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Abstract
In this study, we investigate the emergence of naming conventions within a swarm of robots 
that collectively forage, that is, collect resources from multiple sources in the environment. 
While foraging, the swarm explores the environment and makes a collective decision on 
how to exploit the available resources, either by selecting a single source or concurrently 
exploiting more than one. At the same time, the robots locally exchange messages in order 
to agree on how to name each source. Here, we study the correlation between the task-
induced interaction network and the emergent naming conventions. In particular, our goal 
is to determine whether the dynamics of the interaction network are sufficient to determine 
an emergent vocabulary that is potentially useful to the robot swarm. To be useful, linguis-
tic conventions need to be compact and meaningful, that is, to be the minimal description 
of the relevant features of the environment and of the made collective decision. We show 
that, in order to obtain a useful vocabulary, the task-dependent interaction network alone is 
not sufficient, but it must be combined with a correlation between language and foraging 
dynamics. On the basis of these results, we propose a decentralised algorithm for collec-
tive categorisation which enables the swarm to achieve a useful—compact and meaning-
ful—naming of all the available sources. Understanding how useful linguistic conventions 
emerge contributes to the design of robot swarms with potentially improved autonomy, 
flexibility, and self-awareness.
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1 Introduction

The development of advanced forms of communication—i.e., a primitive form of lan-
guage—can help robots in a swarm to share relevant information about the task execu-
tion, adapting it to the current activities and environmental contingencies experienced by 
the robots (Cambier et al., 2020). Indeed, linguistic conventions can be useful to describe 
the environment and the task execution progress in a compact way, supporting the coordi-
nation within the swarm. Among the tasks relevant for swarm robotics, foraging—a task 
often observed in natural self-organising systems (Bailis et  al., 2010; Saleh & Chittka, 
2007) is certainly one among the most studied (Ducatelle et al., 2014; Ferrante et al., 2015; 
Miletitch et al., 2018; Talamali et al., 2020), as it lends itself to represent multiple realistic 
applications like mining, search-and-rescue or logistics. While foraging, the swarm needs 
to explore an environment and decide which source to exploit among several available. 
In such context, linguistic conventions can provide compact ways of uniquely identifying 
relevant aspects of the environment (e.g., different terms to identify different sources from 
which to forage), which can evolve to adapt to a changing landscape (e.g., assigning new 
terms to newly discovered sources, or dropping terms associated with depleted sources), 
hence maximising the communication efficiency. Moreover, an evolving language can con-
tain sequences of terms, providing swarms the ability to decide on the most useful course 
of action (e.g., a sequence of sources from which to forage).

To make language evolution possible, however, robots in a swarm need to interact and 
agree on the terms to be used and their meaning. This is the realm of language games, 
that is, computational models developed to understand the emergence of language through 
communication and self-organisation (Steels, 2001; Baronchelli et  al., 2010; Spranger, 
2013). As in swarm robotics communication is often local and intermittent, complex and 
dynamical interaction networks among robots emerge. A language game played in these 
conditions would have its dynamics largely affected by the network topology resulting from 
the task execution (Loreto et al., 2011). In this paper, we study the correlation between the 
task-induced interaction network and the evolving language. Indeed, the outcome of the 
language game can be correlated with both the intrinsic dynamics and outcome of the task 
itself, and the features of the environment in which the task is carried out. When such 
correlations are present, the linguistic conventions resulting from the language game are 
semantically grounded onto the task and its environment and can therefore be exploited 
for the accomplishment of the task itself. Some experiments have explored semantic con-
nections between language games and the physical spaces in which they are played (Steels, 
1995; Spranger, 2013). However, applications in swarm robotics are still limited (Cambier 
et al., 2020), and only a few experiments with a self-organised aggregation problem can be 
reported to date (Cambier et al., 2018).

In this paper, we demonstrate how language games can be grounded onto the execution 
of a foraging task. Specifically, we show that the task-induced interaction network is not 
sufficient per se in determining the conditions for semantically grounding the emergent lin-
guistic conventions onto the task. However, we show that such grounding is possible when 
the language game is played by robots actually exploiting a source. The understanding of 
the language dynamics leads us to define a category game tailored to better represent dif-
ferent sources distributed in space, as long as these are relevant to the foraging task.

The paper is organised as follows. In Sect. 2, we discuss how language games can be 
meaningfully played by a robot swarm engaged in a source exploitation task. In Sect. 3, we 
present the experimental setup. In Sect. 4, we show how the dynamics of the interaction 
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network can lead to emergent linguistic conventions. Then, in Sect. 5, we analyse the prop-
erties of the interaction network, suggesting that it meaningfully supports the evolution of 
useful linguistic conventions. Finally, in Sect. 6 we present the category game introduced 
to better support self-organised foraging. Finally, Sect. 7 concludes the paper.

2  Language games in foraging robot swarm

In swarm robotics, coordination and self-organisation allow groups of robots to be more 
efficient than isolated robots in performing a given task (Dorigo et al., 2014, 2020). The 
collaborative processes designed for robot swarms are often inspired by social insects and 
other group-living animals (Brambilla et al., 2013; Trianni & Campo, 2015). Communica-
tion is one fundamental aspect for self-organisation and can be either indirect (e.g., stig-
mergy) or direct. Both types of communication are encountered in animal societies, such 
as the pheromone trails used by ants (Beekman et  al., 2001) or the waggle dance used 
by honey bees (Biesmeijer & de  Vries, 2001). These communication mechanisms have 
been implemented with success in swarm robotics systems, for example, using indirect 
stigmergic interactions (Holland & Melhuish, 1999; Beckers et al., 2000; Allwright et al., 
2014), pheromones (Fujisawa et  al., 2014; Talamali et  al., 2020) and direct communica-
tion (Gutiérrez et al., 2010; Miletitch et al., 2018). While efficient, these communication 
mechanisms are usually designed for a specific task/environment (e.g., application in ware-
houses, see Stiefelhagen et al., 2004) and convey specific pieces of information, hence lim-
iting the system flexibility.

