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Abstract

A quantified model to represent uncertainty is incomplete if its use
in a decision environment is not explained. When belief functions were
first introduced to represent quantified uncertainty, no associated decision
model was proposed. Since then, it became clear that the belief functions
meaning is multiple. The models based on belief functions could be un-
derstood as an upper and lower probabilities model, as the hint model,
as the transferable belief model and as a probability model extended to
modal propositions. These models are mathematically identical at the
static level, their behaviors diverge at their dynamic level (under condi-
tioning and/or revision). For decision making, some authors defend that
decisions must be based on expected utilities, in which case a probability
function must be determined. When uncertainty is represented by belief
functions, the choice of the appropriate probability function must be ex-
plained and justified. This probability function does not represent a state
of belief, it is just the additive measure needed to compute the expected
utilities. Other models of decision making when beliefs are represented
by belief functions have also been suggested, some of which are discussed
here.
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1 Introduction.

Uncertainty induces beliefs, i.e. graded dispositions that guide our behavior.
Translated within a normative approach, this leads usually to the construction
of a model to represent quantified beliefs that is linked directly to ‘rational’
agent behavior described within decision contexts (DeGroot, 1970). It has been
argued that decisions are ‘rational’ only if we use a probability measure over
the various possible states of the nature and compute with it the expected util-
ity of each possible act, the optimal act being the one that maximizes these
expected utilities (DeGroot, 1970; Savage, 1954). Accordingly, whenever a de-
cision must be made, the decider’s beliefs must induce a probability function
on the set of possible outcomes. Nevertheless the fact that beliefs can only be
observed through our decisions does not necessarily mean that beliefs cannot be
entertained without any revealing behavior manifestations (Smith & Jones, 1986
p.147). The idea that entertained beliefs and beliefs in a decision context can
be distinguished is defended in the transferable belief model (Smets & Kennes,
1994). When these two types of beliefs are distinguished the classical justifica-
tion for the use of probability functions to represent quantified beliefs does not
apply for what concerns the entertained beliefs. Of course it still applies for
what concerns decisions themselves.

New normative models to represent quantified belief have been proposed re-
cently, in particular those based on belief functions. These models are often
criticized for supposedly not providing a method for rational decision making.
This paper reviews solutions proposed in some of the models where uncertainty
is represented by belief functions. Four types of such models have been de-
scribed.

1. Some authors consider that the belief function is the lower envelope of a
family of probability functions (section 4.1). Some of them assume the existence
of some underlying but imprecisely known probability function (Walley, 1987;
Giles, 1982). Others just assume that beliefs are represented by the family of
probability functions itself, not explicitly assuming some underlying partially
unknown probability function (Kyburg, 1987b; Levi, 1980; Smith, 1961; Voor-
braak, 1993). In both cases, a set of expected utilities can be computed for each
decision, but these sets usually do not induce an unambiguous order among the
set of possible acts. To resolve that ambiguity, Schmeidler (1989) proposes the
use of the lower expectation to make decisions. A generalization of it can be
found in Jaffray (1988)) and Strat (1990b, 1990a) who, inspired by Hurwicz
(Luce & Raiffa, 1957), advocate the use of a weighted average of the upper and
the lower expectations (Section 6).

2. In the transferable belief model (Smets & Kennes, 1994) (section 4.3),
we have proposed and justified the use of the so-called pignistic probabilities
as the appropriate probability function to be used when decision is required
(Smets, 1990; Smets & Kennes, 1994; Smets, 1993c) (section 5). In a similar
framework, Appriou suggested another solution based on the most plausible
singletons (Appriou, 1991) (section 5.9).

3. In Dempster’s original work (Dempster, 1967) and in the hint model
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of Kohlas and Monney (Kohlas & Monney, 1995) (section 4.2) the problem of
decision making is not essential, and no particular solution seems to have been
defended. Nevertheless (Schaller, 1991) studies the use of the hint models for
multiple criteria decision making. The same remark applies to the models where
a belief is understood as the probability of knowing (Ruspini, 1986, 1987)) or
of proving (Pearl, 1988) (section 4.4).

In this paper, we review some of the solutions proposed for decision making
when the uncertainty is represented by a belief function. We consider the case
of one decider and one criteria. Before proceeding to decision making itself,
we present the mathematical background on belief functions (Section 2) and
probability theory (Section 3) useful in this paper and some of the models that
lead to a belief function (Section 4). It is essential that these models are not
confused. They might look similar. Indeed when considering just the static
representation of uncertainty, they all end up with a belief function. But once
the dynamic of the model is considered, the differences show up.

Sections 5 and 6 present some of the solutions proposed to make rational
decisions in the transferable belief model and in the upper and lower probabil-
ities frameworks, respectively. We focus on the theoretical aspects of decision
making under uncertainty represented by belief functions. Applications can be
found in the other papers published in this monograph.

2 Mathematical background on belief functions.

In this section, we summarize the mathematical knowledge about belief func-
tions needed for this presentation. Details can be found in (Shafer, 1976a;
Smets, 1988, 1998b).

2.1 Belief functions.

Let Ω be a finite space, called the frame of discernment. The elements of the set
Ω are called ‘worlds’. One world corresponds to the actual world; it is denoted
hereafter ω0. There is an agent, denoted You (De Finetti, 1974), who does not
know which world is the actual world and who can only express the strength of
his/her opinion (called degree of belief) that the actual world belongs to this or
that subset of Ω.

That ω0 belongs to Ω is assumed under the so-called ‘closed world assump-
tion’, whereas under the ‘open world assumption’ ω0 might not be an element of
Ω (Smets, 1988, 1998b). The closed world assumption is assumed in probability
theory and it justifies the axiom P (Ω) = 1. In the transferable belief model, we
acknowledge that You may have built Ω so that ω0 does not belong to Ω.

On Ω, we define a function bel : 2Ω → [0, 1] called a ‘belief function’ (Shafer,
1976a). For A ⊆ Ω, bel(A) denotes the strength of Your belief that ω0 ∈ A.
Mathematically, bel is a Choquet capacity monotone of infinite order . It satisfies
the following inequalities:
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1) bel(∅) = 0
2) ∀n ≥ 1,∀A1, A2, ...An ⊆ Ω

bel(A1 ∪A2 ∪ ...An) ≥
∑

i

bel(Ai) −
∑

i>j

bel(Ai ∩Aj)

....− (−1)nbel(A1 ∩A2 ∩ ...An).

Under the closed world assumption, one adds bel(Ω) = 1. Under the open
world assumption, one adds only bel(Ω) ≤ 1.

Other useful functions have been defined, like the basic belief assignment
m, the plausibility function pl, the implicability functions b, the commonality
function q, the weight function w . . . (Smets, 1998b). Their usefulness depends
on the context. They are in one-to-one relations with bel.

The basic belief assignment (bba) related to a belief function bel is the
function m : 2Ω → [0, 1] defined as:

m(A) =
∑

B⊆A

(−1)|A|−|B|bel(B), ∀A ⊆ Ω, A �= ∅,

m(∅) = 1 − bel(Ω).

Mathematically, m is the Möbius transform of bel. The value m(A) for A ⊆ Ω
is called the basic belief mass (bbm) given to A. It may happen that m(∅) > 0.
It reflects either that we are working under an open world assumption or that
there exists some kind of contradiction in the belief state (Smets, 1992b).

The relation from m to bel is given by:

bel(A) =
∑

∅�=B⊆A

m(B), ∀A ⊆ Ω.

The plausibility function pl : 2Ω → [0, 1] is defined as:

pl(A) = bel(Ω) − bel(A), ∀A ⊆ Ω.

Shafer (1976a) accepts the closed world assumption, what can be expressed
by saying that bel is ‘normalized’. In that case, bel(Ω) = 1, pl(Ω) = 1 and
m(∅) = 0. In the transferable belief model, we do not require such a normaliza-
tion (Smets, 1992b). We use the notation bel and pl, whereas Shafer uses the
notation Bel and Pl. The difference should enhance that the functions bel and
pl are not necessarily normalized.

The meaning of bel and of the other functions varies according to the meaning
the authors give to bel(A). In this presentation, we will discuss the upper and
lower probabilities model, the hint model, the transferable belief model and the
probability model extended to modal propositions (section 4).
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2.2 Notation.

In order to homogenize the notation, we use the next conventions that we have
found convenient, even though it might seems cumbersome in some cases. The
full notation for bel and its related functions is:

belΩ,�
Y,t [ECY,t](ω0 ∈ A) = x.

It denotes that the degree of belief held by the agent Y (shortcut for You)
at time t that the actual world ω0 belongs to the set A of worlds is equal to
x, where A is a subset of the frame of discernment Ω and A ∈ � where � is a
Boolean algebra of subsets of Ω. The belief is based on the evidential corpus
ECY,t held by Y at t, where ECY,t represents all what agent Y knows at t. In
practice many indices can be omitted for simplicity sake. Usually � is 2Ω, the
power set of Ω. When � is not explicitly stated, it means that bel is defined on
2Ω. ‘ω0 ∈ A’ is often denoted as ‘A’. Y , t and/or Ω are omitted when the values
of the missing elements are clearly defined from the context. So belΩ[E](A) or
even bel(A) are often used.

Note that belΩ,�
Y,t [ECY,t] (and its simplified forms) denotes the belief function,

and can be understood as a finite vector of length |�|, which components are
the values of belΩ,�

Y,t [ECY,t](A) for every A ∈ �.
In the above notation, bel can be replaced by any of m, pl, q, b, etc... The

indices should made it clear what the links are. So mΩ,�
Y,t [ECY,t] and plΩ,�

Y,t [ECY,t]
are the bba and the plausibility function related to belΩ,�

Y,t [ECY,t].

2.3 Set of probability functions compatible with a belief
function.

Given any normalized belief function belΩ on Ω, one can always define a family
Π(belΩ) of probability functions PΩ on Ω that satisfy any of the next three
definitions:

Π(belΩ) = {PΩ : belΩ(A) ≤ PΩ(A), ∀A ⊆ Ω}
Π(belΩ) = {PΩ : PΩ(A) ≤ plΩ(A), ∀A ⊆ Ω}
Π(belΩ) = {PΩ : belΩ(A) ≤ PΩ(A) ≤ plΩ(A), ∀A ⊆ Ω}

The three definitions are equivalent. Π(belΩ) and belΩ are in one-to-one
correspondence. We call Π(belΩ) the set of probability functions compatible
with belΩ.

2.4 The belief function kinematic.

Let Ω be a frame of discernment and belΩ be a belief function on Ω. For E ⊆ Ω,
let EvE be the evidence that states that the actual world is not in E. Suppose
You learn EvE for sure. You must then revise Your beliefs accordingly. This is
achieved by Dempster’s rule of conditioning, i.e.:

belΩ[EvE ](A) = belΩ(A ∪ E) − belΩ(E) (1)
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We use the strange expression ‘the actual world is not in E’ instead of the
more classical one ‘the actual world is in E’ as far as we don’t assume initially
that the actual world is an element of Ω (see the open world assumption, (section
2.1)).

