the fu-
sion of uncertain data.

4.1 The TBM classifier.

4.1.1 Partially known classes.

Discriminant analysis is probably the most classical
tool used for classifying cases into one of several cate-
gories given the values of some measurement variables.
Normally, we use a set of data, called the learning set
(LS). For each case in LS, we know the values taken for
each measurement variable and the classification vari-
able that tells the class to which the case belongs. The
classes are finite and unordered. Let Ω denote the set
of possible classes: Ω = c1, c2, ..., cn.

A learning set with N cases and p measurement vari-
ables is the set {(ci, x1i, x2i, ...xpi) : i = 1, 2...N} where
Xi is the ‘name’ of the i’th case, ci is the class to which
Xi belongs, and xji is the value of the measurement
variable j for Xi. The data of a new case, denoted
X?, is collected, but the class to which X? belongs, de-
noted c?, is unknown. We want to predict the value
of c? given the observed values of the measurement
variables of X?. Solutions to this problem are well es-
tablished. One of them, called discriminant analysis,
is fully described in most textbooks of statistics.

Let us now suppose that instead of the ideal learning
set LS as described here above, we have a learning set
PKLS where the classes of the cases are only partially
known. For instance suppose we only know that case
X1 belongs either to c1 or c2 class, that case X2 does
not belong to class c1, case X3 belongs either to c2 or
c5 or c7 class... Can we adapt the discriminant analysis
method to such ‘messy’ data context? In fact we face
a problem of ‘partially supervised learning’. For some
cases, classes are known as in the supervised learning
approach, for some cases, class in completely unknown
as in the unsupervised approach. But here we also
have all the cases where we know partially their class.
Probabilistic solutions could be based on:

• a Bayesian approach where we assess for each case
a probability function that describes the class to
which it belongs. We then allocate every case to
a class (and compute the probability to get that
learning set), compute the needed parameters as
in a supervised learning approach and average the
results weighted by the probability of the learning
sets,

• a maximum likelihood approach (like with the EM
algorithm) where we estimate the unknown pa-
rameters, including the probability with which the
case belong to a given class,

• an adaptation of cluster analysis where par-
tial constraints are introduced that represent the



knowledge about the class to which each case be-
long.

Whatever method is used, the computational com-
plexity is a serious problem and an adequate tuning of
some parameters is not a small matter. The transfer-
able belief model provides another approach that can
handle elegantly and efficiently such a messy problem.
The method was invented by Denoeux (1995).

We present the method, called the TBM classi-
fier. The comparison of this method with the classical
ones can be found in (Denoeux, 1995; De Smet, 1998;
Zouhal & Denœux, 1998; Smets, 1999).

4.1.2 Discriminant Analysis with Partially
Known Classes.

Let pkci denote the subset of Ω that represents
what we know about the class to which case Xi

belongs. The learning set PKLS is now the set
{(pkci, x1i, x2i, ...xpi) : i = 1, 2...N}.

Intuitively the method can be described by an an-
thropomorphic model. Each case Xi in PKLS is con-
sidered as an individual. Let ci0 denote the true class
to which Xi belongs. All Xi knows about ci0 is that
ci0 ∈ pkci. ((Denœux & Zouhal, 1999) generalizes to
the case where this knowledge is represented by a be-
lief function or a possibility function on Ω). Then Xi

looks at the unknown case and expresses ‘his’ belief
beli about c?. If X? is ‘close’ to Xi, Xi would defend
that c? = ci0. As all what Xi knows about ci0 is that
ci0 ∈ pkci, then all what Xi can express about case X?

is that c? ∈ pkci. If X? is not ‘close’ to Xi, Xi cannot
say anything about ci0.