Researchers aimed to add more plasticity to the communication process, for instance, by 
exploiting an evolutionary process to design at the same time signals and adapted responses 
(Marocco & Nolfi, 2007; Floreano et  al., 2007). The resulting communication mecha-
nisms are very well adapted to the tasks and environmental conditions encountered during 
training and also show some generalisation abilities. However, the characteristics of the 
obtained communication mechanisms remain very simple, with few signals and responses 
to signals that cannot easily scale up to more complex environments and/or tasks. A pos-
sibility to provide more complex communication abilities to a robotic system comes from 
models of natural language evolution (Wang & Minett, 2005; Solé et al., 2010).

A popular approach to the study of language dynamics is represented by language games 
played by a population of agents/robots, with the purpose of mimicking real-world linguis-
tic interactions leading to the emergence of a structured language. Various kinds of lan-
guage games have been proposed to date, from imitation games (Billard & Hayes, 1997) to 
guessing games (Steels, 2001) and category games (Puglisi et al., 2008; Baronchelli et al., 
2010). One game in particular has received a lot of attention: the naming game (Steels 
1995; 2003). In this game, two or more robots interact to assign a unique name to a set of 
objects. At each interaction, one robot is chosen as a speaker and another as a listener. The 
speaker chooses a referring object and an associated word from its vocabulary—or invents 
one when no word is available—and then transmits it to the listener. If the listener knows 
the word, then the game is a success, and both agents remove all other words associated 
with the chosen object from their vocabulary, keeping only the shared word. If instead the 
listener does not know the received word, then the game fails, and the listener adds this 
new word to its vocabulary. We use in our study a specific version of this game: the mini-
mal naming game (MNG, see Baronchelli et al., 2006b). Here, focus is given only to reach-
ing consensus on a single world within a population of communicating agents. Specifically, 
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we consider an implementation in which the speaker broadcasts its word to all agents in his 
neighbourhood, while the listener is the only agent that updates the vocabulary upon suc-
cess or failure of a game (Baronchelli, 2011).

As naming games are based on interactions between pairs of speaker and listener agents, 
the time to achieve consensus and the underlying dynamics are directly linked to the topol-
ogy of the interaction network. In non-embodied implementations, the link between topol-
ogy and language dynamics has been extensively studied (e.g., fully connected regular, 
small world or random geometric networks, see Baronchelli et al., 2007; Lu et al., 2008). 
Embodied implementations can be divided in two categories. On the one hand, a popu-
lation of virtual agents can use a small number of robots (sometimes reduced to two, as 
in Spranger, 2013) to play the naming game, so that at each iteration, agents are selected 
and assigned to robots in order to record physical interactions among them. On the other 
hand, the naming game can be played among a population of embodied mobile agents 
(Baronchelli & Díaz-Guilera, 2012; Trianni et  al., 2016) that interact locally with each 
other according to a topology of interactions that is the direct result of the mobility pattern 
of the agents induced from the task being executed.

In this study, the MNG is played on top of a self-organised foraging task. When forag-
ing, a swarm needs to explore the environment, identify and evaluate the available sources 
and make decisions on which source to exploit, going through different transitory states 
before reaching an equilibrium (e.g., convergence on one single source to exploit or split/
load-balance among many, as in Miletitch et al., 2018). Similar behaviours provide a com-
plex and time varying interaction network among robots, which can be exploited to support 
linguistic interactions among agents. Our main goal is to study whether the dynamics of the 
interaction network are sufficient to determine language dynamics that represent features of 
the task execution (e.g., choice of one or the other source), of the environment (e.g., the 
presence of more than one sources, each associated with a different word), or both. To this 
end, we run experiments with two versions of the MNG. Beside the classic MNG, we play 
a version where the creation of words is linked with the discovery of sources by exploring 
robots. In this setup, we study how well the robots manage to have an accurate description 
of their surroundings that is both complete (a word for each source) and correct (no mis-
nomer) for as long as each source is relevant to the swarm, where relevance is measured as 
the number of robots actively foraging from the source (see Sect. 3). Our goal is to under-
stand how the swarm interaction topology influences the language dynamics and how the 
creation of words is correlated with the robots foraging from a source.

3  Experimental setup

In this study, the goal of the swarm is to play a MNG while identifying and exploiting 
either of two sources (referred to as source A and source B) placed at the opposite side of 
a home area (referred to as nest, see Fig. 1). The environment is a 2D infinite plane with-
out obstacles, and both nest and sources have circular shape with radius R = 0.3m . Each 
source is located at the same distance d = 2.5m from the nest.

3.1  Robots and simulations

Experiments are run in simulation using ARGoS (Pinciroli et al., 2012). In our study, we 
use this simulator to model a swarm of 50 e-puck robots (Mondada et al., 2009). E-pucks 
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have a differential drive motion with a maximum linear speed of v = 0.1m∕s , and the 
wheels’ rotation is measured by an encoder. Avoidance of other robots is done at short 
range ( ≈ 10 cm ) using infrared proximity sensors and at longer range ( ≈ 1m ) using the 
infrared range and bearing system (Gutierrez et al., 2009). The obstacle avoidance behav-
iour has been optimised to minimise the effects of robot density and congestion and to sup-
port the ability to navigate back and forth between sources, as detailed in a previous study 
(Miletitch et al., 2013). Robots perceive nest and sources only when they are located in the 
corresponding areas by means of infrared ground sensors that robots use to differentiate 
between the white colour of the floor, the grey colour of the sources and the black colour 
of the nest. We assume here that robots start from the nest without any knowledge about 
sources, which need to be located through exploration. Robots can locally broadcast short 
messages through the infrared range and bearing system within a range that is limited to 
dI = 0.2m (indicated by the dotted circle around the robot in Fig. 1). Robots can broad-
cast a message at regular intervals of 0.1 s with no re-broadcast of information received 
(no multi-hop communication). They keep track of the position of nest and known sources 
through odometry. The error on positioning produced through this tracking method can be 
efficiently compensated through social odometry (Gutiérrez et  al., 2010; Miletitch et  al., 
2013). Owing to this, in this study we neglect odometry errors and focus on the interplay 
between motion and language dynamics.

