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Abstract

In this paper, we study self-organized flocking in a swarm of
behaviorally heterogeneous mobile robots: aligning and non-
aligning robots. Aligning robots are capable of agreeing on
a common heading direction with other neighboring aligning
robots. Conversely, non-aligning robots lack this capability.
Studying this type of heterogeneity in self-organized flock-
ing is important as it can support the design of a swarm with
minimal hardware requirements. Through systematic simu-
lations, we show that a heterogeneous group of aligning and
non-aligning robots can achieve good performance in flock-
ing behavior. We further show that the performance is af-
fected not only by the proportion of aligning robots, but also
by the way they integrate information about their neighbors
as well as the motion control employed by the robots.

INTRODUCTION

Flocking is the cohesive and aligned motion of a group of in-
dividuals along a common direction. All studies about flock-
ing within computer science and robotics root back to the
seminal work of Reynolds (1987). He was the first to sim-
ulate flocking of birds based on three behaviors: separation
— individuals try to keep a minimum distance between their
neighbors, cohesion — individuals try to stay together with
their neighbors, and alignment — individuals try to match
their velocities to the average speed of their neighbors. The
vast majority of the studies about flocking assume that all
the robots in the swarm are behaviorally identical and ex-
ploit the three behaviors described above.

In this paper, we consider flocking in a behaviorally het-
erogeneous swarm of robots. All robots in the swarm use the
separation and the cohesion behavioral rule. However, only
a fraction of the robots, which we call the aligning robots,
uses the alignment behavior. The rest of the robots, which
we call the non-aligning robots, do not use the alignment
behavior.

We believe that studying heterogeneity in alignment in
self-organized flocking is very important from the practical
point of view. The alignment behavior is more demanding in
terms of robotics hardware requirements than the separation
and cohesion behaviors. In fact, it requires either an elab-
orate sensing device, through which robots can detect the
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orientation of neighboring robots or, as explained in this pa-
per, a communication device. Therefore, understanding if a
swarm can achieve flocking with only a few aligning robots
can support the design of swarms with minimal hardware
requirements.

We conduct simulation-based experiments and we mea-
sure self-organized flocking performance in terms of the de-
gree of group order, group cohesiveness and average group
speed. With respect to these criteria, we found that the
swarm achieves good flocking performance when the pro-
portion of aligning robots is high. Conversely, this perfor-
mance decreases as the proportion gets lower. To tackle
this problem, we propose a new model of robot motion. In
the new model, non-aligning robots modulate their forward
speed, instead of moving at a fixed forward speed as the
other robots.

The rest of the paper is organized as follows. In the next
section, we present the related works in flocking, starting
from studies in biology and then in robotics. We then in-
troduce our heterogeneous flocking model, the robots and
we explain how we implement flocking on the robots. Sub-
sequently, we describe the experimental setup, the metrics
and the results. Finally, we conclude the paper and propose
future directions of research.

RELATED WORK

Flocking is a widely observed phenomenon in social ani-
mals (Camazine et al., 2001) such as locusts (Buhl et al.,
2006), birds (Ballerini et al., 2007) or human beings (Dyer
et al.,, 2008). Animal groups show a great diversity in
their population due to the differences in age, morphol-
ogy (Krause et al., 1998), nutritional state (Krause, 1993),
personality (Michelena et al., 2010), and leadership sta-
tus (Reebs, 2000) of the individuals. This diversity mainly
results in behavioral differences among the individuals.
Couzin et al. (2002) showed that behavioral differences be-
tween the individuals in a group change both the dynamics
and the organization of the group. Subsequently, Couzin
et al. (2005) conducted a seminal study about leadership in
animal groups. They modeled a heterogeneous group of in-



dividuals of which only a few are aware of a target direction.
They showed that the few informed individuals are able to
move the whole group along the target direction. In Janson
et al. (2005), the authors propose a model to explain how
scouts bees are able to direct large swarms of uninformed
bees towards a new nesting site. Even when the propor-
tion of scout bees is low, they are able to lead the swarm
by flying through it at a slightly faster speed. = Sayama
(2009) presented the preliminary results obtained in simu-
lation using the Swarm Chemistry framework. They stud-
ied the movement of a swarm consisting of two different
chemical species, and found that a chaser-escaper relation-
ship between the two different populations of agents is es-
tablished. More recently, Diwold et al. (2011) showed how
a swarm can still fly towards a common direction even when
the agents are not all aligned, and when the location of the
nesting site is not known with precision.