This description is formalized as follows. Xi can
only state: case X? belongs to the same set of classes
as myself, what is represented by a belief function with
mi0(pkci) = 1. Let d(Xi, X?) be the ‘distance’ between
Xi and X?. If d(Xi, X?) is small, then what Xi states
is reliable, if d(Xi, X?) is large, it is not reliable, the
largest d(Xi, X?), the less reliable. The impact of this
reliability is represented by a discounting on mi0 into
mi. So mi(pkci) = f(d(Xi, X?)) and mi(Ω) = 1 −
f(d(Xi, X?)) where f(d) ∈ [0, 1] and is decreasing with
d. Thus every case Xi generates such a simple support
function beli on Ω that concerns the value of c?.

Consider now what information X? collects. Case
X? receives all these simple support functions beli, and
combines them by the conjunctive rule of combination
into a new belief function bel on Ω that represents the
belief held by case X? about c? and induced by the
collected belief functions beli:

bel? = ∩i=1Nbeli.

If a decision must be made on the value of c?, we build
the pignistic probability BetP? on Ω from bel? by the
application of the pignistic transformation and use the
classical expected utility theory in order to take the
optimal decision.

De Smet (1998) applied this approach to many
sets of data. Results were very satisfactory (see also
(Smets 1999)) We feel this method could be part of

the toolbox for classification when data are ill known.
It has been extended to regression problems, using a
similar approach, and has even been adapted to fuzzy
sets by Denoeux.

4.2 Sensors on partially overlapping
frames.

Suppose a sensor S1 that has been trained to recognize
A objects and B objects and another sensor S2 that
has been trained to recognize B objects and C objects
(like A = airplanes, B = helicopters and C = rockets).
Sensor S1 never saw a C object, and we know noth-
ing on how S1 would react if it looks at a C object.
Beliefs provided by S1 are always on the frame of dis-
cernment {A,B}. The same holds for S2 with A and
C permuted. A new object X is presented to the two
sensors. Both sensors S1 and S2 express their beliefs
m1 and m2, the first on the frame {A,B}, the second
on the frame {B,C}. How to combine these two beliefs
on a common frame Ω = {A,B,C}? Some solutions
have been proposed in (Janez, 1996; Janez & Appriou,
1996a, 1996b).

One solution is based on the next constraint. If
both m1 and m2 are conditioned on B, and combined
by Dempster’s rule of combination (unnormalized), the
resulting belief function should be the same as the one
obtained after ‘combining’ the original m1 and m2 on
{A,B,C}, and conditioning the result on B. The prob-
lem is of course how to ‘combine’ m1 and m2. The
original Dempster’s rule of combination is inadequate
as it requires that both belief functions are defined on
compatible frames of discernment, what is not the case
here.

A general solution is as follows. Let Ω1 and Ω2 be
the frame of discernment of m1 and m2, respectively.
Let Ω = Ω1∩Ω2. For all A ⊆ Ω1∪Ω2, let A1 = A∩Ω1,
A2 = A ∩ Ω2, A0 = A ∩ Ω, then let m be the result of
the combination with:

m(A) =
m1(A1)

m1[Ω](A0)
m2(A2)

m2[Ω](A0)
(m1[Ω] ∩m2[Ω])(A1 ∩A2)

where m1[Ω] and m2[Ω] are the basic belief assignments
obtained by conditioning m1 and m2 on Ω.

In table 2, we illustrate the computation. We have
m1[B] ∩ m2[B](B) = (.1 + .3) ∗ (.7 + .1) = .32.
This mass is distributed on {B}, {A,B}, {B,C} and
{A,B,C} according to the next ratios: (.1/.4).(.7/.8),
(.3/.4).(.7/.8), (.1/.4).(.1/.8), and (.3/.4).(.1/.8). The
mass m1[B] ∩m2[B](∅) = .68 is given to {A,C}.

In this example the first sensor supports that X is
an A, whereas the second claims that X is a B. If X
had been a B, how comes the first sensor did not say
so? So the second sensor is probably facing an A and
just states B because it does not know what an A is.
So we feel that the most plausible solution is X = A,
what is confirmed by BetP as it is the largest for A:
BetP (A) = 45



Table 2: Basic belief assignment m1 and m2 on the two
partially overlapping frames, with their combination
m and its related plausibility and pignistic probability
functions.