At the beginning of the experiment, robots are uniformly distributed within a 0.8 m 
side square centred on the nest. During the first 200 s, robots perform a blind random walk 
during which they do not communicate or search for sources. This allows us to neglect the 
initial transitory phase in which robots are too densely distributed around the nest, allowing 
us to study the system dynamics after the robots spread out in the environment according 
to their search pattern. This assures that—whatever the experimental condition—the initial 
distribution of robots does not severely impact the final outcome. In the following experi-
ments, unless mentioned otherwise, we perform 100 runs for each experimental setup. 
These runs last until language convergence, which, depending on internal parameters, can 
take up to 12000 s.

3.2  Individual and collective behaviour

3.2.1  Source exploitation

The desired swarm behaviour (localisation and exploitation of sources) takes inspira-
tion from the decision-making process displayed by house-hunting honeybees—also 
known as nest-site selection (NSS, see Pais et al., 2013; Seeley et al., 2012; Reina et al., 

Fig. 1  Graphical representation of the environment. sources A and B are each located at the same dis-
tance d = 2.5m from the nest. All the three areas have radius R = 0.3m . Robots move at constant speed 
v = 0.1ms−1 and can communicate with neighbours within a range d

I
= 0.2m.
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2017). The spatial dynamics during foraging resulting from the NSS process have been 
studied by Reina et  al. 2015a and Miletitch et  al. 2018. Here, we make use of the indi-
vidual robot behaviour from the former (Reina et al., 2015a), which was designed for the 
e-puck robots following a design pattern based on the NSS process (Reina et al., 2015b). 
According to this design pattern, a robot is considered to be committed to a source when 
it knows its location, and hence moves back and forth between the source and the nest. 
Otherwise, a robot is considered uncommitted and explores the arena searching for a 
source. Robots committed to source A (B) are considered to belong to the population PA 
( PB ), while uncommitted robots belong to the population PU , all summing up to N robots: 
|PA| + |PB| + |PU| = N.

Four concurrent processes determine the individual behaviour, two for transitions 
between uncommitted and committed states, and two for the opposite. An uncommitted 
robot turns committed either through discovery or through recruitment. The former takes 
place when the robot enters the area of a source. The latter takes place with probability P� 
when a robot receives the information about a source known by a committed neighbour. 
Conversely, a committed robot turns uncommitted either through abandonment or through 
cross-inhibition. The former takes place anytime with a fixed probability P� per time step. 
The latter takes place with probability P� upon interaction with a neighbouring robot com-
mitted to a different source. Cross-inhibition introduces a negative feedback loop that helps 
the system break the symmetry and leads to a choice between two identical sources (for 
more details, see Reina et al., 2015a, b). In our study, recruitment and cross-inhibition hap-
pen only upon communication with other robots when located into the nest. Differently 
from Reina et al. 2015a, we set the probability of abandonment P� to zero, so that the only 
way for robots to become uncommitted is through cross-inhibition. This favours the attain-
ment of a consensus state in which all robots within the swarm are committed to the one or 
the other source (Reina et al., 2015b).

The actual movements of the robots are governed by the following basic behaviours. 
When uncommitted, the robots explore the arena, performing a correlated random walk 
(Dimidov et al., 2016), and have a fixed and small probability at every control step to return 
to the nest. When committed, the robots enter an exploitation loop where they move back 
and forth between the known source and the nest (for a detailed description, see  Reina 
et al., 2015a).

Depending on the value of P� and P� , the swarm displays different dynamics and dif-
ferent final distributions of robots among the populations PU , PA and PB . In this study, we 
focus on two specific cases: strong cross-inhibition and weak cross-inhibition. In the strong 
case ( P� = 0.7 , Fig. 2 top row) the swarm rapidly converges to a consensus for the one or 
the other source, whereas the weak case ( P� = 0.1 , see Fig. 2 bottom row) leads to slower 
dynamics (Reina et al., 2018). Given enough time, the swarm would end up converging to 
a consensus for a single source. However, over the duration of our experiments, the swarm 
did not break the symmetry but splits between the two sources (see Fig. 2, bottom row). 
At any time, with or without consensus, we define the source with the highest number of 
committed robots (relative majority) as the “selected” source. We define O ∈ {A,B} as the 
selected source and X ∈ {A,B} as the non-selected source, and PO and PX as the respective 
populations, with PO ≥ PX.
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3.2.2  Minimal naming game

The language game played by the robots in our study is an implementation of the mini-
mal naming game (MNG) for mobile agents/robots (Baronchelli et al., 2006b; Baronchelli 
& Díaz-Guilera, 2012; Trianni et  al., 2016). Each robot starts with an empty inventory. 
At each time step (of length �c = 100ms ), each robot has a probability Ps of becoming a 
speaker (here, Ps ∈ {0.0003, 0.0006, 0.001, 0.002} ). These values of Ps were selected so 
that foraging dynamics and language dynamics would share comparable time scales. The 
language game is played as follows: the speaker robot selects a word from its inventory and 
broadcasts it to its neighbours. At each time step, if a robot receives at least one message, 
it becomes a hearer robot. The hearer selects one (and only one) word at random among 
those received and checks it against its own inventory. If the hearer finds the selected word 
in its inventory, the hearer keeps only that word in the inventory while deleting all the 
others. If instead the hearer does not find the selected word in its inventory, it updates its 
inventory by adding the word (for more details, see Trianni et al., 2016).

