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Abstract. We study how robot swarms can achieve a consensus on the
best among a set of n possible options available in the environment.
While the robots rely on local communication with one another, fol-
low simple rules, and make estimates of the option’s qualities subject
to measurement errors, the swarm as a whole is able to make accu-
rate collective decisions. We compare the performance of two prominent
decision-making algorithms that are based, respectively, on the direct-
switching and the cross-inhibition models, both of which are well-suited
for simplistic robots. Most studies used these models to let robots achieve
consensus by solely relying on social interactions and ignored the aspect
of enabling robots to self-source information from the environment. How-
ever, in order to select the best option, we deem sampling environmental
information crucial for the successful performance of the task. Through
robot-swarm simulations, we show that swarms programmed with the
direct-switching model are only able to make consensus decisions in
asymmetric environments where options have different quality values.
Instead, using cross-inhibition, the robot swarm can also break decision
deadlocks and reach a consensus in symmetric environments with equal
quality options. We investigate the mechanistic causes of such differences
and we find that the time the robots spend in a state of indecision is a key
parameter to break the symmetry. This research highlights the impor-
tance of considering both social and environmental information when
studying collective decision-making.

1 Introduction

Swarm robotics is the research field that studies how to apply principles of swarm
intelligence [5] to the design of decentralised systems consisting of large numbers
of relatively simple robots that collectively perform tasks or solve problems [8].
As the robots within a swarm do not have global knowledge, the swarm’s collec-
tive behaviour emerges from the local interactions among the robots and from
the interactions the robots have with their surrounding environment. Collective
decision-making is a particular type of collective behaviour that is paramount to
achieve group coordination—as such it is very often found in group-living ani-
mals [6]. For example, honeybees make consensus decisions on the site where to
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build their nest among several alternative locations [26], ants are able to collec-
tively select the shortest path from their nest to a profitable food source [10], and
flocks of birds on the move select the same direction of motion in a decentralised
way [3]. These natural systems have inspired the development of many different
types of algorithms to enable robot swarms to make consensus decisions, such
as selecting the aggregation site [27], selecting the direction of motion [7,9,17],
selecting the predominant environmental feature [33], or selecting the shortest
path for transporting items efficiently [29]. These algorithms need to be simple—
to run on simple robots—and, at the same time, robust to robot malfunctions
and flexible to changing environments—to work in real-life applications. A par-
ticularly important collective decision-making problem for swarm robotics is the
so-called “best-of-n problem” [34], that is, how the swarm can select the best
option among a set of n alternatives.

In this study, we consider the best-of-2 problem in which a minimalistic
robot swarm is tasked with making a consensus decision on an environmental
feature [33]. The environment floor is covered with yellow and blue tiles, and the
environmental feature to decide on is which is the predominant colour. There-
fore, the two colours represent the two alternative options to decide between,
and the abundance of each colour (i.e. the proportion of yellow, or blue, tiles)
represents the quality of the option. To achieve consensus on one of the two envi-
ronmental features, the robots utilise a minimalistic decision-making algorithm.
Each robot is committed to the option it considers the best and broadcasts
voting messages about this option to its neighbours. Robots apply the decision-
making algorithm to update their commitment to an option; the update can be
based on either social information (received from neighbours as voting messages)
or self-sourced information (obtained through independent exploration). Robots
receiving voting messages from their peers update their opinion (i.e. the option
to which they are committed) using minimalistic opinion update models. These
models are minimalistic in nature and are therefore a viable solution for reach-
ing consensus in simplistic robots. Periodically, robots choose to ignore social
information and self-source information from the environment by independently
switching their commitment to the option locally sensed in the environment.
The individual self-sourcing of information through independent exploration of
the environment can allow the swarm to achieve better adaptability in dynamic
environments [2,30,36] where qualities of options may change over time. How-
ever, self-sourcing information is a form of asocial behaviour that also increases
fluctuations (or noise) in the consensus formation [21,31] that may result in
decision deadlocks in certain decision-making algorithms [12,16,21]. Hence, the
opinion update models that are used in collective decision-making need to be
resilient to decision deadlocks when the amount of noise increases, either due to
the exploration of the environment to achieve adaptability or to other sources,
such as malfunctioning sensors on the robots that make them asocial (stub-
born or zealot) and threaten the resiliency of symmetry-breaking in collective
decision-making [14,15].
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Based on the literature, one of the most widespread models for updating a
robot’s opinion upon receiving new social information is direct-switching [35],
in which a robot switches to a random neighbour’s opinion during the voting
phase. Direct-switching has been extensively used to engineer decentralised sys-
tems because of its simplicity and favourable tractability in minimalistic sys-
tems. However, theoretical studies on opinion dynamics [16] predict that direct-
switching leads to decision deadlocks in presence of noise (e.g. self-sourcing envi-
ronmental information). Despite being a highly relevant process in making deci-
sions on the best option, there has been limited research focusing on the impact
of self-sourcing environmental information on the collective dynamics of swarms
using the direct-switching model. An alternative to the direct-switching model is
the cross-inhibition model [18,22,23], which is inspired by the house-hunting pro-
cess in honeybees [26]. The cross-inhibition model has comparable simplicity to
direct-switching, and theory predicts a higher resilience to the presence of noise.
Unlike what happens with the direct-switching model, when a robot using the
cross-inhibition model receives a contrasting opinion from one of its neighbours,
it gets uncommitted and remains without an opinion—i.e. it becomes undecided.
Using robot swarm simulations, we estimate to what extent the decision-making
algorithm based on the cross-inhibition model is resilient to increasing noise
and show that the time spent by the robots in the uncommitted state is funda-
mental to the ability of being resilient to noise induced from the self-sourcing
information.