In robotics, most of the studies about flocking assume
a homogeneous set of behaviorally equivalent individu-
als. One of the earliest studies in robotics was performed
by Matarié (1994). She devised a set of “basis behaviors”
to implement flocking in a group of robots: safe-wandering,
aggregation, dispersion and homing. With the proposed set
of behaviors, robots are able to move cohesively towards
a homing direction. Kelly and Keating (1996), following a
behavior-based approach, designed a leader-following be-
havior to realize flocking. Hayes and Dormiani-Tabatabaei
(2002) proposed a flocking behavior having collision avoid-
ance and alignment behaviors based on local range and bear-
ing measurements. Spears et al. (2004) proposed a frame-
work based on artificial physics. The robots were able to
form a regular lattice structure using attraction/repulsion vir-
tual forces and move along a direction indicated by a light
source in the environment. Holland et al. (2005) proposed
a flocking behavior for unmanned ground vehicles based
on separation, cohesion and alignment behaviors. Turgut
et al. (2008) proposed a flocking behavior based on sep-
aration/cohesion and alignment behaviors. They imple-
mented this behavior in robots with limited sensing capabil-
ities and conducted a systematic study on the effect of sens-
ing noise in heading measurement on flocking. In a recent
study, Moslinger et al. (2009) proposed a flocking behavior
for robots with limited sensing capabilities. It is based on
only attraction and repulsion behaviors. By adjusting the
sizes of attraction and repulsion zones, they achieved flock-
ing for a small group in a constrained environment.

Other works in robotics considered a group of behav-
iorally heterogeneous robots. Momen et al. (2007) stud-
ied flocking with a heterogeneous robotic swarm inspired by
mixed-species foraging flocks of birds (Graves and Gotelli,
1993). Using simulations, they showed some aspects of
mixed-species flocking, such as behavioral differences in
their attraction and repulsion rules. Celikkanat and Sahin
(2010), inspired by Couzin et al. (2005) extended the flock-
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ing behavior proposed by Turgut et al. (2008) and created a
heterogeneous robot swarm by informing some of the robots
about a target direction. Recently, in another follow-up
study, Ferrante et al. (2010) introduced a new communica-
tion strategy to improve flocking performance in case of both
static and changing target directions.

To the best of our knowledge, most of the studies in
swarm robotics about self-organized flocking have not con-
sidered diversity in alignment capabilities.

METHOD

We follow a design method based on the artificial physics
framework introduced by Spears et al. (2004). According to
this method, robots exert virtual forces on each other. The
swarm consists of aligning and non-aligning robots. Align-
ing robots are subject to the following virtual forces

f = aip + B1h,

whereas for the non-aligning robots the virtual force is
computed as

f = asp.

We define p as the proximal control vector and h as the
alignment control vector. The proximal control vector p
accounts for attraction and repulsion rules for keeping the
robot together with its neighbors and to avoid collisions.

The alignment control vector h is used to make the align-
ing robots match the average heading direction of its neigh-
boring aligning robots. The parameters a;, 81 and a are
used to adjust the contribution of the corresponding vectors.

Proximal control

Let m, denote the number of neighbors of a robot within
a range D,. Let also d; and ¢; denote the relative range
and bearing of the i*" neighbor, respectively. The proximal
control vector p is given by:

Mp
p= Z pi(d;)e’?.
i=1

p; is calculated as a function of d; using a force function de-
rived from the Lennard-Jones potential function, which re-
sults in the formation of regular structures as shown in Het-
tiarachchi and Spears (2009):

dd 12

ddes6
ar |-

The parameter € determines the strength of the attractive and

repulsive force, and d g, is the desired distance between the
robots.
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Alignment control

Let 6 denote the orientation of a given robot. Furthermore,
let m, denote the number of aligning robots within the range
D, of this robot, and 6;,7 € {1,...,m,} their orientation.
All orientations are expressed in the body-fixed reference
frame of the robot under consideration!. The robot calcu-
lates the alignment control vector, that is, the average orien-

tation of the m, robots, including its own:

h— >ivge”
e 1B k4
12255 €%l
where || - || denotes the norm of a vector.