In this study, we consider two variants of the MNG, which differ in the way in which 
words are generated. In one case (referred to as classic game), the robots create a new 
word when becoming speaker with an empty vocabulary. In the second variant (referred 
to as spatial game), the robots create a new word when encountering a source with an 

Fig. 2  Distribution of robots in a swarm as a percentage of robots committed to source A (y axis) and B 
(x axis) for 100 independent runs. Each column displays the distribution at different time steps. The insets 
show the histogram of the frequencies of runs with respect to the percentage of robots committed to A. 
Top row: strong cross-inhibition with P� = 0.7 and P� = 0.7 , robots can change commitment and eventu-
ally the swarm converges towards either source A or B. Bottom row: weak cross-inhibition with P� = 0.7 
and P� = 0.1 , the dynamic is much slower. Over the duration of our experiments, each run ends up with a 
different distribution of robots among sources, with points close to the diagonal representing low number of 
uncommitted robots.
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empty vocabulary. In both cases, we associate each word with the closest source to the 
robot at the time of the word creation, and we define WA ( WB ) the set of words asso-
ciated with source A (B). Note that, by construction, WA ∩WB = � . Robots having in 
their inventory any word w ∈ WA ( WB ) constitute population PWA

 ( PWB
 ). Robots with 

no words constitute population PWO
 . In Fig. 3, we depict a possible partition of robots 

among different populations, both with respect to the commitment state and to their 
vocabulary. Since a robot can have at a given time an inventory with words originating 
in both source A and B, the propriety PWA

∩ PWB
= � is not always verified. Similarly, 

through exchanges of words and robots between the different populations, at a given 
time the inventory of robots committed to one source might contain a word associated 
with the other source (resulting in PA ≠ PWA

 ). At any time, we can look at the popula-
tion of robots that know words associated with the source they are committed to, that is:

Conversely, we can define the population of committed robots that know words from a 
non-matching source:

Corresponding to the collectively selected source O (see definition above), we define the 
set of matching words WO and non-matching words WX as follows:

We define:

• polarisation, the condition in which committed robots know only words associated 
with the source they are committed to, that is, when PS = �;

• vocabulary matching, the condition in which only words associated with the selected 
source are retained within the swarm vocabulary, that is WX = � and WO ≠ ∅;

• vocabulary completeness, the condition in which exactly one word associated with 
each source is retained within the swarm vocabulary, that is |WO| = 1 and |WX| = 1.

(1)PM = (PWA
∩ PA) ∪ (PWB

∩ PB).

(2)PS = (PA ∩ PWB
) ∪ (PB ∩ PWA

).

(3)WO = {w|(w ∈ WA ∧ PA > PB) ∨ (w ∈ WB ∧ PB > PA)}

(4)WX = {w|(w ∈ WA ∧ PB > PA) ∨ (w ∈ WB ∧ PA > PB)}

Fig. 3  Diagram representing how 
the swarm can be split in differ-
ent sub-populations with respect 
to the robots’ commitment 
state and the word distribution. 
The circles represent the three 
populations with respect to the 
commitment state: ( P

U
 , P

A
 and 

P
B
 ). The fill patterns represent 

populations with respect to the 
robots’ inventory ( P

W
O
 , P

W
A
 

and P
W

B
 ). Note that, in general, 

P
W

A
∩ P

W
B
≠ � . Depending on 

the experimental setup, popula-
tions can exchange robots and 
words among themselves.
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Given a sufficiently connected swarm, the MNG dynamics ensure that the swarm will 
eventually converge to a final single-word vocabulary, albeit after a very long time (Bar-
onchelli et al., 2006b; Baronchelli & Díaz-Guilera, 2012; Trianni et al., 2016). Accord-
ing to the previous definitions, the final vocabulary can be matching or not the selected 
source.

4  Correctness and completeness of the swarm vocabulary

In this section, we focus on the evolution of the swarm’s vocabulary, looking in particular 
to the provenance of the last words and their relation to the selected source. As already 
discussed (see Fig. 2), the foraging dynamics lead to either the quick selection of a sin-
gle source, or to the swarm being split between the two sources, possibly for a long time. 
This means that, apart for a few cases and random fluctuations, there will always be a 
source that is selected—albeit temporarily—by the swarm. In certain settings, the swarm 
may forage from both sources for a long time; hence, vocabulary completeness may be 
observed. In other cases, the swarm will quickly converge to exploit a single source, and 
vocabulary matching is expected. In any case, interactions between different populations of 
robots are frequent, ensuring that the language dynamics always converge to a single-word 
vocabulary.

Here, we first focus on the patterns observed when the vocabulary converges to one or 
two words, to determine if matching and completeness are achieved. First, we analyse the 
provenance of the final word wf  to determine if it matches the selected source or not (i.e., 
wf ∈ WO ). As the distribution of robots among sub-populations may sometimes change 
even after convergence to a single-word dictionary (e.g., if the language dynamics are 
much faster than the source selection dynamics), the final selected source may also change. 
Hence, we consider the source selected at the time of convergence to the final word wf  , no 
matter what happens later to the population distribution. Similarly, we consider also the 
second-last word we , to determine whether it was also matching the selected source or not 
at the time in which only two words remained within the whole swarm. Given such defini-
tions, every run can end up in one of the following four possibilities:

In case OO or OX is observed, the swarm has identified a final word that matches the cur-
rently selected source, although in the OX case the second-last word was associated with 
the non-selected source. The XO case represents a missed opportunity of matching, as a 
matching word was still existing in the vocabulary and could have been chosen. The XX 
case instead suggests that the association of words to source does not reflect the current 
state of the source selection. Both middle cases ( OX and XO ) indicate a complete vocabu-
lary up until convergence on one word.