Ω m1 m2 m pl BetP
A .6 .00 .92 .455
B .1 .7 .07 .32 .190
C .2 .00 .72 .355

A,B .3 .21 1
A,C .68 .93
B,C .1 .01 1

A,B,C .03 1

Table 3: The simple support functions generated by
the four sensors on the frame of discernment Ω =
{C1, C2}.

Ω m1 m2 m3 m4

C1 .7 .8
C2 .6 .9
Ω .3 .2 .4 .1

4.3 The data association problem.

Suppose a piece of equipment has failed. We collect
data from four sensors S1, S2, S3 and S4. Each sensor
produces a belief function on the set of possible compo-
nent that might have failed. Table 3 presents a highly
simplified example where each sensor produces a sim-
ple support function pointing toward one component.
S1 and S2 both point toward component C1, whereas
S3 and S4 point toward component C2. If the four
sources S1 to S4 were highly reliable, You would con-
clude that both C1 and C2 are broken. Indeed if only
one has failed, the source are contradictory, whereas if
two components have failed, results are coherent if S1

and S2 report on one broken component and S3 and
S4 report on a second broken component.

How do we translate this problem into belief func-
tions language? The solution is obtained by consid-
ering the mass m(∅) given to ∅ that may be posi-
tive in the transferable belief model. When apply-
ing Dempster’s rule of combination to two basic be-
lief assignments m1 and m2, the result is given by:
m1∩2(A) =

∑
X∩Y =A m1(X)m2(Y ) ∀A ⊆ Ω. We

do not normalize the resulting basic belief assignment
m1∩2. The mass m(∅) is among the computed masses
and it does not have to be 0 like in Shafer’s original
presentation. The mass m(∅) quantifies the amount
of contradiction between the various sources of belief
functions.

Schubert (1995) has proposed a strategy to decide
the number of events under consideration by the vari-
ous sensors producing the several collected belief func-
tions. He analyses m(∅) and finds the association be-
tween sensors and events that somehow brings the total
conflict to an acceptable level .

Suppose the data of table 3. If there is only one bro-
ken component the four sensors are speaking about the
same event The contradiction computed after com-

Table 4: Masses m(∅) computed from the belief func-
tions included in each group when considering two ob-
jects.

Groups Conflict
G1 G2 G1 G2 total

1234 - .90 - .90
123 4 .56 .00 .56
124 3 .85 .00 .85
134 2 .67 .00 .67
234 1 .77 .00 .77
12 34 .00 .00 .00
13 24 .42 .72 1.14
14 23 .63 .48 1.11

bining the four basic belief assignments is 0.90, what
reflect an enormous conflict between the four sources.
If there is two broken components, then some sources
might speak about one, the other about the second.
So we split the four sensors into two groups, compute
what is the contradiction within each group, and sum
these contradictions. For instance, suppose sensors S1,
S2 and S3 speak about one component, then the con-
tradiction is 0.56, whereas there is no contradiction for
sensor 4. Total contradiction is thus 0.56. Now if we
consider that sensor S1 and S3 speak about one com-
ponent, whereas S2 and S4 speak about the other, the
total contradiction is 1.14. Contradiction completely
disappears when S1 and S2 are grouped as reporting
on one component, and S3 and S4 on the second. This
result fits with common sense analysis of the data.
In real life applications, the basic belief assignments
are usually quite elaborated, and finding an adequate
grouping is not obvious. The technique of ‘peeling’
the mass given to the empty set (to the contradiction)
is nevertheless still applicable. The level of ‘tolerable
contradiction’ is itself determined by the analysis of
the conflict present in the given belief functions (and
obtained by the use of the canonical decomposition of
the belief functions (Smets, 1995)).