The outline of the rest of the paper is as follows. Section 2 defines the best-
of-n problem, the collective decision-making algorithms, and the mechanism to
self-source information from the environment. In Sect. 3, we describe the experi-
mental setup and explain the parameters that have been analysed in this study.
In Sect. 4, we present the results, and finally, in Sect. 5, we conclude and discuss
possible directions in which this work could be extended.

2 The Models

We consider the n = 2 instance of the best-of-n decision problem, in which the
swarm has to converge to the best between two options, A or B. Each option
has a quality, qA and qB , and the parameter q = qA/qB represents the ratio
between the two qualities. Without loss of generality, in our study, we assume
that qA ≥ qB . Each robot is committed to an option, which corresponds to
the robot’s opinion, or uncommitted, that is, without an opinion. The robot
behaviour is based on the same finite state machine of [35] characterised by two
continuously alternating states: exploration and dissemination shown in Fig. 1A.
In the exploration state, the robots assess the quality qi of their current opinion
by sampling the environment (with i = {A,B}). The amount of time a robot stays
in exploration is drawn randomly from an exponential distribution with a rate
equal to λ−1. In the dissemination state, the robots disseminate their opinion i
locally to their neighbours. The amount of time a robot spends disseminating
its opinion is drawn from an exponential distribution with a rate qi g, which
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is directly proportional to the option’s quality qi and is scaled by the average
duration of dissemination g. The parameter g is set based on the requirements
of the considered scenario. By scaling the time spent in the dissemination state
proportionally to the quality of the options assessed in the exploration state,
the probability of receiving messages from peers committed to the best opinion
increases because they disseminate for a longer time. As a result, it will be more
likely to observe neighbours that are in favour of the best option than observing
neighbours that are supporting the lower quality option. The dissemination state
is followed by either a polling state or a self-sourcing state (see Fig. 1A). The
decision to go to either states is random, based on the noise probability η. With
probability η, the robot self-sources a new opinion from the environment, and
with probability (1 − η) polls other robots’ information. In the self-sourcing
state, the robot replaces its opinion with the option (i.e. the colour) found in
its current location of the environment. Including the self-sourcing mechanism
allows the robots to periodically monitor the environment and reconsider the
best option with new environmental evidence. On the other hand, the polling
state involves collecting the opinions of the neighbours, choosing one at random
and then applying an opinion update mechanism—either direct-switching or
cross-inhibition. In this study, to simplify the behaviour for minimalistic robots
and minimise memory use, the robots in the polling state only consider the first
message they receive from their neighbours. Finally, after either using social
information or self-sourcing environmental information, a robot returns to the
exploration state to continue the cycle.

Direct-Switching. When it uses direct-switching as its opinion update model,
the robot reads the message of one randomly chosen neighbour (which is dis-
seminating within its communication range) and adopts that neighbour’s opinion
regardless of whether it is the same or different from the robot’s own opinion.
This mechanism allows accurate consensus formation among neighbours [35].
However, it can also result in unstable group dynamics due to the formation of
echo chambers among robots with the same opinion that can prevent consensus
formation in the swarm [28].

Cross-Inhibition. According to the cross-inhibition model, the robot can either
be committed to an option or uncommitted. During polling, when a committed
robot reads a (randomly chosen) message from a robot committed to a different
option (e.g. a robot committed to A reads a message from a robot committed to
B), it gets inhibited and becomes uncommitted. When an uncommitted robot
receives any opinion (A or B) from one of its neighbours, it gets recruited to the
received option.