(5)OO ∶ wf ∈ WO ∧ we ∈ WO

(6)OX ∶ wf ∈ WO ∧ we ∈ WX

(7)XO ∶ wf ∈ WX ∧ we ∈ WO

(8)XX ∶ wf ∈ WX ∧ we ∈ WX
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Given these definitions, we study the influence of the language game and the forag-
ing dynamics over the provenance of the last two words of the vocabulary. Fig. 4 shows 
the frequency of each case out of the 100 runs performed for each different experimental 
condition. When playing the classic game (top row in Fig. 4), the swarm shows no ten-
dency to favour a specific provenance for the final two words, and a distribution close to 
uniform across the four possible cases is observed. On the other hand, when playing the 
spatial game (bottom row in Fig. 4), the swarm favours words that match the selected 
source, both for the last and second-last word. In particular, the OO state is strongly 
favoured for both weak and strong cross-inhibition, and the XX state is especially dis-
favoured when the weak cross-inhibition leads to slower decision dynamics. In conclu-
sion, we clearly find that the spatial game, by making the creation of words conditional 
to the discovery of sources, determines a strong tendency to converge towards words 
that represent the source that is ultimately selected. The naming process is “correct” as 
it best represents the source that is the most relevant for the swarm. In about 40% of the 
cases ( OX + XO ), the naming is “complete” as the last two words represent “names” for 
both the available sources. This remains valid for different values of the probability of 
speaking Ps , as shown in the supplementary Figure S1, suggesting that the spatial game 
is resilient to variations in the timescale of the language game.

To better understand the relationship between source selection and naming dynam-
ics, in Figure 5 we show how the distribution of agents between sources relates with the 
provenance of the last two words in the swarm vocabulary. Indeed, there is a large dif-
ference between a swarm that forages from a single source and one that instead is evenly 
split between the two sources. In the former, we expect vocabulary matching, that is, 
only words from the selected source are retained (hence, case OO and to some extent 

Fig. 4  Empirical distribution over 100 runs of the occurrences of the last two words in the vocabulary 
within the four identified classes ( OO , OX , XO and XX ) representing words matching or not the selected 
source. The graph refers to the case with P

s
= 0.001 . All other tested values of P

s
 produce similar results 

(see supplementary Figure S1). Top row: classic game. Bottom row: spatial game.



221Swarm Intelligence (2022) 16:211–232 

1 3

OX ). In the latter, we instead expect vocabulary completeness, that is, words coming 
from both sources are present (hence, cases OX and XO ) because both sources are still 
exploited by the swarm and the selected source can change over time. Indeed, the swarm 
does not clearly favour the exploitation of any source, to the point of possibly changing 
its selected source overtime, and multiple times.1

When the classic game is played, the distribution of robots across sources has little to no 
impact on the provenance of the last two words (top row of Fig. 5, see also the supplemen-
tary Figure S2 for other values of Ps ). For the spatial game, instead, vocabulary matching 
is observed when the swarm has clearly selected one of the sources. Conversely, vocabu-
lary completeness is more often observed with swarms that are still exploiting two sources. 
This is evident in case of weak cross-inhibition that entails slower dynamics in the source 
selection process. With strong cross-inhibition, the swarm quickly converges to exploiting 
a single source, and the cases in which the swarm is exploiting both sources at the time of 
convergence are very rare. Only when the language dynamics are particularly fast, we can 
observe cases of vocabulary completion for strong cross-inhibition, as shown in supple-
mentary Figure S2 for Ps = 0.002.

Fig. 5  Empirical distribution over 100 runs of the occurrence of the last two words in the vocabulary (see 
Fig. 4) detailed for different distribution of the foraging swarm across the two sources, computed at the time 
of vocabulary convergence with P

s
= 0.001 . Each stacked histogram corresponds to a specific distribution 

of robots over the non-selected source ( P
X

P
O
+P

X

 ). Bars are colour-coded as in Fig. 4. Over each histogram, the 
number of runs that resulted in the specified range is displayed. All tested values of P

s
 present similar 

results, shown in Figure S2. In the rare case of an equally split swarm ( P
O
= P

X
 ), there is no notion of 

matching an non-matching words. In that case, we redistribute AA and BB equally between OO and XX 
(one half each). Similarly, AB and BA are redistributed equally to OX and XO . Top row: classic game. Bot-
tom row: spatial game.

1 Recall that the distribution of robots can change over time and always converges to the selection of one 
source, although after a very long time as discussed in Sect.  3.2. Here, we consider the distribution at 
the time of convergence of the naming dynamics, which is determined by the probability of speaking P

s
 . 

Hence, an even distribution of robots among the sources is observable not only with weak cross-inhibition 
( P� = 0.1 , see Fig. 2), but also for strong cross-inhibition when high values of P

s
 cause a quick convergence 

of the vocabulary.
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From this analysis, we can conclude that the spatial game leads to language dynamics 
that correctly represent the sources relevant to the swarm, that is, those from which the 
swarm is currently foraging. This is obtained solely by the creation of words, which is 
strongly correlated with the source discovery. The interplay between language and forag-
ing dynamics preserves such correlation despite the high number of interactions between 
robots from different populations and with different vocabularies. In the next section, we 
study how this is possible by looking at the interaction patterns between robots.

5  A study of the swarm’s spatial characteristics

There are two extremes for the swarm to reach convergence on a final word. Either the 
swarm converges as a whole—homogeneously—on this final word, or sub-populations for-
aging from different sources first converge towards a word representing their source, and 
then a competition between these two words determines the final outcome. In this section, 
we look at how robots create and share their words, and how they exchange words within 
and across foraging sub-populations.

5.1  Impact of spatial word creation

First of all, we look at the initial phases of the naming game, when robots create and share 
new words. Indeed, the difference between the classic and the spatial game is solely related 
to this phase. Besides word creation, robots can fill their vocabulary with words shared by 
others. To better understand how robots obtain their first word, we plot in Fig. 6 the cumu-
lative number of robots with at least one word in their vocabulary for the case of weak 
cross-inhibition.2 We highlight whether the first word was created by the robot itself or 

Fig. 6  Evolution over time of the origin of each robot’s first word (weak cross-inhibition). The value of the 
y axis corresponds to the ratio of robots having a word in their vocabulary. This word can be either created 
independently by a robot (Cr) or received from another robot (Re), and either while the robot is uncommit-
ted (Un) or committed (Co). Similar dynamics are displayed in the case of strong cross-inhibition (see Fig-
ure S3 in supplementary material). Top row: classic game. Bottom row: spatial game.