The mass m(∅) acts in fact as a measure of discrep-
ancy between several belief functions. The proposed
algorithm leads to grouping sources which belief func-
tions are ‘close’ to each other. In probability theory us-
ing cross-entropy or chi-square coefficients can achieve
this purpose. Comparisons between these approaches
are not available (as far as we know). The advantage of
the belief function approach resides in the well-founded
nature of the approach. The mass m(∅) is part of the
transferable belief model, whereas the cross-entropy,
the chi-square and the likes need always extra assump-
tions in order to justify their use.

4.4 Tuning the discounting.

Discounting is often used in the TBM, therefore it
might be nice to have a way to estimate the value of
the discounting factor. This is possible as illustrate in
the next scenario.

Suppose we must build a classifier. We collect a set
of data that we submit for classification to my experts



Let C be the set of possible classes. Let Cij be the
conclusion of expert j on the class to which object i
belongs, with Cij ⊆ C (note that the expert opinion
could even be a belief function over C).

Suppose we feel that some discounting should be
introduced. Let dj be the discounting factor applicable
to expert j, and to be determined. If we knew dj , we
would compute for each object a bba mij over C that
represent the discounted beliefs we have based on what
expert j states and that depends directly on dj . All
experts’ results would be combined by the conjunctive
rule of combination. The result is mi = ∩jmij , from
which we compute BetPi, the pignistic probability over
C with which we would decide the class to which object
i belongs.

Suppose now that we know the actual classes ci for
these objects. We would like that BetPi points as
strongly as possible to the actual class of object i. So
we would like that BetPi(ci) = 1 is the class of the
object is ci, and 0 otherwise. Let Di be the distance
between the pignistic probability computed for object
i and the indicator function of the class ci:

Di =
∑

k

(BetPi(ck) − δik)2

where δik = 1 if object i belongs to class k, and 0
otherwise.

We then add these distances over the objects and
determine the set of discounting factors dj that min-
imize that sum. These will be the discounting factor
we will use in the future for the evaluated experts.

4.5 Comments on efficiency.

It is often claimed that the use of belief function is
poised by the computational complexity. Indeed, in
theory, we work on the power set, and not on the set
as it is the case for probability theory and possibility
theory. Nevertheless, this is not necessarily the case.
There is no need to build always all the possible values
of bel, etc... There are many cases where the knowl-
edge is very simple, and where there are very few non
null masses, in which case all that must be stored and
computed is proportional to the number of non null
masses, and this often will be smaller than the number
of elements, making the belief function computation
lighter than its competitors.

Studies have been published that claim that proba-
bility approach is faster than belief function one. Un-
fortunately, these authors usually ignore the pignis-
tic transformation and the General Bayesian Theorem,
and, even worse, use erroneous relations. In fact it has
been shown that, for a target detection problem, the
TBM approach was even more efficient that the clas-
sical probability approach1. So before rejecting the
TBM for its computational load, potential users should
be very skeptical with the published conclusions.

1Delmotte personal communications

5 Conclusions.

In many applications, the information needed to apply
the probability approach is unfortunately not available.
One could of course try to fit the missing information
by some ‘educated guesses’. Quality of the results is of
course directly related to the quality of the ‘fixing’.

On the contrary, the belief function models is well
adapted to work with the information as really avail-
able. This power comes from the ability of belief func-
tions to represent any form of uncertainty: full knowl-
edge, partial ignorance, total ignorance (and even
probability knowledge). Probability functions do not
have such expressiveness power. Equi-probability is
not full ignorance, it is already a quite precise form of
knowledge.

Before applying the TBM, it is of course necessary
to have a good understanding of the theoretical foun-
dations and the exact nature of the various tools. This
is of course not specific to the TBM. It is the same for
any approach. Of course, users are usually more fa-
miliar with probability theory, and often jump on that
tool without realizing that other tolls are maybe bet-
ter adapted to their problems. For someone whose only
tool is a hammer, the world looks like a nail. Sophis-
ticated users must be open to all the available tools,
using the right one for the right problem. When facing
uncertain data, the user must not limited himself to
probability models, but also consider the new models
like those based on fuzzy set theory, on possibility the-
ory or on belief functions and select the one that fits
the problem.
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