3 Experimental Setup

To analyse the models introduced in Sect. 2, we implement the collective decision-
making behaviour on a swarm of N = 100 simulated robots. For this analysis,
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Fig. 1. (A) The finite state machine (FSM) describing the robots’ behaviour, based on
the FSM of [35] and extended to include the possibility of self-sourcing information.
The rectangles represent the four FSM’s states and the arrows represent the transi-
tions among them. (B) Snapshot of an experiment showing 50 simulated Kilobots in
the ARGoS Kilogrid arena comprising yellow and blue tiles. (C–D) Robot’s opinion
update model of direct-switching and cross-inhibition, respectively. The robot updates
its opinion based on either social information (solid lines) or self-sourced environmen-
tal information (dashed lines). In direct-switching (C), the robot that gets recruited
changes its commitment immediately. In cross-inhibition (D), when a committed robot
receives a message from a robot committed to a different option, it resets its commit-
ment (it gets inhibited). (Color figure online)

we use Kilobots [24]—small-sized and low-cost robots that communicate using
infrared (IR) transceivers with other robots in a range of 10 cm, move at a
speed of 1 cm/s and have a control loop of approximately 32 ms. We simulate
the robot swarm in ARGoS, a state-of-the-art swarm robotics simulator [19,20].
To provide robots with a virtual environment from which they can self-source
information, we simulate the Kilogrid [1,32]. The Kilogrid is an electronic table
sized [1 × 2] m2, composed of 800 cells that interact with the Kilobots through
IR and that can be easily simulated in ARGoS [2]. With the exception of the
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Kilogrid cells at the borders (depicted in white in Fig. 1B), all the cells are set
to send constantly IR messages signalling their ID and their colour, either the
yellow colour associated with option A or the blue colour associated with option
B. The proportion of cells allocated to emit messages for each option can be
symmetric (50% for A and 50% for B) or asymmetric. In cases of asymmetric
environment, as a convention, we keep option A with higher quality, i.e. there
are more Kilogrid cells signalling option A than cells signalling option B.

The Kilobots use the IR messages from the Kilogrid’s cell beneath it both
in the self-sourcing state to collect new information from the environment, and
during exploration to estimate their opinion’s quality (i.e. the proportion of cells
of a given colour). As Kilobots are not equipped with any proximity sensors,
the Kilogrid cells also send a ‘wall flag’ to signal proximity to a wall (the flag
is a binary value that can be either high/low) that the Kilobots use to avoid
collisions. The white cells at the borders and the non-white cells adjacent to the
white cells send a high wall flag, while all the other internal cells send a low
flag. Without such wall flags to detect proximity to the walls, a large number of
Kilobots would remain clustered on the arena walls.

3.1 Robot Behaviour

The robots start from a uniformly random position in the environment and with a
random initial opinion; we initialise half of the swarm committed to option A and
the other half to option B. To explore different portions of the environment and
exchange messages with different robots, the Kilobots always perform a random
walk in the environment, alternating between a rotation phase of approximately 5
s (in a randomly chosen direction—clockwise or counterclockwise) and a straight
motion phase of approximately 10 s. The random walk allows the robots to
encounter different robots in their neighbourhood during the dissemination phase
and allows more accurate estimation of the option qualities from the Kilogrid
during the exploration phase.

A robot that receives a high wall flag from the Kilogrid executes—regardless
of its state—a simple obstacle avoidance routine. The robot starts a random rota-
tion phase of approximately 4 s followed by a straight motion phase of approx-
imately 7 s. If the wall flag is detected again, the obstacle avoidance routine is
reinitialised till the robot receives a low flag.

All robots start the experiment in an exploration state. During the explo-
ration, a robot committed to i reads the Kilogrid messages to keep the count Ti

of the number of cells it encountered (it uses the cell’s ID to count each cell only
once) and the count Ci of how many of the visited cells have the same colour as
its own opinion i. At the end of the exploration cycle, the robot estimates the
quality qi = min(1, 2Ci/Ti), hence 0 ≤ qi ≤ 1. When Ci/Ti ≥ 0.5, the quality
is set to its maximum qi = 1 as the goal is to select the predominant colour,
and because the robot has found more than half of the readings have colour i,
it assigns to i the maximum quality. For Ci/Ti < 0.5, the quality scales linearly
in [0, 1].The values Ti and Ci correspond to the counts of one exploration cycle
only and are reset before entering the dissemination state.
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Based on qi, the robot computes the dissemination time using an exponential
distribution with λ−1