2 Results for strong cross-inhibition are very similar and are displayed in Figure S3.
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received from other robots upon playing the naming game. Finally, we distinguish between 
robots being uncommitted and exploring, or robots committed and exploiting one source. 
Uncommitted robots are particularly relevant, as they can get committed to any source, 
despite having a word associated with one or the other: they do carry a naming information 
that may not correspond to the source they will become committed to.

For the classic game (top row in Fig. 6), we note that the word creation dynamics is 
rather fast and solely depends on the probability of speaking Ps . Additionally, uncommit-
ted robots represent the large majority, meaning that word creation is strongly uncorrelated 
from source selection: even if a word is created closer to a source, it is generally associ-
ated with an uncommitted robot that may eventually get committed to any source, due to 
recruitment or discovery.3

In the spatial game instead (see bottom row in Fig. 6), the dynamics of word creation is 
independent of Ps because it is determined by robots encountering a source. Specifically, Ps 
does not impact the number of robots that create a word when uncommitted, as these robots 
individually discover a source following the foraging dynamics. However, Ps determines 
the share of robots that create a word when committed or that receive a word when uncom-
mitted. The former is higher when Ps is small, as the foraging dynamics are faster than the 
language game dynamics, meaning that several robots get recruited first and encounter a 
source while still having an empty vocabulary. These robots have a naming information 
that is strongly correlated with the source they are exploiting. Conversely, with high Ps the 
number of uncommitted robots that receive a word from other robots grows. These robots 
potentially have a naming information that differs from the source they will exploit, lead-
ing to lower spatial correlation. As a matter of fact, matching and completeness are slightly 
worse for this case, as can be observed in supplementary Figures S1 and S2.

5.2  Communication topology and interactions within the swarm

Once words have been generated, the MNG imposes a selection process until a single one is 
selected. This process takes place through speaker–hearer interactions and can be strongly 
influenced by the communication topology (Baronchelli et al., 2006a; Moretti et al., 2013). 
The latter is determined by the distribution of robots in space, which is a result of the for-
aging task the robots carry out. To understand how different sub-populations of the swarm 
interact, we performed an experiment with locked-size populations, forcing all robots in 
a pre-defined committed state. We measure the size of the neighbourhood N  with which 
robots can potentially interact anytime, and we further distinguish between neighbours 
belonging to the same or to a different population. In Fig. 7, the probability of observing a 
neighbourhood of a given size is displayed for each possible partition Ps between sub-pop-
ulations, where Ps = p indicates that |PA| = p and |PB| = N − p (in these tests, PU = � ). 
Additionally, we also consider the case in which |PU| = N , where robots are forced in the 
random exploration state. Given a population of agents P , the probability of observing a 
given neighbourhood of size n exclusively composed of agents from population P′ is com-
puted as follows:

3 Recall that robots periodically return to the home location, where they can get recruited by any other 
robot, or they can start a new exploration trip in a totally different direction from the previous one. Hence, 
an uncommitted robot that creates a word near one source may get recruited to the other source or discover 
it in the following exploration trip.
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where Hr(n, t,P
�) counts the timesteps t ≤ T  in which robot r has neighbourhood of size n 

limited to robots belonging to population P′ . Hence, this probability is strictly dependent 
on the size of the populations P and P′ that are being considered.

For small values of |Ps| , one of the sub-populations is large and interactions within 
sub-population dominate (see Fig. 7, left panels). The neighbourhood size can take large 
values (e.g., more than 5 robots), even larger than the case of randomly exploring robots 
(see Fig. 7, bottom-left panel). Contrarily, interactions between sub-populations are practi-
cally absent, the typical neighbourhood size being |N| = 0 (see Fig.  7, top-right panel). 
The more the partition among sub-populations is even, the more frequent the interactions 
among sub-populations become. Still, robots more likely interact within the same popu-
lation, and only few cross-population interactions are recorded (see Fig.  7, bottom-right 
panel). This confirms that, if the swarm leans towards selecting a single source, the lan-
guage dynamics are played mostly within the same population, reinforcing the correlation 
between words and sources in favour of matching. At the same time, the small number of 
interactions between sub-populations also favour completeness, with each sub-population 
having the chance to converge on its own word.

It is worth recalling that, besides communications between sub-populations, a mis-
matching word can enter a sub-population also when it is physically carried by a robot 

(9)PΣ(|N| = n|P) = 1

T|P|
∑

t

∑

r∈P�

Hr(n, t,P
�),

Fig. 7  Top row: the heatmaps represent the probability distribution PΣ of each robot’s neighbourhood’s size 
( |N| , y axis) for each possible partition in sub-populations ( |P

s
| , x axis), limited to interactions occurring 

within a sub-population (top left) or between sub-populations (top right). Vertical lines indicate the cross-
sections displayed in the bottom panels. Bottom row: probability of occurrence of each robot’s neighbour-
hood’s size for |P

s
| = 3 (bottom left) and |P

s
| = 22 (bottom right). The plots represent the probability PΣ of 

observing a neighbourhood size considering interactions within the whole swarm (blue), within sub-popu-
lations (purple), and between sub-populations (green). The dotted-blue line represents the case of the whole 
swarm forced to remain in the exploring state (sub-population P

U
 ) (Color figure online).
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changing from one to the other population. In order to understand how relevant the move-
ments of robots between sub-populations are for the spreading of words, we measured the 
rate at which these movements take place, and compared it with the rates of interactions 
within and between populations during a standard experiment (see Fig. 8). The results indi-
cate that movements between sub-populations are not as frequent as the interactions via 
message exchange, especially when the probability of speaking Ps is high (see also Fig-
ure S4). Indeed, the rate at which messages are exchanged within and between populations 
increases with Ps , and is generally larger for intra-population interactions, confirming our 
previous analysis. Conversely, the rate at which robots move from one population to the 
other does not depend on Ps , and is higher when cross-inhibition is strong. We infer that 
the movements of robots between sub-populations do not have a relevant impact on the 
language dynamics in this specific experimental setup.