Suppose now that we have two pieces of evidence Ev1 and Ev2 that bear on
Ω. Let belΩ[Ev1] and belΩ[Ev2] be the belief functions derived from each piece
of evidence taken individually. If these pieces of evidence are ‘distinct’, than we
can compute the belief belΩ[Ev1, Ev2] induced by their conjunction on Ω. Its
related bba satisfies:

mΩ[Ev1, Ev2](A) =
∑

B,C:B∩C=A

mΩ[Ev1](B)mΩ[Ev2](C).

This rule can also be written as:

mΩ[Ev1, Ev2](A) =
∑

B,C⊆A:B∩C=∅

mΩ[Ev1](A ∪B)mΩ[Ev2](A ∪ C).

Another very useful rewriting of the same equation is:

fΩ[Ev1, Ev2](A) =
∑

B⊆Ω

fΩ[Ev1, EvB ](A)mΩ[Ev2](B),

where f ∈ {m, b, bel, pl, q} and belΩ[Ev1, EvB ] is the belief function obtained by
the application to belΩ[Ev1] of Dempster’s rule of conditioning on EvB (relation
1).

The definition of ‘distinctness’ is detailed in (Smets, 1992a, 1998b). It trans-
lates the fact that the sources who produce the two belief functions based on
Ev1 and Ev2 , respectively, are ‘distinct’, ‘unrelated’, ‘independent’. No precise
definition of these terms are presented here, as they will hardly be needed in
this paper.

3 Mathematical background on probability the-
ory.

3.1 An operational definition of P .

The classical definition of a subjective probability is based on an analysis of ra-
tional betting behavior. The (subjective) probability of a proposition is usually
characterized as the value of the opportunity to gain a unit value if the propo-
sition is true (Ramsey, 1964). More formally, one variant of the operational
definition of a subjective probability is the following:

Definition 3.1 Operational definition of subjective probabilities. Con-
sider a finite space Ω, a game on the betting frame Ω, a player and a banker.
We have ‘PΩ

Y ou,t(A) = x’ iff You consider at time t and for any M > 0 that the
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player must pay $xM to the banker to enter a game where the player wins $M
from the banker if the actual world belongs to A and $0 otherwise, and You are
ready to be any of the player or the banker.

We insist on the fact that You are not allowed to ‘run away’ from the game.
You must accept to be either the banker or the player, this being settled after
You have assessed the value of x. The present definition is based on ‘forced
bets’. The case where You could ‘run away’ is analyzed in the upper and lower
probabilities framework (section 6).

3.2 The assessment of P .

In order to assess the value of a subjective probability, one can consider the
following method. Let a finite space Ω and A ⊆ Ω. Consider two bets. In bet
1, You bet on A versus A where You gain $x if A is true, and $0 otherwise
(with $x being any reasonable prize like $100). In bet 2, You have an urn with
a proportion p of Black balls. You bet on Black versus not-Black where You
gain $x if the randomly selected ball (where every ball has the same chance to
be selected) is Black, and $0 otherwise. Which bet do You prefer?

• If You prefer bet 1, it means that P (A) > p.

• If You prefer bet 2, it means that P (A) < p.

• If You are indifferent between the two bets, it means that P (A) = p.

By varying p, one can (in theory) always find a state of indifference between
the two bets. So one can assess the value of P (A).

In practice, this method is not good to assess probabilities and more elabo-
rated methods have been developed by psychometricians. Nevertheless many of
the methods they developed are ingenious variants of the one we just described.

3.3 Decision making.

Suppose a decision maker wants to select an optimal act among an exhaustive
set of possible acts, denoted A. The outcome of each act depends on the exact
value of the actual world ω0. Let Ω denote the set of possible worlds, the actual
one being assumed to belong to Ω (the closed world assumption is assumed).
Savage (1954) has proposed a set of rationality axioms that justify the use of
an additive measure PΩ : 2Ω → [0, 1] and a utility function u : A× Ω → Reals.
The optimal act is the one that maximizes the expected utility u(a) where:

u(a) =
∑

ω∈Ω

u(a, ω)PΩ(ω).

The naturalness of this set of axioms, even though often criticized (Rivett, 1975),
has nevertheless stood the test of time. We will accept them hereafter.
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That the additive measure PΩ represents stricto sensu Your beliefs is not
required in Savage’s approach. In fact, Savage only proves the existence of the
additive measure, its interpretation being left aside. Nevertheless most authors
take it for granted that this additive measure represents Your beliefs. This is
one of the major assumptions relaxed in the transferable belief model.

3.4 Dutch books.

The reason why beliefs must be represented by a probability function is often
based on the Dutch book argument. A Dutch book is a set of bets that would
lead to a sure loss whatever is the value of the actual world. The only way
to avoid being vulnerable to a Dutch book, i.e., to be certain to always avoid
facing sure loss, consists in representing Your beliefs by a probability function.
In that case, Your beliefs are said to be ‘coherent’.

Just to illustrate how the rule P (A) = 1−P (A) is derived, consider the next
two bets on A versus A. In bet 1, player wins if A, and the prize You propose
to enter the game is $.3. In bet 2, player wins if A, and the prize You propose
to enter the game is $.6. Then I decide that You will be the banker in both
bets. In that case the player will pay You $.9 to enter the two games. Whatever
occurs, A or A, the banker, thus You, will have to pay $1 to the player. So
You are doomed to loose $.1 whatever occurs, a behavior normally considered
as irrational. If the sum of the prizes proposed to enter the game is larger than
$1, then You will be the player, and doomed to loose money whatever occurs.
The only way to avoid such sure losses is achieved by using prizes that add to
$1, hence the corresponding axiom in probability theory.

Similar bets can be organized to derive the additivity axioms of probability
measures.

Bayes rule of conditioning, i.e., P (A|B) = P (A∩B)
P (B) , is derived through the

consideration of bets where the player wins $1 if A ∩ B occurs, $0 if A ∩ B
occurs, and the bet is canceled (the player gets back the money paid to enter
the game) if B occurs.

It is essential to realize that the Dutch book argument does not tell what
the values of these probabilities must be. It only states that if You bet at
.7 on Heads in a coin tossing experiment, than You must bet at .3 on Tails
to avoid to be victim of a Dutch book. The Dutch book argument does not
require that the probability of Heads is .5 (or any other value). The latter is a
problem of reasonableness that has nothing to do with the Dutch book argument
(Kyburg, 1988)). One can be widely unreasonable without sinning against either
logic or probability. This might seem surprising and even unpalatable to some
probabilists, but no rationality arguments can be proposed that force You to
bet at .5 on Heads.

Note that Savage’s approach and the Dutch book argument consider only
forced bets. You are not allowed to refuse the proposed bets. A more general
approach that cope with unforced bets has been considered in (Smith, 1961;
Giles, 1982; Walley, 1991). They concern the upper and lower probability theory
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(see Section 6).

3.5 A note on conditioning and belief revision.

In probability theory, the changes in belief that result from conditioning and
belief revision are usually not distinguished. Nevertheless, Hacking (1988) uses
these two forms of changes in belief to distinguish between personalist and
Bayesian probabilists, the latter being a special case of the former.

A personalist probabilist considers that ProbH [f ](h), what is classically de-
noted by Probf (h), is the number representing Your personal probability for
h ⊆ H, when You know f . Note furthermore that one assumes not only that
fact f is true, but also that You know that fact f is true.

Probability given facts, denoted P [f ] is not to be confused with conditional
probability, denoted P (.|e) where e is the conditioning event. Using our full
notation, conditional probability is defined as,

ProbH [f ](h|e) =
ProbH [f ](he)
ProbH [f ](e)

for positive denominators, where f is the background facts known to You and e
is the conditioning event. Conditional probabilities indicate how confident You
would be, knowing only f , if You knew e as well.

When it comes to the problem of avoiding a Dutch Book, the fact f cannot
be reconsidered. It is fixed and known, so no bet is to be considered if f were
not the case. For what concerns e, the situation is different. We are considering
bets where You could win or loose when e is the case, and bet is canceled if
e is not the case. So when e is concerned, we must be careful on how the
probabilities are allocated, as if they do not satisfy probability theory, then a
Dutch Book could be built against the bettor. Therefore, conditioning must be
performed according to the Bayesian rule. But as described, conditioning consist
in considering ‘hypothetical events’, i.e., events that have not yet occurred but
might.

The distinction between probability given facts (factual revision) and con-
ditional probabilities (hypothetical conditioning) is usually not made. In the
TBM, such a distinction is made.

Note: As an example consider the Peter, Paul and Marry Saga (see section
5.5.1, we suggest to the reader who is not familiar with the Saga to skip this note
and to come back to this note once he/she has reached the section presenting
the Saga). Let f denote Your knowledge about the killer before learning about
Peter’s alibi, and let P [f ] be Your pignistic probability on {Peter, Paul, Marry}.
In the Saga, we have P [f ](Peter) = 1/4, P [f ](Paul) = 1/4, P [f ](Marry) = 1/2.
Suppose You want to bet on Paul versus Marry given the hypothetical (condi-
tioning) event that Peter is not the killer. Probabilities would be P [f ](Paul|not
Peter) = 1/3, P [f ](Marry|not Peter) = 2/3. You must use these probabilities in
order to avoid a Dutch Book. Indeed, You must be ready to face bets that are
canceled if Peter is the killer or if Peter is not the killer, as well as bets that are
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canceled if Paul is or is not the killer, etc... Once You learn about Peter’s alibi,
the bets that would be canceled if Peter is the killer cannot be considered any-
more. In that case the arguments based on cancellable bets that lead to Bayes’
rule do not apply anymore when it comes to the fact ‘Peter is not the killer’. You
‘revise’ Your probabilities and get P [f,not Peter](Paul) = 1/2, what is different
from the previous P [f ](Paul|not Peter). In the TBM, revision and conditioning
are different. Revision is performed by Dempster’s rule of conditioning whereas
conditioning is done by Bayes rule applied to the pignistic probabilities. Too bad
the word ‘conditioning’ was used to describe Dempster’s rule, but the tradition
is very strong. It would have been better to call it ‘Dempster’s rule of revision’.✷

Suppose Your beliefs on H are represented by the probability function PH .
We propose the next definition:

1. the ‘factual revision on f ’ is the process that transforms PH into PH [f ],

2. the ‘hypothetical conditioning on e’ is the process that transforms PH

into PH(.|e).

They correspond to the ‘given facts’ and the ‘conditioning’ processes, re-
spectively. The value of PH(.|e) is obtained by Bayes’ rule of conditioning. The
value of PH [f ], as such, is still to be defined. For that purpose and staying
within the probability context, Hacking introduces the next assumption, called
the ‘dynamic assumption’:

ProbH [f, e](h) = ProbH [f ](h|e) =
ProbH [f ](he)
ProbH [f ](e)

i.e., You equate Your conditional probabilities to Your probabilities given facts.
A Bayesian probabilist is then defined as a personalist probabilist who ac-

cepts the dynamic assumption. For a Bayesian, the distinction between hypo-
thetical conditioning and factual revision is not important. Jeffrey (1988) and
Teller (1976) produce arguments based on so-called dynamic Dutch books in
order to justify the adequacy of the dynamic assumption.