d = qi gc where gc = 1300 is the average number of control
cycles in dissemination when qi = 1, which corresponds to λ−1

d of about 40 s.
In case the robot is uncommitted, the parameter λ−1

d is set to 0.5 gu; using the
default value for gu = 400, the uncommitted robot spends an average of approx-
imately 6 s in the dissemination state. At the end of the dissemination, the robot
decides with probability η whether to perform either an individual environmen-
tal observation (enter the self-sourcing state) or a social interaction (enter the
polling state). Once the environmental observation or the polling are terminated,
the robot computes the exploration time and enters the exploration state again.
A committed robot computes the exploration time using λe = 0.0003, result-
ing in an average exploration time of approximately 100 s. Instead an uncom-
mitted robot uses the same rate used to compute the dissemination time, i.e.
λ−1
e = λ−1

d = 0.5 gu, with gu = 400. The total duration of each simulation run
is 110 min.

4 Experiments and Results

We run simulations to test the effect of different values of the noise probability
η = 0 (no noise), η = 0.01 (low), η = 0.05 (medium) and η = 0.25 (high),
on both opinion update models for different quality ratios q. In the first set of
experiments, we test direct-switching and cross-inhibition models in a symmetric
environment (50% of the Kilogrid cells signal option A and 50% option B), i.e.
q = qA/qB = 1. The second set of experiments includes the direct-switching and
cross-inhibition model in asymmetric environments with three values of quality
ratio q: 1.08 (Kilogrid cells: 52%A, 48%B), 1.22 (Kilogrid cells: 55%A, 45%B),
and 1.5 (Kilogrid cells: 60%A, 40%B). For each condition, we run 50 simulations
that we use to generate the histograms of Fig. 2. The histograms show how
frequently the swarm distributes between robots supporting option A and B in
the last 1 000 timesteps (approximately 30 s) of a run. For each timestep, we
subtract the proportion of robots supporting option B from the proportion of
robots supporting option A, i.e. (number robots for A - number robots for B)/N ,
and report the results as histograms in Fig. 2.

Figure 2 shows that when the environment is symmetric (q = 1), both models
are able to break the symmetry in the absence of noise (η = 0). However, the
performance of direct-switching deteriorates as soon as noise is introduced (η ≥
0.01), and the swarm cannot reach any agreement but remains in a state of
decision deadlock. Direct-switching with noise η > 0 can only reach convergence
to a stable majority towards the best option for a high quality ratio (q = 1.22 for
low noise and q = 1.5 for medium noise); in all other conditions the swarm using
direct-switching remains in an undecided state. Instead, the cross-inhibition is
consistently able to break the symmetry for both low and medium levels of noise
(η ≤ 0.05) for any tested value of q. With higher levels of noise, both models fail
to break the symmetry, even when the quality ratio increases. In summary, cross-
inhibition is always better than direct-switching to break decision deadlocks and
make consensus decisions, except for cases in which noise is very high.
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Fig. 2. Histograms for cross-inhibition and direct-switching models when N = 100,
gc = 1300 and gu = 400 (statistics over 50 runs) showing the effect of increasing
the probability of self-sourcing environmental information (η) and the quality ratio
(q = qA/qB) on the collective decision-making process. The histograms are computed
as the difference between the proportion of robots supporting A and B for each of the
last 1 000 timesteps of every run ((A-B)/N on the x-axis).

To further analyse the mechanism through which the cross-inhibition model is
resilient to decision deadlocks, we test the influence of the amount of time a robot
spends in the uncommitted state and its ability to break the symmetry. To do so,
we vary the average duration of dissemination and exploration of uncommitted
agents by varying the parameter gu from 0 to 2 000 (corresponding to an average
temporal duration from 0 s to approximately 62 s). When gu = 0, the voting
mechanism becomes equivalent to direct-switching. Increasing gu corresponds to
increasing the time the robot spends in an uncommitted state, as gu determines
the average dissemination and exploration time of uncommitted robots. The
change in dynamics with noise η = 0.05 and q = 1 is shown in Fig. 3A. When
gu = 0, the result obtained corresponds to dynamics similar to those observed
in direct-switching with η = 0.05 in a symmetric environment (Fig. 2, q = 1
and η = 0.05); the swarm remains in a decision deadlock. As gu increases, the
bistability becomes more prominent, as observed in η = 0.05 in the symmetric
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Fig. 3. (A) 2D-histogram for increasing gu for η = 0.05 and q = 1 showcasing the
shift from indecision to symmetry-breaking. (B) 2D-histogram for η = 0 and q = 1.22
showcasing the switch from consensus on the best option when gu = 0 to bistability
as gu increases. The plots show how the distribution of robots supporting A and B
(y-axis) change as gu (x-axis) increases. We consider the last 1 000 timesteps (e.g. 6 s)
of each of the 50 runs per gu and subtract the proportion of robots supporting option
B from the proportion of supporters for A (i.e. (number robots for A - number robots
for B)/N) to plot the 2D-histograms.

environment (Fig. 2). The results of Fig. 3A show that the amount of time spent
in an uncommitted state is the key to converging on a large majority for one of
the two equivalent options.