In the light of the presented results, we can conclude that the pattern of interactions 
between robots favours the segregation between sub-populations. This means that dif-
ferent words are likely selected within each sub-population, resulting in the vocabulary 

Fig. 8  Evolution over time of the rate of communications within and between sub-populations exploiting 
different sources, and of the rate of robot movements between sub-populations. Each graph has been plotted 
for the spatial game. Similar dynamics are displayed by the classic game (see supplementary Figure S4). 
Top row: strong cross-inhibition. Bottom row: weak cross-inhibition.
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completeness. At the same time, vocabulary matching is possible thanks to the strong cor-
relation between word creation and source exploitation by committed robots, as discussed 
above. While the vocabularies well represent the environmental features and their relevance 
for the swarm, we note that completeness is a transient property. Indeed, the MNG dynam-
ics determine the convergence towards a single word shared by the swarm, loosing infor-
mation about previously exploited sources. To avoid this, we present in the next section a 
proof of concept of a language game to preserve matching and complete vocabularies.

6  Emergence of spatial categories for foraging swarms

Keeping a complete description of the environment with all its sources requires the abil-
ity to distinguish between different regions in space, leading to the construction of spatial 
categories. We consider a spatial category as a set of possible words, associated with an 
area representing the region covered by the category (here, a circle defined by its radius 
and its centre, the latter determining the prototype location of the spatial category). Speak-
ing in general terms, any location in space can belong to one category, to multiple ones (in 
case of overlapping categories) or to none (in the case of a nonexhaustive partition of the 
space). The same robot can potentially hold multiple words (synonyms) referring to a given 
category. As a consequence, the set of the categories known to a robot—and, by exten-
sion, to the swarm—results in a kind of thesaurus. In this section, we propose a language 
game based on word-location pairs with the goal of representing the landscape of available 
sources. The language game is now first played on categories and then on words, making it 
more similar to a category game (Baronchelli et al., 2010).

6.1  Experimental Setup

Similar to the spatial game discussed above, categories—and associated names—are spon-
taneously created when a robot encounters a source at a location that is not represented by 
any available category. Even if a category exists for the same source, a robot may enter 
from a location that is not covered by the current category description. This leads to an 
initial proliferation of categories, which are subsequently pruned by a merging mechanism 
(see below).

With probability Ps , a robot knowing at least one category takes the speaker role: it first 
selects one of its known categories, followed by a word belonging to this category’s inven-
tory. The speaker will share with the neighbours the selected word paired with the category 
prototype’s location. In order to maintain a correspondence between the foraging behaviour 
and the language game, the selection of the category is determined by the commitment 
status: the speaker always selects the category corresponding to the sources it is foraging 
from. For uncommitted robots, the category is selected randomly. On the hearer side, first 
a match of the received word-location pair must be found with the known categories. If 
the location does not belong to any known category, the hearer creates a category centred 
on that location, with a default starting radius of r0 ∈ {0.2, 0.3, 0.4} , and add the received 
word to this category. If the location belongs to only one category, the MNG is played as 
previously described (see Sect. 3.2) with respect to the matching category’s inventory. If 
the word is fitting multiple categories, these are merged into one, and then the MNG is 
played with respect to the resulting category’s inventory. Categories are merged two by 
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two, with the resulting category being the smallest possible circle containing each original 
category’s circle. The merged vocabulary is the union of each category’s vocabulary.

To evaluate the ability of the swarm to generate shared spatial categories that correctly 
represent the available source landscape, we performed a series of experiments varying 
both the probability of speaking Ps and the value of the initial category radius r0 . We intro-
duce no change in the physical layout of the arena (see Fig. 1). Experiments are run for 
longer times, and are stopped once convergence is reached on both categories and number 
of words in each category. The additional complexity introduced by categories entails a 
slower language dynamics with respect to the simple naming game described before. To 
study the ability of the foraging swarm to correctly represent both sources, we prevent the 
selection of a single one by forcing P� = 0 . In this way, the robots will find and exploit 
both sources (possibly with an uneven distribution across the two), and no robot will ever 
change source. As we observed in Sect. 5, the effects on the language dynamics of robots 
physically moving from one to the other source are anyway negligible.

6.2  Results

The evolution over time of the number of words and of categories is shown in Fig. 9 for 
Ps = 0.001 (see Figure S6 for other values). Both words and categories follow a similar 
pattern, with an initial fast proliferation and a following convergence towards the minimum 
number of elements: one single category for each source, and one single word per category. 
The radius r0 determines the likelihood that a new category is created: when the radius 
is large enough, the initial category easily covers the whole source, and creation of new 
categories for the same source is unlikely. As a consequence, also the number of words 
generated is lower, because different words are generated for different categories, and the 
vocabularies are preserved by the category merging. In any case, the system tends to con-
verge to the minimum number of words/categories for each value of r0.

We note that the actual convergence on two categories (and hence two words) is not 
always permanent, as new categories can emerge after convergence on two categories. 
These rare events are unlikely to have long lasting impact as the swarm can recover quickly. 
Under these conditions, we define as time of convergence (over two categories or two 
words) the first time the whole swarm reaches the minimum number of words/categories.