In the TBM, the dynamic assumption is not assumed, therefore revisions
and conditioning are not identical. Nevertheless the TBM resists to the dynamic
Dutch books as shown in (Smets, 1993c) (see also section 5.8).

4 Various interpretations attached to a belief
function.

The expression ‘Dempster-Shafer theory’ is confusing because it covers several
models. Usually the expression ‘Dempster-Shafer theory’ concerns mathemati-
cal models dealing with uncertainty. It corresponds to a ‘package’ made of at
least three components: a belief function and two rules called Dempster’s rule of
conditioning and Dempster’s rule of combination. Unfortunately often authors
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omit to state exactly what the belief function is supposed to quantify, and most
confusion encountered in the literature about belief functions results from the
fact people shift between definitions.

4.1 The upper and lower probability model.

The strength of the agent’s opinion is quantified by a probability function P
defined on Ω. This function P is only known to belong to a family of probability
functions defined on Ω. This family is denoted Π. Then P∗ is defined as the
lower envelope and P ∗ as the upper envelope of Π.

P∗(A) = min{P (A) : P ∈ Π},
P ∗(A) = max{P (A) : P ∈ Π}.

The lower envelope does not always characterizes the Π family. We will
restrain ourselves to the classical case where P∗(A) = inf{P (A) : P ∈ Π}. In
that case, there is a one-to-one correspondence between P∗ and Π, where Π is
then equal to the set of probability functions compatible with P∗ (section 2.3):

Π = {P : P∗(A) ≤ P (A) ≤ P ∗(A), ∀A ⊆ Ω}.

The constraints on P ∗ are in fact redundant as P ∗(A) = P∗(Ω) − P∗(A).
They can thus be neglected.

In general, the lower envelope P∗ of a convex family of probability functions
is not a belief function (not even capacities monotone of order 2). Nevertheless,
for some convex families, the lower envelope happens to be a belief function,
and this is the kind of families considered by those using the interpretation of
bel as a lower probability.

In that model, for every A ⊆ Ω, there exists a value P (A) that quantifies
the strength of the opinions held by the agent that the actual world belongs
to A. But the function P is not known, and we only know that the function
P belongs to a convex family Π the lower envelope of which is a (normalized)
belief function.

In this context, the dynamic assumption is accepted (section 3.5). So con-
ditioning and revision become synonymous. The appropriate rule to represent
conditioning is the natural extension rule ((Walley, 1991; Jaffray, 1992; Fagin
& Halpern, 1991). Suppose the conditioning event is A, i.e., You know for sure
that ω0 ∈ A. Each P in Π is conditioned on A by Bayes rule. This conditioning
procedure induces a new family of (conditional) probability functions, denoted
ΠA, where:

ΠA = {P [A] : P [A](X) = P (X ∩A)/P (A),∀X ⊆ Ω, P ∈ Π}.

This family is convex. When the lower envelope of Π is a belief function,
then the lower envelope of ΠA, denoted bel[A], is also a belief function (Jaffray,
1992; Fagin & Halpern, 1991). It satisfies:

bel[A](X) =
bel(X ∩A)

bel(X ∩A) + pl(B ∩A)
.
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Jaffray (1992) presents the relation between the basic belief assignment re-
lated to bel and the basic belief assignment related to bel[A].

In that upper and lower probability context, Dempster’s rule of conditioning
can be derived in very special cases (Moral & de Campos, 1990; Gilboa &
Schmeidler, 1992)). Suppose the conditioning event is A, and we apply Bayes
conditioning rule only to the probability functions in Π that satisfy P (A) =
pl(A). Then the lower envelope of the family Π∗

A of conditional probability
functions so built is equal to the belief function obtained by applying Dempster’s
rule of conditioning to bel, the lower envelope of Π.

Π∗
A = {P [A] : P [A] ∈ ΠA, P (A) = max{P ′(A) : P ′ ∈ Π}},

min{P [A](X) : P [A] ∈ Π∗
A} = bel(X ∪A) − bel(A),

where
bel(X) = min{P (X) : P ∈ Π}.

Nevertheless, this restricted conditioning process hardly fits with the gen-
eral idea of conditioning and that it would be the adequate way to condition
in the upper and lower probability context is still an open question. In fact,
Kyburg (1987a) and Voorbraak (1991) both criticize Dempster-Shafer theory
as inadequate because Dempster’s rule of conditioning leads to incorrect results
for conditioning. But their implicit interpretation of belief functions was the
upper and lower probabilities model, a context where indeed Dempster’s rule
of conditioning should not be applied (or at least its use should then be clearly
justified).

In the upper and lower probability context, Dempster’s rule of combination
is not used as it does not seem to correspond to any realistic process.

In fact Kyburg and Voorbraak do not consider the explicit existence of some
unknown probability function. They just assume that a family Π of probability
functions characterizes the agent beliefs and they defend that the conditioning
process be defined by the natural extension rule.

That bel, defined as the lower envelope of Π, represents ‘degrees of belief’,
as admitted by these authors, cannot be answered as the concept of a ‘degree
of belief’ is hardly uniquely defined.

4.2 Dempster’s model and the hint model of Kohlas and
Monney.

Dempster (1967, 1968, 1972) studied belief functions while trying to solve the
problem of fiducial inference. Dempster’s approach assumes two finite spaces X
and Y , a probability measure PX on X, and a one-to-many mapping Γ : X → 2Y

from X to the power set of Y . So PX induces ‘random sets’ on Y , and all that
can be stated about the probability PY (y0 ∈ A) that the actual (but unknown)
value y0 of Y is in A ⊆ Y is that

PY (y0 ∈ A) ∈ [belY (A), plY (A)]
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where

belY (A) =
∑

Γ(x)⊆A

PX(x),

plY (A) =
∑

Γ(x)∩A �=∅
PX(x).

.
It is mathematically true that for any belief function belY on Y , one can

describe a space X, a probability measure PX on X and a mapping Γ : X → 2Y

that together generate the belief function belY . If the X domain, the PX and the
Γ mapping have a meaningful interpretation, then the model can be appropriate.

It can be shown that the model can be reduced to the previous upper and
lower probability model. Suppose we knew the values of the conditional proba-
bility functions PY [x] defined on Y for every x ∈ X. Then:

PY (A) =
∑

x∈X

PY [x](A)PX(x).

The conditional probability functions happen to be unknown, except for the
constraint that PY [x](y) = 0 if y /∈ Γ(x). Let Π be the family of all conditional
probability functions on Y that satisfy the last constraints. Then:

belY (A) = min{PY (A) =
∑

x∈X

PY [x](A)PX(x) : PY [x] ∈ Π}

So in a certain sense, there is a mathematical link between Dempster’s model
and the upper and lower probability model. That this link corresponds to some
reality depends on the application to which the model is applied.

The hint model of Kohlas and Monney (1994) is a full-grown example of
Dempster’s model. The x’s are assumptions, PX is a probability measure that
expresses the agent’s beliefs about which assumption x holds, and Y is a space
of hypotheses. The Γ mapping expresses the fact that assumption x is a support
for the set of hypotheses Γ(x).

Kohlas and Monney assume Dempster’s original structure (X,PX ,Γ, Y )
where X, Y , PX and Γ are as defined above. They assume the existence of
a question whose answer is unknown. The set Y is the set of possible answers to
the question. One and only one element of Y is the correct answer to the ques-
tion. The goal is to make assertions about the answer in the light of the available
information. We assume that this information allows for several different inter-
pretations, depending on some unknown circumstances. These interpretations
are regrouped into the set X and there is exactly one correct interpretation. Not
all interpretations are equally likely and the known probability measure PX on
X reflects our information in that respect. Furthermore, if the interpretation
x∈X is the correct one, then the answer is known to be in the subset Γ(x) ⊆ Y .
The structure (X,PX ,Γ, Y ) is called a hint. An interpretation x ∈ X supports
the hypothesis H ⊆ Y if Γ(x) ⊆ H because in that case the answer is necessarily
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in H. The degree of support of H, denoted sp(H), is defined as the probability
of all supporting interpretations of H (Kohlas & Monney, 1994, page vi), with
a few adaptations). The sp function is the bel function studied in this paper.

The hint theory corresponds to Dempster’s original approach. They call
their measure a degree of support, instead of belief, to avoid personal, subjec-
tive connotation, but degrees of support and degrees of belief are mathematically
equivalent and conceptually very close. In the hint theory, the primitive con-
cept is the hint from which degrees of supports are deduced, whereas, in the
transferable belief model, the primitive concept is the degree of belief.

Conditioning in the hint model must be handled with care (Smets, 1993b).
One can:

1. condition on the fact that the actual value x0 of X is in A ⊆ X, in which
case PX is conditioned on A according to Bayes’ rule. Then:

belY [x0 ∈ A](H) =
belY (Γ(A) ∩H)

belY (Γ(A)
, ∀H ⊆ Y.

This rule is known as the geometrical rule of conditioning (Shafer, 1976b; Suppes
& Zanotti, 1977).

2. condition on the fact that the actual value y0 of Y is in H ′ ⊆ Y . Then:

plY [H ′](H) =
plY (H ∩H ′)

plY (H ′)
,

i.e., Dempster’s rule of conditioning.
Decision process in the hint model is not an essential element of the theory

which is more focussed on reasoning under uncertainty than deciding. Appar-
ently no specific solutions seems to have been advanced in such a context, except
for the work of Schaller (1991). It is not obvious which, if any, of the pignistic
transformation or the upper and lower expectation solution is applicable. We
will not further study how decision should be made in that model. We refer to
Schaller (1991).

4.3 The transferable belief model of Smets.

The TBM (for transferable belief model) provides a model for the representa-
tion of quantified beliefs. The value bel(A) represents the agent’s belief that the
actual world belongs to A ⊆ Ω. No concept of probability measure underlies the
description of the TBM. A study of the rationality properties that should be
satisfied by a function which purpose is to quantify someone’s beliefs leads to the
use of belief functions (Smets, 1997, 1993d). These axiomatic studies lead also
to the derivation of Dempster’s rule of conditioning. From this construction,
we have derived (and often justified) many other concepts like the conjunctive
combination rule (that is essentially equal to Dempster’s rule of combination),
the disjunctive rule of combination, the specialization concept, the least com-
mitment principle, the cautious combination rule, the measure of information
content, the concept of doxastic independence, . . .
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The core of the TBM is essentially inspired by what is described in Shafer’s
book (note that some of Shafer’s later papers enhance other interpretations).

The TBM is a model to represent quantified beliefs free from any probability
connotation. It is based on the assumption that beliefs manifest themselves at
two mental levels: the credal level where beliefs are entertained and the pignistic
level where beliefs are used to make decisions.