Motion control

We present two motion control rules. The two rules differ
in the way the forward speed u and the angular speed w are
determined. The first rule is denoted as constant forward
speed motion control (henceforth CMC). In CMC, robots
are always moving at a constant forward speed, but can
change their angular speed. According to the second rule,
denoted as variable forward speed motion control (hence-
forth VMC), robots move not only at a variable angular
speed but also at a variable forward speed.

CMC: The forward speed is kept constant at
u="U.

The angular speed is proportional to the angular compo-
nent of the total force f. Hence, it ignores the magnitude
|If]| of the force:

w=K/f.

VMC: First, let f,, = ||f|| cos(/f) and f, = ||f|| sin(/f) de-
note the projection of the total force f on the x-axis and y-
axis of the robot body-fixed reference frame respectively.
Accordingly, the forward speed u is directly proportional
to the = component of the total force and the angular speed
w is directly proportional to the y component of the force.
Hence:

u = Klfx
w = Kzfy

K, K,, K, are constants, whose values are given in Table 1.

In this work, we consider and study two different cases in
which we vary the motion control rule applied to the non-
aligning robots. In the first case, referred as the CMC-CMC

In our study, we define two reference frames, both of which
use the right-hand convention. One is the reference frame common
to all of the robots, which is available due to the light source. The
other is the body-fixed reference frame specific to each robot. The
body-fixed reference frame is fixed to the center of a robot: its z-
axis points to the front of the robot and its y-axis is coincident with
the rotation axis of the wheels.
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case, all robots share the same motion control rule, that is,
CMC. In the second case, referred as the CMC-VMC case,
aligning robots use CMC, whereas non-aligning robots use
VMC.

FLOCKING WITH ROBOTS

In this study, the swarm is composed of simulated versions
of the foot-bot robot developed by Bonani et al. (2010).
The foot-bot is a differentially-driven mobile robot with the
following sensors and actuators: i) A light sensor used to
measure the orientation of robot (6y) with respect to a light
source present in the environment perceived by all robots.
ii) A range and bearing sensing and communication device
(henceforth called RAB), with which a robot can communi-
cate with its neighbors and perceive their range and bearing
measurements (Roberts et al., 2009). iii) Two wheels actua-
tors, that are used to control independently the left and right
wheels speed of the robot.

To achieve proximal control with the foot-bot the RAB is
used for measuring the relative range and bearing d; and ¢;
of the 74, neighbor. For achieving alignment control, we use
communication to simulate orientation sensing as in Turgut
et al. (2008). In particular, each aligning robot sends its ori-
entation, expressed in the global reference frame, using the
communication unit present in the RAB. At the same time,
it receives the orientation ; of its 7*" neighboring aligning
robot. It transforms this angle into its body-fixed reference
frame. In this way, we are able to simulate a robot sensing
the orientation of its neighboring aligning robots.

To achieve motion control, we first limit the forward
speed within [0, U,,az], and the angular speed within
[—Qmaz, Qmaz]. We then use the differential drive model
used in Turgut et al. (2008) to convert the forward speed u
and the angular speed w into the linear speeds of the left
(Np) and right (N ) wheel:

w
N;:(u+50,

NR:(u—go,

where [ is the distance between the wheels.

The values of the constants that we used in our experi-
ments are given in Table 1.

EXPERIMENTS

We execute simulation-based experiments with a swarm of
foot-bots using the ARGoS simulator (Pinciroli et al., 2011),
an open-source”, plug-in based, multi-physics engine simu-
lator.

http:/firidia.ulb.ac.be/argos/



Variable | Description Value(s) / Range
N Number of robots {25,100}

p Prop. of aligning robots {0.4,0.8}

B1/a1 | Alig. robots parameters {1,2,4,6,8,10}
Qs Non alig. robots parameter | {1,2,4,6,8, 10}
U Maximum forward speed 1.5 cm/s
K CMC angular gain 0.51/s
K, VMC linear gain 0.25 s/kg
K, VMC angular gain 0.1 s/(kg - m)

{ Inter-wheel distance 0.1m
Unaz VMC max forward speed 20 cm/s
Qnas VMC max angular speed /2 rad/s

€ Strength of pot. function 0.5
dges Inter-robot distance 0.6m

o Amount of noise 0.1

T Experiment duration 600 secs

Table 1: Experimental values or range of values for all con-
stants and variables

Experimental setup

At the beginning of each experiment, N mobile robots are
randomly placed (position and orientation-wise) with a pro-
portion p € [0, 1] of aligning robots. The density of robots is
kept fixed and equal to 6 robots per square meter on a square
shaped area. A light source is placed at a fixed position in
the environment, far away from the swarm, to provide the
common reference frame.