The cross-inhibition model has dynamics that are much more stable than
direct-switching [26]; therefore, the swarm reaches and maintains an agreement
for either option. However, the high stability of the cross-inhibition model can
also occasionally lock the system in a consensus for the inferior option (with
lower quality), which may have been reached due to initial random fluctuations.
Figure 2 shows that the system is in a bistability state (i.e. selection of both
options is possible) when the options have similar qualities (q ≤ 1.08 in the
presence of noise) and is instead able to reliably select the superior alternative
for larger quality differences. Differently, the direct-switching model, when it is
able to break the symmetry, always selects the option with the highest quality.
Interestingly, for q = 1.22, cross-inhibition’s bistability exists for η = 0 and van-
ishes for higher levels of noise, η = 0.01 and η = 0.05. In this case, occasionally
self-sourcing information helps in correcting initial mistakes.

To understand the accuracy of the two opinion update models in selecting the
best option in the presence of similar quality options, we vary the time gu when
q = 1.22 and η = 0 (Fig. 3B). For gu = 0, the swarm breaks the symmetry in
favour of the option of highest quality (A) as the model is equivalent to direct-
switching. When gu increases, the system gradually moves towards a state of
bistability. As observed in Fig. 2 (q = 1.22 and η = 0), cross-inhibition can
occasionally select the inferior option due to its highly stable dynamics that lock
the system into consensus for either option when qualities are similar. Figure 3B
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shows that bistability becomes more and more pronounced as the time spent in
the uncommitted state increases, or, in other words, the probability of selecting
the inferior option increases with increasing gu. As noted earlier, the selection
of the inferior option becomes less probable when the cross-inhibition model is
subject to moderate levels of noise (compare Fig. 2 η = 0 and η = 0.01, for
q = 1.22) as it increases the exploratory behaviour of the robots and enables
their ability to correct their collective decision.

Therefore, our results show a trade-off between the ability to make consen-
sus decisions in the presence of noise (when the robots spend long times in the
uncommitted state) and the ability to avoid inaccurate decisions (for short times
in the uncommitted state). In scenarios where choosing the option with the high-
est quality is an utmost requirement and noise is a factor not applicable, direct-
switching is a better choice for collective decision-making. However, random fluc-
tuations can be inevitable in systems operating in the real world, and we have
shown how they can dramatically hamper the performance of direct-switching.
Therefore, our study highlights the importance of using cross-inhibition to make
collective decisions in realistic application scenarios.

5 Discussion and Conclusions

In this study, we investigated two prominent collective decision-making algo-
rithms for the best-of-n problem in the presence of both social interactions
and environmental information. The results of our simulations show that robot
swarms running algorithms based on the direct-switching model fail to reach
a consensus on the best option when robots use both social information and
self-sourced information acquired through individual exploration of the environ-
ment. Self-sourcing information from the environment can also be modelled as
noise, which is very likely to be present in most real-world scenarios, for example
in the form of asocial robots or sensor failures [11]. Therefore, even if direct-
switching has the desirable property of being very simple, to deploy systems in
the real world the robot algorithms must be resilient to noise. We show that
the cross-inhibition model serves as an ideal alternative to direct-switching. By
letting robots inhibit each other and become uncommitted for some time, the
cross-inhibition model enables stability and symmetry-breaking dynamics that
prevent decision deadlocks. This work is limited to simulation; we plan as future
work to conduct mathematical analyses based on ODEs and chemical reaction
network models in order to understand better the role of the time spent in the
uncommitted state for obtaining high stability and breaking symmetry. We also
plan to validate our results through real-robot experiments on the real Kilogrid.
Moreover, most of the collective decision-making research in swarm robotics is
concentrated on binary best-of-n problems, with only a few studies exploring
n > 2 [4,13,25,30]. Therefore, as future work, we also aim to expand our analy-
ses and experiments to n > 2 scenarios and investigate if the robustness of the
cross-inhibition model extends to non-binary environments, as theory predicts
[22].
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