Usually these two levels are not distinguished and probability functions are
used to quantify beliefs at both levels. The justification for the use of probability
functions is usually linked to “rational” behavior to be held by an ideal agent in-
volved in some decision contexts (Ramsey, 1964; Savage, 1954; DeGroot, 1970).
This result is accepted here, except that these probability functions quantify
the uncertainty only when a decision is really involved.

In the TBM, we assume that the pignistic and the credal levels are distinct
which implies that the justification for using probability functions at the credal
level does not hold anymore (Dubois, Prade, & Smets, 1996). At the credal
level, beliefs are represented by a belief function; at the pignistic level, this
belief function induces a probability function that is used to make decision. This
probability function should not be understood as representing Your beliefs, it is
nothing but the additive measure needed to make decision, i.e., to compute the
expected utilities. Of course this probability function is directly induced by the
belief function representing Your belief at the credal level. The link between the
two levels is achieved by the pignistic transformation that transforms a belief
function into a probability function. Its nature and justification is detailed in
section 5.

In the TBM, the basic belief assignment receives a natural interpretation.
For A ⊆ Ω, m(A) is that part of Your belief that supports A, i.e., that the
actual world ω0 belongs to A, and that, due to lack of information, does not
support any strict subset of A.

If some further pieces of evidence become available to You and You accept
them as valid, and if their only impact bearing on Ω is that they imply that the
actual world ω0 does not belong to B, then the mass m(A) initially allocated
to A is transferred to A ∩B. Indeed, some of Your belief (quantified by m(A))
was allocated to A, and now You accept that ω0 /∈ B, so that mass m(A) is
transferred to A ∩ B (hence the name of the model). The resulting new basic
belief assignment is the one obtained by the application of Dempster’s rule of
conditioning .

The degree of belief bel(A) quantifies the total amount of justified specific
support given to A. It is obtained by summing all basic belief masses given to
subsets X ⊆ Ω with X ⊆ A (and X �= ∅). Indeed a part of belief that supports
that the actual world ω0 is in B also supports that ω0 is in A whenever B ⊆ A.
So for all A ⊆ Ω,

bel(A) =
∑

∅�=B⊆A

m(B)

We say justified because we include in bel(A) only the basic belief masses
given to subsets of A. For instance, consider two distinct elements x and y of
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Ω. The basic belief mass m({x, y}) given to {x, y} could support x if further
information indicates this. However given the available information the basic
belief mass can only be given to {x, y}. We say specific because the basic belief
mass m(∅) is not included in bel(A) as it is given to the subset ∅ that supports
not only A but also A.

The degree of plausibility pl(A) for A ⊆ Ω quantifies the maximum amount
of potential specific support that could be given to A. It is obtained by adding
all the basic belief masses given to subsets X compatible with A, i.e., such that
X ∩A �= ∅:

pl(A) =
∑

B∩A �=∅
m(B) = bel(Ω) − bel(A).

We say potential because the basic belief masses included in pl(A) could be
transferred to non-empty subsets of A if new information could justify such a
transfer. It would be the case if we learn that A is impossible.

The plausibility function pl is just another way of representing the informa-
tion contained in bel and could be as well forgotten, except it often provides a
mathematically convenient alternative representation of the beliefs.

4.4 Probability functions extended to modal propositions.

Ruspini (1986, 1987) has proposed to consider belΩY,t(A) as the probability that
the agent Y knows at time t that A holds. Pearl (1988) proposed to understand
it as the probability that A is provable. In both cases, we assume a set of worlds
to which probabilities are attached. We can write

belΩ(A) = P (✷A) = P ({w : w ∈ Ω, w |= ✷A}).

where the ✷ operator denotes the modal operator which meaning, here, can be
seen as ‘knowing’ or ‘proving’.

The static analysis of the P (✷A) function where A is a non-modal proposi-
tion shows that it is indeed a belief function over the set of non-modal proposi-
tions (see also Tsiporkova et al. (1999b, 1999, 1999a, ?)). The dynamic analysis
allows to derive both the geometrical rule of conditioning and Dempster’s rule
of conditioning, the first after conditioning on a subsets of worlds that entail a
given proposition, the second by a minimal chance of the accessibility relation
described in Kripke semantic for modal logic. We are not aware of any particu-
lar solution proposed within such frameworks to make decisions. They will not
be further studied in this paper.

5 Decision making in the TBM framework.

5.1 The origin of the pignistic probability function.

Let Ω be a finite set of worlds, and ω0 denote the actual world. Let belΩ denote
Your belief about the actual value of ω0. When a decision must be made that
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depends on ω0, You construct a probability function PΩ on Ω in order to select
the optimal decision, i.e., the one that maximizes the expected utility. We
assume that PΩ is a function of the belief function belΩ. It translates the saying
that beliefs guide our actions. Hence one must transform belΩ into a probability
function that will be used for selecting the best decision.

Let F be the betting frame, i.e., the frame on which decisions must be made.
It is the set of alternatives in Ω on which we must build the probability function.
Here, the betting frame F will be equal to Ω, but later on (section 5.4), we will
see that F and Ω can be different.

Let BetPF denote the probability function on F needed for selecting the
optimal decision (Bet is for betting and P for probability). The transforma-
tion between belΩ and BetPF that we will derive will be called the pignistic
transformation. It is denoted by ΓF . So

BetPF = ΓF (belΩ).

We call BetPF a pignistic probability to insist on the fact that it is only a
probability measure used to make decisions and not a probability function that
represents Your beliefs. Of course BetPF is mathematically a classical proba-
bility measure on F .

The structure of the pignistic transformation is derived from the rationality
requirement that underlies the following scenario.

Example 5.1. Buying Your friend’s drink. Suppose You have two
friends, Glen (G) and Judea (J). You know they will toss a fair coin and the
winner will visit You tonight. You want to buy the drink Your friend would
like to have tonight: coke, wine or beer. You can only buy one drink. Let D =
{coke, wine, beer} and F = D.

Let belD[G] quantify Your belief about the drink Glen will ask for, should he
come. Given belD[G], You build the pignistic probability BetPD[G] about the
drink Glen will ask by applying the (still to be defined) pignistic transforma-
tion. You build in the same way the pignistic probability BetPD[J ] based on
belD[J ], Your belief about the drink Judea will ask for, should he come. The two
pignistic probability distributions BetPD[G] and BetPD[J ] are the conditional
probability distributions about the drink that will be asked for given Glen or
Judea comes. The pignistic probability distributions BetPD about the drink
that Your visitor will ask for is then:

BetPD(d) = .5BetPD[G](d) + .5BetPD[J ](d), ∀d ∈ D.

You will use the pignistic probability function BetPD to decide which drink to
buy.

But You might as well reconsider the whole problem and first compute Your
belief belD about the drink Your visitor (V ) would like to have. We have shown
(Smets, 1997) that belD is given by:

belD(d) = .5belD[G](d) + .5belD[J ](d), ∀d ⊆ D.
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Given belD, You could then build the pignistic probability BetPD You
should use to decide which drink to buy. It seems reasonable to assume that
both solutions must be equal. This requirement is called the linearity assump-
tion and formally defined below. In such a case, the pignistic transformation is
uniquely defined. ✷

5.2 Deriving the pignistic transformation.

Formally, we require that the pignistic transformation satisfies the following
assumptions.

Proposition 5.1 Credal-Pignistic Link. Let F be a finite set and let belF

be a belief function defined on F . Let BetPF be a probability function on F .
For all ω ∈ F ,

BetPF (ω) = ΓF (belΩ)(ω).

Axiom 5.1 translates the idea that our beliefs guide our behaviors. The
function ΓF is called the pignistic transformation. Evaluation of BetPF (A) for
A ⊆ F is obtained by adding the probabilities BetPF (ω) for ω ∈ A.

Proposition 5.2 Linearity. Let bel1 and bel2 be two belief functions on the
frame of discernment F . Let ΓF be the pignistic transformation that transforms
a belief function over F into a probability function BetPF over F. Then ΓF

satisfies, for any α ∈ [0, 1],

ΓF (αbel1 + (1 − α)bel2) = αΓF (bel1) + (1 − α)ΓF (bel2)

The origin of the linearity requirement was explained in section 5.1. Tech-
nical assumptions must be added that are hardly arguable:

Proposition 5.3 Efficiency. BetPF (Ω) = 1.

Proposition 5.4 Anonymity. Let R be a permutation function from F to F .
The pignistic probability given to the image of A ⊆ F after permutation of the
elements of F is the same as the pignistic probability given to A before applying
the permutation:

BetPF∗(R(A)) = BetPF (A), ∀A ⊆ F,

where BetPF∗ is the pignistic probability function on F∗ after applying the
permutation function.

Proposition 5.5 Impossible Event. The pignistic probability of an impossi-
ble event is zero.

Proposition 5.6 Projectivity. If belF happens to be a probability function P
defined on F , then ΓF (P ) = P .

20



Proposition 5.3 tells that the pignistic probabilities given to the elements
of F add to one. Proposition 5.4 states that renaming the elements of Ω does
not change the pignistic probabilities. Proposition 5.5 tells that the pignistic
probabilities given to a subset is not changed when one adds to it any element
known to be impossible. Proposition 5.6 recognizes that if someone’s belief is
already described by a probability function, then the pignistic probabilities and
the degrees of belief are numerically equal.

Under these assumptions, it is possible to derive uniquely ΓF . The proof
can be found in Shapley (1953).

Theorem 5.1 Pignistic Transformation Theorem. Let belF be a belief
function on space F and mF its related bba. Let BetPF = ΓF (belF ). The only
solution BetPF that satisfies propositions 5.1 to 5.6 is:

BetPF (ω) =
∑

A⊆F,ω∈A

1
|A|

mF (A)
(1 −mF (∅)) , ∀ω ∈ F, (2)

where |A| is the number of elements of Ω in A, and

BetPF (A) =
∑

ω∈A

BetPF (w), ∀A ⊆ F.

.

It is easy to show that the function BetPF obtained from (2) is indeed a
probability function.

Relation (2) can be also expressed as a function of belF instead of mF . It
becomes:

BetPF (ω) =
∑

A⊆ω

|A|! (|Ω| − |A| − 1)!
|Ω|!

belF (w ∪A) − belF (A)
belF (Ω)

.

As such, this equation is hardly useful but it enhances that the pignistic transfor-
mation produces a probability function whenever belF is monotone for inclusion
(hence a capacity monotone of order 1).