In the experiments, noise is added to the orientation
measurement and the angle of the proximal control vector.
Noise is modeled as a uniformly distributed random variable
within the range [—o7, o7).

We conduct experiments considering the two different
cases of motion control.

CMC-CMC In this case, all robots use CMC. Here, we
study the effect of the ratio %, and we do not change
o and S, independently, since CMC does not utilize the
magnitude of f, but only its angular component. As such,
multiplying both o1 and ; with the same constant value
will produce no difference in the robot motion. For the
same reason, ap does not effect the robot motion.

CMC-VMC In this case, aligning robots use CMC whereas
non-aligning robots are using VMC. For the non-aligning
robots, the magnitude of f plays a role in their motion.
Thus, additionally to the effect of changing % of the

aligning robots, we study the effect of changing a of the

non-aligning robots.

We show the results in heterogeneous self-organized flock-
ing with medium (N = 25) and large (N = 100) swarm
sizes and with low (p = 0.4) and high (p = 0.8) proportions

792

of aligning robots. We study the effect of changing the ratio
g—ll € {1,2,4,6, 8,10} and, for the heterogeneous case, we
also study the effect of changing a € {1,2,4,6,8,10}, but
we report here only the results obtained with the best case,
that is, ag = 10 (refer to Stranieri et al. (2011) for the com-
plete set of results ). In our supplementary page (Stranieri
et al., 2011), we also report the flocking performance as a
function of p € {0.2,0.4,0.6,0.8,1.0}.

For each experimental setting, we execute R runs and re-
port median and interquartile range of the results. The dura-
tion of one run is T' simulated seconds.

We study how the heterogeneous flocking performance
is influenced by: i) the way robots implement their motion
(CMC-CMC motion versus CMC-VMC motion), ii) the pa-
rameters that affect the strength of the proximal control vec-
tor and of the alignment control vector, that is, % and ao,
and iii) the ratio of aligning robots p .

We also experiments in the VMC-VMC case, but we
didn’t obtain any positive results, even with p = 1.

Metrics

In this study, we are interested in having a swarm of robots
that move cohesively as a single group. Furthermore, the
swarm should be aligned towards the same direction and
move towards it as fast as possible. We use three metrics
to measure the degree of attainment of these objectives: or-
der, group cohesion and rescaled group speed.

Order: The order metric 1) measures the angular order of
the robots (Vicsek et al., 1995), 1 ~ 1 when the group
shares a common heading and ) < 1 when each robot is
pointing in a different direction. The order is defined as:

1 N
_ 10
o= I

Group cohesion: To measure group cohesion ¢, we deter-
mine the number of groups g present at the end of each
experiment (Couzin et al., 2005). Group cohesion is com-
puted as:

& =2—min(2, g).

and therefore takes values in {0, 1}.

Rescaled Group speed: We calculate the average group
speed as:

Cr —Co
s =122,
where cr and c¢g are the position of the center of mass
of the swarm at the end and at the beginning of the ex-
periment, respectively. We then rescale the average group
speed:

Sp = ﬁ’
where U is the maximum forward speed of CMC.
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Figure 1: CMC-CMC case experiments for varying swarm size (N € {25, 100}) and ratio of aligning robots (p € {0.4,0.8}).
Thick lines show the median values, whereas the gray areas show the 25% and the 75% interquartile range of the data. For
group cohesion, filled circles correspond to median values and empty circles to the 25% percentile score of the data.

Results in the CMC-CMC case

The experimental results for CMC-CMC case are depicted
in Figure 1. We first focus on the p = 0.8 case, for both
N = 25 (Figure la) and N = 100 (Figure 1b). Results
show that the swarm is cohesive in most runs. However, or-
der and speed are high only when g—ll > 2. Furthermore,

while order is high at different values of the ratio B speed

Qp
increases with increasing values of g—ll, until it saturates at
around g—l = 6. This shows that, when the alignment con-
trol vector is higher, robots tend to move faster. This is ex-
plained by the fact that the alignment control vector is more
stable, over time, than the proximal control vector. Thus, the
higher the weight of the alignment control vector, the more
the robots tends to move forward rather than to turn. This
allows the swarm to move faster, until speed saturates at the
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maximum forward speed U.