Fig. 9  Average number of different words (solid lines) and different categories (dotted lines) present within 
the swarm. The dynamics over time are plotted for different values of r0 , and for a fixed probability of 
speaking P

s
= 0.001 . Plots for other values of P

s
 are available in the supplementary Figure S6.
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Both category and word convergence times depends heavily on r0 , but also on the probabil-
ity of speaking Ps (see the top-left panel in Fig. 10). When r0 is intermediate-small, the large 
proliferation of categories requires several merging operations, and having more variability in 
each category does not give an advantage. On the other hand, for large r0 few categories are 
formed, and a high Ps helps in quickly converging. These dynamics are confirmed also by the 
time of convergence to a single word per category (Fig. 10 top right), which always decreases 
when Ps increases, with a larger effect for larger r0.

Apart from the speed of convergence, another relevant aspect concerns the accuracy with 
which the emerging categories describe the sources to which they are associated. To measure 
this, we consider the position error as the distance between the centre of the category and 
the centre of the source (see Fig. 10 bottom left) and the average radius of the final category 
(Fig. 10 bottom right). When the initial radius is smaller, the error in the position of the pro-
totype is very small, as it results from the average of many categories defined all around the 
source. With larger r0 , the position error increases because fewer categories are generated. 
Large values of the probability of speaking Ps result in even fewer generated categories: as 
robots receive their initial category from other robots, larger errors are made. For what con-
cerns the final radius of the emergent categories, smaller values are observed for small r0 . 
However, the relative increase in the final radius with respect to the initial r0 is much larger for 
small r0 than for large r0 because many different categories are merged together.

7  Conclusion

In this article, we studied how the language game dynamics are influenced by the evolv-
ing topology of a swarm engaged in a decision-making and foraging task. In particular, we 
studied how well the swarm could maintain a description of its whole environment that is 

Fig. 10  Effects of the initial category radius r0 and of the probability of speaking P
s
 . Top left: categories’ 

convergence time. Top right: words’ convergence time. Bottom left: average error of the final category pro-
totype with respect to the centre of the associated source. Bottom right: average final radius of each cat-
egory compared with the initial value of r0 (dotted line).
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at the same time correct and complete, with the vocabulary containing only words that are 
relevant to the swarm, that is, those associated with sources under exploitation. We focused 
on such a compelling research question, without questioning properties commonly studied 
in swarm robotics such as robustness or scalability. Such properties have been largely stud-
ied for foraging, language dynamics and decision-making in previous studies and in condi-
tions very close to the ones discussed here (Trianni & Campo, 2015; Reina et al., 2015a). 
Hence, they are no further debated, allowing us to focus on the interplay between language 
and decision dynamics.

We began by comparing two variations in the MNG: one that binds the creation of 
words with the sources available in the environment (spatial game), the other without such 
spatial correlation (classic game), where words are used as simple tokens. Note that a mild 
spatial correlation is available between words and sources also in the classic game, given 
that words are created by robots at locations that are always closer to one of the sources. 
However, this was not sufficient to guarantee the emergence of a correct and complete lan-
guage as in the spatial game. Indeed, the stronger correlation between creation of words 
and source location granted by the spatial game is not the only reason for the better match-
ing and completeness. We observed that a major difference is given by the role of uncom-
mitted, exploring robots into the creation and sharing of words. These robots can end up 
choosing any source, bringing words created near one source to the population exploiting 
the other. Additionally, we observed that the topology of the robot’s interaction network—
determined by the robot’s movements during the foraging activity—consists of two almost 
segregated sub-populations, with sporadic interactions constrained to the central nest area. 
Such segregation creates the conditions for the maintenance of one word for each source, 
supporting completeness of the evolving vocabulary. In order for the swarm to maintain a 
complete description of the environment even when sources are not relevant any more, we 
proposed as a proof of concept a simple version of a category game embedded in space. In 
this setup, the swarm creates different categories for each source, and ends up retaining an 
exhaustive description that can also be sufficiently precise to potentially support the forag-
ing activities.

One potential drawback of language evolution as observed in our experiments is related 
to the time required for emergent conventions to settle, which can be very large if interac-
tions are sporadic, as well as the possibility that new conventions enter the population and 
destabilise the language dynamics. In this respect, it is important to note that linguistic 
conventions do not have an intrinsic value (e.g., every name can be equivalent as long as 
it is understood), but are more valuable when they are largely shared within a population, 
favouring coordination and avoiding misunderstandings. Hence, it is possible to speed up 
convergence towards a shared convention within a population by means of positive feed-
back mechanisms that favour the conventions more commonly found within the population. 
For instance, the simple rules of the naming game could be enhanced with estimates of the 
frequency of words in the population, allowing to favour the selection of more frequent 
words when speaking, hence speeding up convergence. Additionally, decentralised quorum 
sensing approaches can be exploited to determine a final convention, avoiding that noise is 
added by new alternatives when a largely shared one is already present. These and similar 
mechanisms can reduce the number of interactions required to achieve language conver-
gence within a population, making language games practicable in realistic settings beyond 
the abstract scenario studied in this paper.

Overall, we believe that merging language dynamics with the self-organising behaviour 
of robot swarms can have a high potential, as the robot behaviour can exploit the emergent 
descriptions of the environment in a way that is dependent on the features relevant for the 
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swarm. Our experiments demonstrate a possible way to obtain a meaningful link between 
tasks and the evolving language, supporting future research activities. The link between 
language and behaviour was relegated here to the creation of words/categories. However, 
stronger links can be built if behavioural decisions can be determined by the evolving lan-
guage. This also allows to adapt the language to the environmental contingencies encoun-
tered, possibly enabling more flexibility in the swarm behaviour with respect to changing 
environmental conditions (Cambier et al., 2021).

In future studies, besides describing the relevant features of the environment, linguistic 
conventions can be exploited also to agree on the best course of action for the swarm. For 
instance, robots would share short term plans described as a sequence of linguistic ele-
ments, creating and merging them following shared compositional strategies. In this sense, 
the possibilities offered by language evolution are vast, allowing robot swarms to autono-
mously find sentence-like solutions to complex tasks made of several spatially distributed 
and temporally dependent sub-tasks.
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