Example 5.2. A pignistic transformation. Let F = {a, b, c}, and
mF ({a}) = .3, mF ({a, b}) = .2, mF ({b, c}) = .2, and mF ({a, b, c}) = .3. Then
BetPF (a) = .3 + .2/2 + .3/3 = .5, BetPF (b) = .2/2 + .2/2 + .3/3 = .3 and
BetPF (c) = .2/2 + .3/3 = .2. We also have, a.o., BetPF ({a, b}) = .5 + .3 = .8.
✷

The pignistic probability so derived fits with common sense. It consists in
distributing every basic belief mass equally among the elements that belong
to its focal element. In (Smets & Kennes, 1994), we had called this property
the generalized insufficient reason principle. It was a very unfortunate name as
some readers thought that the pignistic transformation is justified by a gener-
alization of the insufficient reason principle. It is not the case. The insufficient
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reason principle, as such, is not an acceptable rationality principle as it is re-
sponsible for most contradictions encountered in probability theory. The reason
why the TBM escapes from these contradictions is that the betting frame F is
established before applying the transformation. All contradictions encountered
when applying the insufficient reason principle result from the fact the betting
frame (or its equivalent) can vary, what leads to contradictions. Had it been
fixed, the insufficient reason principle would not be prone to contradictions and
would become a quite valid principle.

5.2.1 Historical notes.

1. In a context similar to ours, Shapley (1953) derived the same relation
(2). The model he derived was later called the ‘transferable utility model’
(Roth, 1988) whereas, unaware of it but amazingly, we called our model
the ‘transferable belief model’.

2. The solution derived from the pignistic transformation was already pro-
posed in (Dubois & Pradre, 1982; Williams, 1982) as ‘natural’ solutions
but without justification.

5.3 The case of two independent frames.

Let belΩ be a belief function on a frame of discernment Ω. Let Ω′ be a coarsening
of Ω, i.e., the elements of Ω′ are the elements of a partition of Ω. Let belΩ↓Ω′

denote the belief function defined on Ω‘ such that:

belΩ↓Ω′
(A) = belΩ(A), ∀A ⊆ Ω‘.

Marginalization is a special case of coarsening: for example let Ω = X × Y and
Ω‘ = X.

Suppose a belief function belX×Y on the frame of discernment X × Y which
bba mX×Y satisfies:

mX×Y (w) = mX×Y ↓X(x)mX×Y ↓Y (y), if w = x× y for x ⊆ X, y ⊆ Y,

= 0, otherwise.

In that case, X and Y are said to be non-interactive under belX×Y . In
probability theory, non-interactivity and stochastic independence are equivalent.
In the TBM, this equivalence is more delicate (Ben Yaghlane, Smets, & Mellouli,
2000).

Consider the pignistic probabilities on the spaces X × Y , and those on X
and on Y . They will be related as if the two variables were stochastically
independent.

Theorem 5.2 Let X and Y be two non-interactive variables under belX×Y .
Then, ∀x ∈ X, ∀y ∈ Y :

ΓX×Y (belX×Y )(x, y) = ΓX(belX×Y ↓X)(x)ΓY (belX×Y ↓Y )(y),
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or equivalently:

BetPX×Y (x, y) = BetPX(x)BetP (Y (y).

This theorem states that the pignistic probabilities computed on the ele-
ments of the X ×Y space are equal to the product of the pignistic probabilities
computed on their marginals. This is of course a rephrasing of the major prop-
erty encountered in probability theory under stochastic independence. This
result is important, as its absence would have raised serious doubts about the
validity of the pignistic transformation.

It was hoped that this constraint would be only satisfied by the pignistic
transformation, in which case we would have obtained a second justification for
its use. But this is not the case. Indeed, if the probability needed at the pignistic
level was defined on the elements of F as proportional to the plausibility given
to these elements, then the last relation of theorem 5.2 would be also satisfied.

5.4 The betting frame.

The pignistic transformation depends on the structure of the frame on which
the decision must be made. One must first define the ‘betting frame’ F , i.e., the
set of atoms on which stakes will be allocated. The granularity of this frame F
is defined so that a stake could be given to each element of F independently of
the stakes given to the other elements of F . Suppose one starts with a belief
function belΩ on a frame Ω. If the stakes given to elements A and B of Ω
must necessarily be always equal, both A and B belong to the same granule of
the betting frame F . For instance, suppose You want to bet on the fact that
Michel lives in Paris or in Brussels. Let M = ‘Michel lives in Paris’ and T =
‘it rains now in Tokyo’. Let Ω = {M&T, M&¬T, ¬M&T, ¬M&¬T}. There
are this four worlds in Ω. Nevertheless, the stakes put on the worlds M&T and
M&¬T are by ‘necessity’ equal as we bet only on Michel’s home town. So M&T
and M&¬T are in the same granule of the betting frame, and F has only two
elements: F = {M, ¬M}.

The betting frame F is organized so that the granules of Ω are the elements
of F . The problem is then to define belF on F given belΩ. This is achieved by ap-
plying a sequence of coarsenings and/or refinements on Ω. The only constraints
that must hold between F and Ω is that the frames F and Ω are compatible,
i.e., F and Ω have a common refinement (Shafer, 1976a page 114). The pignistic
probability BetPF is then built from the belief function belF so derived on F
from belΩ. Therefore we can write BetPF = ΓF (belΩ) where it is understood
that the ΓF operator not only transforms a belief function into a probability
function but it also transforms belΩ into belF (provided F and Ω are compatible,
a constraint usually satisfied).

5.4.1 Betting under total ignorance.

To show the power of our approach, let us consider the next examples based on
total ignorance and which solution in probability theory is often considered as
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disturbing.

Example 5.3. Betting and total ignorance. Consider a guard in a huge
power plant. On the emergency panel, alarms A1 and A2 are both on. The
guard never heard about these two alarms, they were hidden in a remote place.
He takes the instruction book and discovers that alarm A1 is on iff circuit C
is in state C1 or C2 and that alarm A2 is on iff circuit D is in state D1, D2

or D3. He never heard about these C and D circuits. Therefore, his beliefs
on the C circuit will be characterized by a ‘vacuous’ belief function on space
ΩC = {C1, C2}, i.e., a belief function which bba satisfies mΩC (ΩC) = 1 (this
particular belief function is the one that represents the state of total ignorance,
as the only supported subset is the whole space Ω itself). By the application of
(2) his pignistic probabilities will be given by

BetPΩC (C1) = BetPΩC (C2) = 1/2.

Similarly for the D circuit, the guard’s belief on space ΩD = {D1, D2, D3}
will be vacuous, i.e., mΩD (ΩD) = 1, and the pignistic probabilities are

BetPΩD (D1) = BetPΩD (D2) = BetPΩD (D3) = 1/3.

Now, by reading the next page on the manual, the guard discovers that
circuits C and D are so made that whenever circuit C is in state C1, circuit D
is in state D1 and vice-versa. So he learns that C1 and D1 are equivalent (given
what the guard knows) and that C2 and (D2 or D3) are also equivalent as C is
either C1 or C2 and D is either D1 or D2 or D3. In the TBM, this information
does not modify his belief about which circuit is broken.

If the guard had been a trained Bayesian, he would have assigned value for
PΩC (C1) and PΩD (D1) (given the lack of any information, they would probably
be 1/2 and 1/3, but any value could be used). Once he learns about the equiv-
alence between C1and D1, he must adapt his probabilities as they must give
the same probabilities to C1 and D1. Which set of probabilities is he going to
update: PΩC or PΩD , and why?, especially since it must be remembered that
he has no knowledge whatsoever about what the circuits are. In a probabilistic
approach, the difficulty raised by this type of example results from the require-
ment that equivalent propositions should receive identical beliefs, and therefore
identical probabilities.

Within the transferable belief model, the only requirement is that equiv-
alent propositions should receive equal beliefs (it is satisfied as belΩC (C1) =
belΩD (D1) = 0). Pignistic probabilities depend not only on these beliefs but
also on the structure of the betting frame. The difference between BetPΩC (C1)
and BetPΩD (D1) reflects the difference between the two betting frames. ✷

The fact the TBM can cope easily with such states of ignorance results from
the partial dissociation between the credal and the pignistic levels. Bayesians do
not consider such a distinction and therefore work in a more limited framework,
hence the difficulty they encounter in the present example.
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5.4.2 Undefined betting frame.

We consider now the problem where the betting frame is ill defined. Suppose
belΩ is a belief function on a frame Ω and let F be a betting frame compati-
ble with Ω. Let BetPF be the pignistic probability obtained by applying the
pignistic transformation ΓF to belΩ:

BetPF = ΓF (belΩ).

Suppose another betting frame F’ compatible with Ω. We build BetPF ′
=

ΓF ′(belΩ) in a way similar to the one used in the previous case. Consider now
the family FA made of all the betting frames F1, F2 . . . compatible with Ω and
such that A ⊆ Fi for all i. Compute BetPFi(A) for all Fi ∈ FA. Wilson (1993)
shows that the minimum of BetPFi(A) taken over the Fi ∈ FA is equal to
belΩ(A):

min{BetPFi(A) : Fi ∈ FA} = belΩ(A).

and that the set of pignistic probabilities BetPFi that can be obtained from
belΩ by varying the betting frame Fi is equal to the set Π(belΩ) of probability
functions compatible with belΩ (see section 2.3).

So whatever the betting frame F compatible with Ω such that A ⊆ F ,

BetPF (A) ≥ belΩ(A), ∀A ⊆ Ω.

Suppose You ignore what is the appropriate betting frame F . You never-
theless know that, for all A ⊆ Ω, the lowest bound of BetPF (A) is belΩ(A).
Therefore belΩ(A) can be understood as the lowest pignistic probability one
could give to A when the betting frame is not fixed (Giles, 1982).

This set Π(belΩ) of probability functions compatible with a belief function
belΩ gets a meaning within the TBM thanks to this result. It is the set of
pignistic probability functions defined on betting frames F compatible with Ω
that could be induced by belΩ when varying the betting frame. Its definition
follows from belΩ, not the reverse as assumed by the authors who understand
belΩ as the lower envelope of some class of probability functions. In the TBM,
we derive Π(belΩ) from belΩ, not belΩ from Π(belΩ).

When betting must be done and the betting frame is totally unknown, all
You know is that BetP ?(A) ∈ [belΩ(A), plΩ(A)], where the ? superscript indi-
cates that the betting frame is unknown. Such a case can be handled by using
the procedure developed by Jaffray (1988) and Strat (1990b, 1990a), and de-
tailed in section 6. In fact, if You only know that the betting frame belongs to a
given subset F ′ of the set of all possible betting frames (and not necessarily the
set of all possible betting frames), then You can compute the upper and lower
bounds of BetP ?(A) as

BetP∗(A) = min{BetPF (A) : F ∈ F ′}
BetP ∗(A) = max{BetPF (A) : F ∈ F ′}
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Ordering these intervals is of course not obvious in general. Procedure based
on weighted average of the limits of the intervals, like in the Jaffray - Strat
solution, is a natural solution. Nevertheless we feel that the present problem
is quite artificial (where F’ comes from?), and we will not further consider it.
Only the case where F’ is the set of all possible betting frames is realistic, and
it is discussed in section 6.

5.5 The impact of the two-level model.

In order to show that the introduction of the two-level mental model is not just
an intellectual game, we present an example where the results will be different
if one takes the two-level approach as advocated in the transferable belief model
or a one-level model like in probability theory.