When the proportion of aligning robots is p = 0.4, perfor-
mance gets sensibly worse (Figures 1c and 1d). In both cases
(N = 25and N = 100), we observe two possible outcomes:
for small values of the ratio g—l, the swarm remains cohesive,
but does not move. This happens because the relative contri-
bution of the alignment control vector is not enough for the
aligning robots to pull the entire swarm towards the agreed
goal direction. For larger values of the ratio %, group speed
and order get higher. However, in at least 25% of the runs,
the swarm splits. This happens because, in those runs, clus-
ters of non-aligning robots are present. Since the motion of
these robots is governed only by the proximal control vector,
they are not able to match the higher speed of the aligning
robots since they tend to turn more rather than to move for-
ward, thus they remain disconnected from the group.
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Figure 2: CMC-VMC case experiments for varying swarm size (N € {25, 100}) and ratio of aligning robots (p € {0.4,0.8}).
Thick lines show the median values, whereas the gray areas show the 25% and the 75% interquartile range of the data. For
group cohesion, filled circles correspond to median values and empty circles to the 25% percentile score of the data.

In Stranieri et al. (2011), we also report the performance
as function of p. We consider the case g = 10, as it gener-
ally provides the best overall results. As shown in Stranieri
et al. (2011), the flocking performence is acceptable in terms
of the metrics used for p > 0.6 in both cases N = 25 and
N =100.

Results in the CMC-VMC case

In the CMC-VMC case, results with p = 0.8 (Figures 2a
and 2b), are similar to the results obtained, with the same
ratio, in the CMC-CMC case. The results with p = 0.4 are
much better in the CMC-VMC case (Figures 2¢ and 2d) with
respect to the CMC-CMC case (Figures 1c and 1d). With
both swarm sizes we have that, when g—l > 2, the swarm
is able to effectively flock together at the cost of a reduced

speed.
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InStranieri et al. (2011), we also report the flocking per-
formance as a function of p for 'B = 10 and a = 10. Dif-
ferently from the CMC-CMC case in the CMC-VMC case
the performance of flocking degrades more gracefully as the
proportion of non-aligning robots decreases.

The improved capability of the swarm to stay together
is due to the advantage of using VMC in the non-aligning
robots. In fact, non-aligning robots are able to respond to
the high variations in the proximal control vector much more
when they can also change their forward speed. As such,
they are also able to stay together with the aligning robots,
both when they are alone and when they are in small or big
clusters. Finally, the reduced speed and the high variation
of speed among runs is due to the following fact. In pres-
ence of a low proportion of aligning robots, we observed
that the group heading direction is stable over short periods
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of time but changes over long periods of time due to the dis-
turbances caused by the non-aligning robots. This results in
a non-linear trajectory executed by the entire swarm, which
is different for each run. Since the rescaled group speed is
computed assuming a linear trajectory, this measurement has
large variation in the total displacement changes from run to
run.

CONCLUSIONS AND FUTURE WORKS

In this paper, we studied self-organized flocking in a swarm
composed of behaviorally heterogeneous mobile robots.
The swarm is composed of aligning robots, which are able
to agree on a common heading direction, and non-aligning
robots which lack this capability. We furthermore propose
a new model for achieving motion in self-organized flock-
ing. According to this model, aligning robots only change
their angular speed, whereas non-aligning robots change
both their forward and their angular speed.

We study the performance in terms of group alignment
order, cohesiveness and speed. Results show that self-
organized flocking is also possible when some individuals
in the swarm lack the capability to agree on a common di-
rection. More in particular, we showed that: 1) a higher
proportion of aligning robots always corresponds a to bet-
ter performance; ii) performance is affected by the relative
contribution of alignment and proximal control, and iii) for
smaller proportions of aligning robots, flocking is possible
only when the non-aligning robots also change their forward
speeds .

Possible directions for future work are the following:
First, we plan to study energy efficiency within the same
framework of study. In particular, the use of a heterogeneous
group of aligning and non-aligning robots poses a trade-off
between efficiency of the motion and energy utilized. In fact,
we observed that, in order for the swarm to hold cohesive-
ness, the non-aligning robots spend a lot of energy to vary
their speed more reactively. Second, we would like to study
the correlation between spatial aspects of the swarm com-
position. In particular, we would like to study whether par-
ticular configurations (i.e., topology, connectivity, ...) have
different effects on the flocking performance. Third, we plan
to perform experiments involving two different types of real
robots.
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