5.5.1 The Peter, Paul and Marry Saga.

Big Boss has decided that Mr. Jones must be murdered by one of the three
people present in his waiting room and whose names are Peter, Paul and Marry.
Big Boss has decided that the killer on duty will be selected by a throw of a
dice: if it is an even number, the killer will be female, if it is an odd number,
the killer will be male. You, the judge, know that Mr. Jones has been murdered
and who was in the waiting room. You know about the dice throwing, but You
do not know what the outcome was and who was actually selected. You are also
ignorant as to how Big Boss would have decided between Peter and Paul in the
case of an odd number being observed. Given the available information at time
t0, Your odds for betting on the sex of the killer would be 1 to 1 for male versus
female.

At time t1 > t0, You learn that if Big Boss had not selected Peter, then
Peter would necessarily have gone to the police station at the time of the killing
in order to have a perfect alibi. Peter indeed went to the police station, so he is
not the killer. The question is how You would bet now on male versus female:
should Your odds be 1 to 1 (as in the transferable belief model) or 1 to 2 (as in
the most natural Bayesian model).

Note that the alibi evidence makes ‘Peter is not the killer’ and ‘Peter has a
perfect alibi’ equivalent. The more classical evidence ‘Peter has a perfect alibi’
would only imply P (’Peter is not the killer’ | ‘Peter has a perfect alibi’) = 1.
But P (’Peter has a perfect alibi’ | ‘Peter is not the killer’) would be undefined
and would then give rise to further discussion, which would be useless for our
purpose. In this presentation, the latter probability is also 1.

5.5.2 The transferable belief model solution.

Let k be the killer. The information about the waiting room and the dice
throwing pattern induces the following basic belief assignment mΩ

t0 :

k ∈ Ω = {Peter, Paul, Mary},
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mΩ
t0({Mary}) = .5

mΩ
t0({Peter, Paul} ) = .5

The basic belief mass .5 given to {Peter, Paul} corresponds to that part
of belief that supports ‘Peter or Paul’, could possibly support each of them,
but given the lack of further information, cannot be divided more specifically
between Peter and Paul.

Let BetPΩ
t0 be the pignistic probability obtained by applying the pignistic

transformation to mΩ
t0 on the betting frame Ω. By relation (2), we get:

BetPΩ
t0 (Peter) = .25

BetPΩ
t0 (Paul) = .25

BetPΩ
t0 (Mary) = .50

Given the information available at time t0, the bet on the killer’s sex (male
versus female) is held at odds 1 to 1.

Peter’s alibi induces a revision of mΩ
t0 into mΩ

t1 by Dempster’s rule of condi-
tioning:

mΩ
t1(Mary) = .50

mΩ
t1(Paul) = .50

The basic belief mass that was given to ‘Peter or Paul’ is transferred to Paul.
Let BetPΩ

t1 be the pignistic probability obtained by applying the pignistic
transformation to mΩ

t1 on the betting frame Ω* whose elements are Paul and
Marry.

BetPΩ∗
t1 (Paul) = .50

BetPΩ∗
t1 (Mary) = .50

Your odds for betting on male versus female would still be 1 to 1.

5.5.3 The probabilistic solution

The probabilistic solution is not obvious as one data is missing: the value α of
the probability that Big Boss selects Peter if he must select a male killer. Any
value could be accepted for α, but given the total ignorance in which we are
about this value, let us assume that α = .5, the most natural solution (any value
could be used without changing the problem we raise). Then the odds on male
versus female before learning about Peter’s alibi is 1 to 1, and after learning
about Peter’s alibi, it becomes 1 to 2. The probabilities are then:

PΩ∗

t1 (Paul) = 0.33

PΩ∗

t1 (Mary) = 0.66.

The 1 to 1 odds of the transferable belief model solution can only be ob-
tained in a probabilistic approach if α = 0. Some critics would claim that the
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transferable belief model solution is valid as it fits with α = 0. The only trouble
with this answer is that if the alibi story had applied to Paul, than we would
still bet on the frame Ω∗∗ ={Peter, Marry} at 1 to 1 odds within the TBM
approach. Instead the probabilistic solution with α = 0 would lead to a 0 to 1
bet, as the probabilities are:

PΩ∗∗

t1 (Peter) = 0.00

PΩ∗∗

t1 (Mary) = 1.00

So the classical probabilistic analysis does not lead to the transferable belief
model solution.

5.5.4 Which solution is ‘good’?

We are facing two solutions for the bet on male versus female after learning
about Peter’s alibi: the 1 to 1 or the 1 to 2 odds? Which solution is ‘good’ is
not decidable, as it requires the definition of ‘good’.

Computer simulations have been suggested for solving the dilemma, but they
are useless. In any finite sequence of simulations, the proportion of cases when
Peter is selected when Big Boss must choose a male killer is well defined. If
this proportion is close from the α used by the Bayesian, the Bayesian solution
will be the best, otherwise the TBM can be the best. But this implies that we
introduce a probability α equal to the probability that Peter is selected when
the killer is a male. In that case the problem is no more the one we had consider
in the initial story. If such an α were known, then it would have been included
in the TBM analysis, and in that case the TBM and the Bayesian solutions
become identical, as it should be.

So in order to compare the TBM and the Bayesian solution of the initial saga,
we are only left over with a subjective comparison of the two solutions... or an
in depth comparison of the theoretical foundations that led to these solutions.

Other examples illustrating the difference between the Bayesian approach
and the TBM approach can be found in Smets (1994b) (see the breakable sensors
example)

5.6 An operational definition of bel.

The pignistic transformation can be used in order to provide both an operational
definition of the degrees of belief, and a method to assess them. The approach
is essentially identical to the one encountered in subjective probability theory
except we use the possibility to construct several betting frames (see section
3.1).

Operational definition of degrees of belief. Suppose a finite space Ω, a
family of games G = {G1, G2 . . .} built on the betting frames Fi, i = 1, 2 . . .,
respectively, where each frame is compatible with Ω. Suppose a player and a
banker. Consider one game Gi ∈ G and its betting frame Fi. Suppose A is

28



discerned by Fi. We have ′BetPFi

Y ou,t(A) = x′ iff You consider at time t that
the player must pay $x to the banker to enter the game Gi where the player
wins $1 from the banker if the actual world belongs to A and $0 otherwise, and
You are ready to be any of the player or the banker. Consider then all possible
games Gi on G. Then belΩY ou,t is the belief function on Ω such that:

1. BetPFi

Y ou,t = ΓFi(bel
Ω
Y ou,t), ∀i = 1, 2....

2. belΩY ou,t(A) = min{BetPFi

Y ou,t(A) : i = 1, 2 . . .}.
where the two cases are equivalent.

It is important to realize that the pignistic probability functions obtained
with different frames are not necessarily related between them by the laws of
probability. So you could bet on A versus B where B = A with pignistic
probabilities of 1/2 and 1/2, and on A versus B1 versus B2 where B1 ∪B2 = B
with pignistic probabilities of 1/3, 1/3 and 1/3 (this is encountered in case of
total ignorance on Ω = A ∪B, (see (Smets & Kennes, 1994)).

5.7 The assessment of bel.

In (Smets, 1998a), we explain in detail and illustrate how the bba’s can be
assessed. Here, we present only the general procedure.

The assessment of a belief function is essentially obtained through a schema
based on preference between gambles (see section 3.2).

The method proposed in probability theory extends directly to belief func-
tions. It is based on using several betting frames. Let a finite set Ω and a
family of compatible betting frames F1, F2... For each Fi, we assess BetPFi

using the preference ordering between two bets as done in section 3.2. We then
determine the set BFΩ

i of belief function on Ω which pignistic transformation
on Fi is BetPFi . We repeat the procedure with each Fi’s. The belΩ belongs to
the intersection of all the BFΩ

i . If the intersection is empty, then it means the
pignistic probability functions are inconsistent, what ideally should not occur,
but it happens of course in practice, just as in probability theory where people
assess probabilities that usually violate Kolmogorof axioms. It only translates
the imprecision of the assessment tool. Thanks to the fact that a belief function
is defined by a finite number of values and the possibility to build as many
betting frames as one needs, the intersection can be such that it contains only
one belief function.

The procedure is illustrated in the next example.

Example 5.4. Assessing bel. Suppose Ω = {a, b} where a denotes ‘Circuit X
is broken’ and b denotes ‘Circuit X is not broken’. Consider the betting frame
F1 with elements a and b. Suppose Your pignistic probabilities on that frame
are:

BetPF1(a) = 4/9
BetPF1(b) = 5/9.

29



Suppose ψ and ψ are two complementary but otherwise unknown sets of
worlds that denote that some circuit C whose properties are completely un-
known to You is broken or not broken, respectively. The event a ∩ ψ will occur
if circuits X and C are broken. The event a∩ψ will occur if circuit X is broken
and circuit C is not broken. Let us consider the betting frame F2 with elements
{a ∩ ψ, a ∩ ψ, b}, and suppose Your pignistic probabilities on that new frame
are:

BetPF2(a ∩ ψ) = 7/27
BetPF2(a ∩ ψ) = 7/27

BetPF2(b) = 13/27.

Then it can be proven that the unique solution for mΩ is:

mΩ(a) = 2/9,
mΩ(b) = 3/9

mΩ(a, b) = 4/9.

To show it, let m’ be the bba induces by mΩ on F2 by the uninformative
refinement:

m′(a ∩ ψ) = 0
m′(a ∩ ψ) = 0,

m′(b) = mΩ(b)
m′(a ∩ ψ, a ∩ ψ) = mΩ(a),

m′(a ∩ ψ, b) = 0
m′(a ∩ ψ, b) = 0

m′(a ∩ ψ, a ∩ ψ, b) = mΩ(a, b).

The solution for mΩ must solve two linear equations derived from (2):

4/9 = mΩ(a) +
mΩ(a, b)

2

7/27 = m′(a ∩ ψ) +
m′(a ∩ ψ, a ∩ ψ)

2
+

m′(a ∩ ψ, b)
2

+
m′(a ∩ ψ, a ∩ ψ, b)

3

=
mΩ(a)

2
+

mΩ(a, b)
3

.

The values of mΩ are the only one that satisfy these two equations (given
their sum is 1 as they are bbm). ✷

It might seem odd that b receives the pignistic probabilities 5
9 or 13

27 according
to the betting context. It reflects the fact that a large amount (4

9 ) of Your initial
belief was left unassigned, i.e., given to {a,b}. This example corresponds to a
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state in which You have very weak support for a and for b. You are not totally
ignorant as in example 5.4.1, but still in a state of ‘strong’ ignorance. Part of
BetPF1(b) = 5

9 is due to justified beliefs (3
9 ) but the remainder results from a

completely unassigned part of belief that You distribute equally by the pignistic
transformation among the alternatives of Your betting frame.

5.8 Kinematic Dutch books.

A classical criticism against any non probabilistic model for quantified beliefs is
based on Dutch books arguments, i.e. on the possibility to build a set of forced
bets such that the player will lose for sure. Dutch books are avoided only if
beliefs, when used for decision making, are quantified by probability measures.
The transferable belief model with its pignistic transformation resists to such
a criticism. Static (also called synchronic) Dutch books are of course avoided
inasmuch as bets are based on pignistic probabilities. The real delicate point
is to resist diachronic Dutch books, i.e., those built when changes in beliefs
are considered and bets can be reconsidered after new information has been
collected by the participants in the betting game (Teller, 1973; Jeffrey, 1988).

In (Smets, 1993c), we show how the transferable belief model can resist
diachronic Dutch books criticism, and how to build pignistic probabilities when
the player knows that intermediate experiments will be run whose outcomes
could affect the involved bets.

The overall principle is based on the decision tree. There are two types of
nodes, the decision nodes and the uncertainty nodes, i.e., those usually called
the ‘chance’ nodes, but we prefer to avoid the term ‘chance’ as it might create
confusion. At each ‘uncertainty’ node, one conditions by Dempster’s rule of con-
ditioning the belief function that concerns the variable concerned by that node
on all the pieces of evidence that will have been collected by the time You reach
that node. You build the pignisitic probabilities on the betting frame encoun-
tered at that node. When the whole tree is built and all pignistic probabilities
are established, the tree is folded back in order to select the best decision. We
insist that the adequate choice of the betting frames is a delicate matter, and
should be kept consistent for the whole tree.

The originality of the models we obtain in that way is that the player will use
different probabilities depending on whether he knows about the experiments to
be run or not. The transferable belief model analysis is rich enough to quantify
the impact of the knowledge that some relevant intermediate experiments will
be run, which is usually not the case within probability theory. Full details
about the construction of the pignistic probabilities in a context of diachronic
Dutch book are presented in (Smets, 1993c). Nevertheless the solution proposed
to resist diachronic Dutch books still needs further developments. It will not be
further discussed here as we focus only on static decision making.
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5.9 Decision based on the maximum plausibility.

Suppose a set H of n hypothesis {H1, H2, . . . Hn}. In a context where You want
to select the most ‘probable/likely’ hypothesis Hi ∈ H, authors like Appriou
(1991) propose that one should select the most plausible hypothesis, a very
natural proposal. Nevertheless we feel that this solution is poised by counterex-
amples like the next one.

Example 5.5. Decisions based on maximal plausibility. Suppose

mH(H1) = .30,
mH(H2) = .01,

mH(H2, H3, . . . , H70) = .69.

Then

plH(H1) = .30,
plH(H2) = .70,

plH(H3) = . . . = plH(H70) = .69.

So H2 is the most plausible hypothesis, and according to that approach, the
one to be selected.

With the pignistic transformation, we get:

BetPH(H1) = .30,
BetPH(H2) = .02,

BetPH(H3) = . . . = BetPH(H70) = .01.

So now H1 is the most ‘probable’ hypothesis. ✷

We feel the solution obtained with the pignistic transformation is better than
the one based on the maximum plausibility. Of course, this is a matter of per-
sonal opinion, and we don’t have a way to ‘prove’ which solution is definitively
the best one.

5.10 An example: the Oil-Drilling Problem.

In order to illustrate the use of the pignistic transformation, we present the
classical Oil-Drilling example. It was analyzed in (Strat, 1994) within an upper
and lower probability context. We present its analyze into the TBM context.

Example 5.6 The Oil-Drilling Problem. A wildcatter must decide
whether or not to drill for oil. He is uncertain whether the hole will be dry,
have a trickle of oil, or be a gusher. Drilling a hole costs $70.000. The payoffs
for hitting a gusher, a trickle, or a dry hole are $270.000, $120.000 and $0,
respectively. At a cost of $10.000 the wildcatter could take seismic sounding
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that would help determine the underlying geological structure. The sounding
will determine whether the terrain has no structure, open structure, or closed
structure.

Let H be the set of hole state: H = {Dry (Dr), Trickle (Tr), Gusher (Gu)}.
Let S be the set of terrain structures: S = {No struct, Open, Closed}.

The experts have provided their opinions about which state prevails given
the result of the seismic soundings test (see table 1). These are represented
by the bba mH [s] for s ∈ S. When s = No Struct, a Dry hole is essentially
expected (at level .45), but there is nevertheless some support (.40) that the the
hole might also be Trickle, and there is some ignorance (.15). When s = Open,
there is also some support for Gusher, and when s = Closed, Gusher gets some
support.

Besides the experts have some a priori belief about what the outcome of the
seismic soundings test might be. It is represented by the bba mS with mS({No
struct}) = .5, mS({No struct, Open}) = .3 and mS({Open, Closed}) = .2. No
struct (with Open) is supported, but there is also some support for Open or
Closed. The way these bba can be assesses is discussed in section 5.7.

The bba mH [mS ] (presented in the ‘Marginal’ column of table 1) is computed
by applying the disjunctive rule of combination (Smets, 1993a). One has:

bH [mS ](h) =
∑

X⊆S

mS(X)bH [X](h), ∀h ⊆ H,

with
bH [X](h) =

∏

s∈X

bH [s](h),

where the b functions are the implicability functions with,

b(A) = bel(A) + m(∅).

The first relation is just the explicit solution of the next relation:

mH [mS ] = (mH×S ⊕ mS↑S×H)↓H ,

where mH×S is the bba on H × S that is built from the set of conditional bba
{mH [s], s ∈ S} provided by the experts. The next one results from the disjunc-
tive combination rule which is fully detailed in (Smets, 1993a). It corresponds
in building m[E1 or E2] from m[E1] and m[E2], just as the conjunctive com-
bination rule consists in computing m[E1 and E2] where E1 and E2 are two
distinct pieces of evidence.

Figure 1 presents the decision tree for the present example. Decision nodes
have their expected utilities in italics. Optimal decisions are indicated in capital
letters. Suppose the test result is ‘no structure’ and drilling in done. The
pignistic probabilities BetPH [No struct] = ΓH(mH [No struct]) are indicated
on the three possible branches. The expected utility is then −$36.500 = .05 ×
190.000+ .25×40.000+ .70×(−80.000). The cost if one does not drill is -$10.000
what is better, hence the optimal decision is not to drill. Identical computations
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H State No struct Open Closed Marginal
Dry .45 .10 0 .239

Trickle 0 0 0 0
Gusher 0 0 .25 0
Dr, Tr .40 .30 0 .289
Dr, Gu 0 0 0 .005
Tr, Gu 0 .30 .30 .033

Dr, Tr, Gu .15 .30 .45 .435
Dry .70 .35 .15 .530

Trickle .25 .40 .30 .306
Gusher .05 .25 .55 .164
BetPS .65 .25 .10

Table 1: The upper part presents the conditional bba mH [s] on the hole state
H given the terrain structure s ∈ S. The ‘Marginal’ column presents the bba
mH [mS ] on H given the prior belief mS with mS({No struct}) = .5, mS({No
struct, Open}) = .3 and mS({Open, Closed}) = .2. The middle part presents
the pignistic probabilities BetPH [s] over H for each s ∈ S and BetPH [mS ] for
mH [mS ]. The bottom part presents the pignistic probabilities BetPS over S
computed from mS .

are performed for the the other two results of the test. In these two cases, drilling
is the optimal decision. The pignistic probabilities BetPS = ΓS(mS), presented
at the bottom of table 1, are used to compute the expected utility when the test
is performed. Its value is $12.825.

We then proceed with the ‘no test’ option. One must first compute the bba
mH [mS ] on H based on the conditional bba’s mH [s], s ∈ S, and the prior bba mS

on S. The column ‘Marginal’ in table 1 presents this bba. It is compute by the
disjunctive combination rule detailed here above. Its pignistic transformation
BetPH [mS ] = ΓH(mH [mS ]) are given on the three related branches, and the
expected utility is $10.970. This result is not as good as the one obtained when
performing the test, hence testing is the optimal decision.

In conclusions, the decision analysis shows that it is best to test, and that
if the test result is open or closed structure, the optimal decision is to drill,
whereas if the test result is no structure, the optimal decision is not to drill.
This example is just given in order to illustrate the kind of computation to be
performed.

Similar examples are studied by Xu (1992, 1993a), (Xu, Hsia, & Smets,
1993b). She explains the architecture of the software for decision making based
on the valuation based system (Shenoy, 1991, 1992). In (Xu & Smets, 1996,
1995), the authors explain how to determine the sensitivity of the conclusions
to variations in the bba.
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Figure 1: The decision tree for the Oil-Driling Problem, expectation in K$.

6 Decision Making in the upper and lower prob-
abilities case.

6.1 Decisions based on upper and lower expectations.

We consider the case where there is a probability function PΩ that describes
Your belief about which world in Ω is the actual world. The closed world
assumption is accepted. It happens that You don’t know what is exactly PΩ,
and all You know about PΩ is that it belongs to a family of probability functions
defined on Ω. Let Π denote this family. Furthermore assume the lower envelope
of Π is a belief function, what is not a necessity, but there are cases where it
happens.

To make optimal decision, one must compute the expected utility of each
act (and chose the best accordingly). Normally this is achieved by computing
for each act a in a set A of possible acts the expected utility u(a) of that act,
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considering the utility u(a, ω) of each act a ∈ A in each possible context ω ∈ Ω.

u(a) =
∑

ω∈Ω

u(a, ω)PΩ(ω) . . .

Unfortunately PΩ(ω) is not available, as all we know is that PΩ ∈ Π. One
approach consists in computing what would be u(a) if we consider all possible
elements of Π. We can then compute the upper and the lower expectation of
u(a), denoted u∗(a) and u∗(a), respectively. We have:

u∗(a) = max{
∑

ω∈Ω

u(a, ω)PΩ(ω) : PΩ ∈ Π},

u∗(a) = min{
∑

ω∈Ω

u(a, ω)PΩ(ω) : PΩ ∈ Π}.

So we know that u(a) ∈ [u∗(a), u∗(a)]. Unfortunately, such an information
does not lead to a total order, and ambiguities can appear when we have two
acts a and b such that u∗(a) ≤ u∗(b) and u∗(a) ≥ u∗(b). In that case, Jaffray
(1988, 1989a, 1989b, 1994) and Strat (Strat, 1990b, 1990a, 1994) have defended
the suggestion to take a weighted average of the two expected utilities and select
the best act using that value:

u(a, α) = αu∗(a) + (1 − α)u∗(a), (3)

where α is an optimism/pessimism criteria. This solution is Hurwicz α-criteria
(Luce & Raiffa, 1957).

Let mΩ be the Möbius transform of P∗, the lower envelope of Π (just like
the bba mΩ is the Möbius transform of belΩ). It can be shown that:

u∗(a) =
∑

X⊆Ω

max
ω∈X

u(a, ω) mΩ(X)

u∗(a) =
∑

X⊆Ω

min
ω∈X

u(a, ω) mΩ(X)

Using α = 1 (0) means that You feel that the worst (best) possible outcome of
X will occur when all You know is that ω ∈ X. (Schubert, 1995) discusses about
the choice of the value of α.(Nguyen & Walker, 1994) presents an overview of
decision making with belief functions using Choquet integrals and random sets.
Unfortunately, the nature of the uncertainty represented by the belief functions
is not explained (see section 4).

Note: the expected utility one would obtain with the pignistic probabilities is:

u(a) =
∑

ω∈Ω

u(a, ω)BetPΩ(ω) =
∑

X⊆Ω

∑

ω∈X

u(a, ω)
| X | mΩ(X).
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In that case, You consider that the utility when all You know is that ω ∈ X is
the average of the utilities given to the elements of X.

Schmeidler (1989) had also proposed to chose the best act using the lower
expectation (the case with α = 1).

6.2 Justification of Jaffray-Strat’s solution.

Jaffray (1988, 1989a, 1989b), (Jaffray & Wakker, 1994) presents a justification
for using the weighted average of the upper and lower expected utilities as given
by relation (3) based on von Neumann-Morgenstern linear utility theory.

It is assumed that the decision maker bases his/her judgment on the sole
comparison of the lower probabilities on the outcome set associated with each
decision. Thus ordering can be defined directly on the set F of lower probabilities
on Ω. Let f1 and f2 be the lower envelopes of the two convex sets Π1 and Π2

of probability functions defined on Ω, respectively. Let � denote the decision
maker preference ordering., with � denoting its asymmetric part). The axioms
for � are (adapted from (Jaffray, 1994). They are the transposition to lower
probability of the standard axioms for probability (Jensen, 1967). Note that
their justification in (Jaffray, 1994) requires these lower probabilities to be at
least 2-monotone.

Proposition 6.1 Transitivity and Completeness. � is a transitive and
complete relation on F.

Proposition 6.2 Independence. For all f1 and f2 in F and λ in (0,1),

f1 � f2 ⇒ λf1 + (1 − λ)g � λf2 + (1 − λ)g.

Proposition 6.3 Continuity. For all f, g, k in F such that f � k � g, there
exist λ, µ in (0,1] such that:

λf + (1 − λ)g � k � µf + (1 − µ)g.

These three propositions are necessary and sufficient conditions for the ex-
istence of a linear utility V on F representing �, i.e., for the existence of
V : F → R (where R is the set of reals) satisfying;

V (f) ≥ V (g) ⇔ f � g.

and
V (f) =

∑

B⊆Ω

V (1B)m(B)

where m is the Möbius transform of f, and 1B is the lower probability function
that satisfies 1B(A) = 1 if B ⊆ A, = 0 otherwise. In fact 1B is a belief function
focused on B; it represents ‘all You know is that the actual world belongs to
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B’. In the previous section, we had presented successively the following three
solutions for V (where the act is not explicitated):

V ∗(1B) = max
ω∈B

u(ω)

V∗(1B) = min
ω∈B

u(ω)

V (1B) =
∑

ω∈B

u(ω)/|B]

If we add the next axiom, then V depends only on the upper and lower
expected utilities.

Proposition 6.4 Dominance. For all B’, B” in Ω,

V∗(1B′) ≥ V∗(1B”) and V ∗(1B′) ≥ V ∗(1B”) ⇒ 1B′ � 1B”.

In (Cohen & Jaffray, 1985; Jaffray & Philippe, 1997), authors introduce some
rationality axioms so that we get the solution based on Hurwicz α-criteria (see
relation 3):

V (f) =
∑

B⊆Ω

(αV∗(1B) + (1 − α)V ∗(1B)) m(B).

This derivation provides a justification for the Jaffray-Strat’s solution. Note
that the dominance axiom (6.4) is not satisfied in the TBM framework when
using the pignistic transformation, but this should not be embarrassing as the
TBM and the ULP model are not concerned with the same problem.

6.3 Ellsberg paradox revisited.

It can been defended that Jaffray-Strat’s solution has the advantage over the
pignistic probability solution that the decision does not depend on any possible
refinement of Ω. (This property is not shared by the solution based on the
pignistic transformation). That this property is really worth defending might
be challenged by the next example.

Let us suppose Ellsberg’s urn made out of 90 balls colored red (R), black
(B) and white (W ). We only know that exactly 30 balls are R. We are offer
four bets listed in the table 2.

It has been argued that people prefer bet I to bet II, and bet IV to bet III.
There is no probability distribution on Ω = {R,B,W} that is compatible with
these two preferences.

With Jaffray-Strat’s solution, this ordering is satisfied when α > 1/2 (so the
decision maker is somehow pessimist). With the pignistic probabilities com-
puted from the lower probabilities, this ordering is not found, and we face the
same paradox as the classical Bayesians. This might be seen as a weakness of the
pignistic transformation. Nevertheless, once we refine B or W , Jaffray-Strat’s
solution could be criticized.
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bet R B W Value ULP Value BetP
I 1 0 0 1/3 1/3
II 0 1 0 2(1-α)/3 1/3
III 1 0 1 1/3 + 2(1-α)/3 2/3
IV 0 1 1 2/3 2/3

Table 2: Set S1 of four bets. Columns 2 to 4 present the gains according to the
color of the randomly selected ball. The ‘Value ULP’ column gives the value of
the game using the Jaffray-Strat’s solution. The ‘Value BetP’ column gives the
value of the game using the solution based on the pignistic probabilities.

bet R B1 . . . B1000 W Value ULP Value BetP
I 1 0 . . . 0 0 1/3 1/3
II 0 1 . . . 1 0 2(1-α)/3 2/3 - ε
III 1 0 . . . 0 1 1/3 + 2(1-α)/3 1/3 + ε
IV 0 1 . . . 1 1 2/3 2/3

Table 3: Set of bets S2. Gains according to the color of the randomly selected
ball.ε denotes 1/1001.

Suppose the set of bets S2 where B is refined into 1000 Bi’s (see table 3).
When facing the set of bets S2, we personally feel people might prefer bet II to
bet I, and bet IV to bet III.

Suppose the set of bets S3 where now W is refined into 1000 Wi’s (see table
4). When facing the set of bets S3, we personally feel people might prefer bet I
to bet II, and bet III to bet IV.

It happens that in the three sets S1, S2 and S3, the u(a) computed by Jaffray-
Strat’s formula give the same results, and therefore it does not produce the order
that we have considered. Instead the pignistic probabilities are justifying the
ordering for cases S2 and S3.

These examples only illustrate the difficulty to find ‘rational’ requirements
that resist all criticisms. Cohen and Jaffray (1985) argue that it is ‘rational’
to require invariance to refinement, in which case their solution is appropriate.
This sounds to be a good ‘rational requirement’, but its adequacy is nevertheless
arguable as shown by our example.

bet R B W1 . . . W1000 Value ULP Value BetP
I 1 0 0 . . . 0 1/3 1/3
II 0 1 0 . . . 0 2(1-α)/3 ε
III 1 0 1 . . . 1 1/3 + 2(1-α)/3 1 - ε
IV 0 1 1 . . . 1 2/3 2/3

Table 4: Set of bets S3. Gains according to the color of the randomly selected
ball.ε denotes 1/1001.
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Note: In the TBM, the Ellsberg’s urn experiment is to be handled with care.
In Ellsberg’s problem, we are facing a problem of imprecise probabilities. Each
ball has a fixed color. The selection procedure of the ball obeys to a probability
law (that we know only partially) and this knowledge about the selection pro-
cedure has to be taken in consideration when building Your beliefs. The belief
induced by the knowledge of the structure of Ellsberg’s urn is not equal to the
lower probability function. In (Smets, 1994a), we explain what is the belief in-
duced on the {R,B,W} space by the knowledge that the selection procedure is
random and the probability law that governs that selection belongs to a subset
of probability functions.

6.4 The pignistic transformation within the ULP context.

Can we justify the applicability of the pignistic transformation within the ULP
framework? This idea seems new. To check it, let us reconsider the example
concerning the drink I have to buy for my friend (see section 5.1). Let V =
{G, J} and D = {c, w, b} as before. Now we assume that there exists, for
v ∈ V , probability functions PD[v], but their values are only known to belong
to some given sets of probability functions, denoted ΠD[v], respectively. Let
us assume that these sets are uniquely characterized by their lower envelopes,
denoted PD

∗ [v] for v ∈ V . We don’t require that the lower envelopes PD
∗ [v] are

belief functions as it is not important here.
The first approach consists in building, for each v ∈ V , the probability func-

tion BetPD[v] that will be used to make decisions. Let BetPD[v] = ΓD(PD
∗ [v]),

where Γ is still to be found. In fact all we need is to show that it satisfies the
linearity constraint (see 5.2), the other assumptions being obviously satisfied.

By construction, the overall frame is D×V , and BetPD[v] are the conditional
probability functions over D given the visitor is v. Knowing the probability
about who will be the visitor, then the probability function to be used to buy
the drink is:

PD = .5BetPD[G] + .5BetPD[J ] = .5ΓD(PD
∗ [G]) + .5ΓD(PD

∗ [J ]),

just as in the previous derivation.
Let us now consider the second approach. The probability distribution

PV ×D on the product space V ×D is known to belong to the set ΠV ×D with:

ΠV ×D = {PV ×D : PV ×D(v, d) = .5PD[v](d), ∀d ∈ D,

where PD[v] ∈ ΠD[v], v ∈ V }.

In order to make a decision about which drink to buy, we need the probability
function PD obtained by marginalizing on D the probabilities defined on V ×D.
The family of probability functions so derived from ΠV ×D is:

ΠD = {PD : PD = .5PD[G]+ .5PD[J ], where PD[v] ∈ ΠD[v], v ∈ V = {G, J}}.

This family ΠD is convex and its lower envelope is given by:

PD
∗ = .5PD

∗ [G] + .5PD
∗ [J ].
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The needed pignistic probability function is then BetPD = ΓD(PD
∗ ). There-

fore, the equality of the two approach implies that:

.5ΓD(PD
∗ [G]) + .5ΓD(PD

∗ [J ]) = ΓD(.5PD
∗ [G] + .5PD

∗ [J ]).

Generalizing to any value for the probability that G comes tonight, we get the
linearity constraint, and thus the pignistic transformation seems to be justified.

7 Conclusions.

We have presented some of the procedures developed for the ‘rational’ decision
making in the TBM context and in the ULP context. There are other proposals,
but usually they are essentially ad hoc or proposed without justification.

We developed in full detail the pignistic transformation that provides, prob-
ably, the adequate way to build the probability function required for rational
decisions. Its applicability seems not to be restricted to the TBM, and we feel it
might also produce a useful tool in the upper and lower probabilities framework.
Using any other probability function would violate the requirement behind the
justification of the pignistic transformation. We feel such a violation must be
avoided, and therefore the pignistic transformation seems to be inevitable.

These non-probabilistic theories are young. So it should not be surprising
that in some future some of the proposed solutions turned out to be inadequate.
Only time will tell us how robust these solutions are. We feel nevertheless
confident the justifications given to the various methods are strong enough to
give us hope that the proposed procedures will resist to the test of time.
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