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Abstract
Swarm intelligence studies self-organized collective behavior resulting from interactions 
between individuals, typically in animals and artificial agents. Some studies from cognitive 
science have also demonstrated self-organization mechanisms in humans, often in pairs. 
Further research into the topic of human swarm intelligence could provide a better under-
standing of new behaviors and larger human collectives. This requires studies with multi-
ple human participants in controlled experiments in a wide variety of scenarios, where a 
rich scope of possible interactions can be isolated and captured. In this paper, we present 
HuGoS—‘Humans Go Swarming’—a multi-user virtual environment implemented using 
the Unity game development platform, as a comprehensive tool for experimentation in 
human swarm intelligence. We demonstrate the functionality of HuGoS with naïve par-
ticipants in a browser-based implementation, in a coordination task involving collective 
decision-making, messaging and signaling, and stigmergy. By making HuGoS available as 
open-source software, we hope to facilitate further research in the field of human swarm 
intelligence.
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1 Introduction

Many collective human behaviors arise from simple interactions between individuals, 
akin to behaviors traditionally studied within the field of swarm intelligence (Krause et al. 
2010). For example, models of human crowds have shown that there are many similar-
ities between the collective behavior of human crowds and that of large groups of ani-
mals  (Moussaïd et  al. 2009). However, the study of most collective human behaviors—
such as those seen in team dynamics (O’Bryan et al. 2020), online social networks (Lepri 
et  al. 2016), or collective problem solving  (Quinn and Bederson 2011)—is challenging, 
because the behaviors often result from complex interactions between individuals that may 
be difficult to capture or quantify (Ellwart 2011).

To study the cognitive mechanisms underpinning complex human interactions, research 
areas such as human social cognition (Frith and Frith 2012) or joint action  (i.e., collective 
action limited to few individuals, as in Vesper et al. 2017) study the cognitive processes 
that are used when two individuals coordinate their actions on a joint task. These research 
areas typically study dyads, where two individuals interpret and coordinate with the other’s 
actions, and each has a distinct and essential role in the task (Vesper et al. 2017). These 
studies perform fine-grained analyses of individual mechanisms of coordination. On the 
other end of the spectrum, studies looking at large groups of individuals either consider 
cases such as virtual crowds, in which individuals usually have minimal interactions (Lor-
enz et  al. 2011), or make abstractions from the complex interactions that occur between 
the individuals (Navajas et al. 2018). To conduct a complete analysis of collective human 
behavior and study swarm intelligence topics, we require comprehensive experimental data 
describing individual behavior, interactions, collective behavior, and relationships to task 
and environment features.

Virtual environments have been proposed as useful tools for studying human behav-
ior in controlled experiments  (Bailenson et  al. 2004). A virtual environment allows the 
experimenter to analyze and manipulate all information available to participants as well 
as actions executed by participants, which would be prohibitively cumbersome during in-
person experiments. In this paper, we present HuGoS—‘Humans Go Swarming’—a multi-
user virtual environment built to support experiments in human collective behavior. This 
paper is an extension of a previous conference paper  (Coucke et  al. 2020), in which we 
proposed the idea of HuGoS and presented an initial proof-of-concept. In this paper, we 
contribute a fully developed prototype of HuGoS that is open-source1 and ready to be used 
by the research community. We also demonstrate the functionalities of HuGoS by running 
case studies with anonymous naïve participants and assess the performance, advantages, 
and limitations of HuGoS as a tool for potential experimenters. In HuGoS, human par-
ticipants interact via avatars in a controlled experimental setup. HuGoS supports a wide 
variety of interactions among participants, and between participants and the environment. 
HuGoS also captures detailed data about each of these interactions, and the participants, 
objects, and properties involved. By enabling these interactions, HuGoS supports the study 
of complex forms of human self-organization such as self-organized hierarchy or emerging 
patterns of communication.

To enable direct comparative studies between human groups and artificial swarms, 
HuGoS supports autonomous avatars controlled by, e.g., a finite state machine or an AI 

1 HuGoS is available on GitHub at https:// github. com/ Nicol asCou cke/ HuGoS- code- MAIN.

https://github.com/NicolasCoucke/HuGoS-code-MAIN
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algorithm, in addition to human-controlled avatars. This comparison could bring new 
approaches to commonly studied problems in swarm intelligence, such as the best-of-n 
problem. Comparative studies could also focus on mechanisms that are not commonly stud-
ied in swarm intelligence. For example, self-organized leadership and hierarchy are infre-
quently studied in artificial swarms but are typical for human groups, and have recently 
been described as a key development for future swarm robotics applications (Dorigo et al. 
2020).

This paper is organized as follows. In Sect. 2, we discuss existing virtual environments 
used for studying collective human behavior. In Sect. 3, we give a general description of 
the design of HuGoS and the scope of experimentation that it targets, with further details 
provided in Appendices 1 and 2. In Sect. 4, we describe the methodology used to dem-
onstrate the functionalities of HuGoS via online experiments with anonymously recruited 
participants. The experiments are organized into three case studies in a coordination task: 
(1) basic collective decision-making, (2) additional messaging and signaling in collective 
decision-making, and (3) stigmergic coordination. In Sect. 5, we describe the results of the 
case studies and also assess the advantages and limitations of HuGoS as a tool for exper-
imenters, according to the following criteria: (1) connection and latency, (2) participant 
responses to questionnaires, and (3) tool performance, usability, and flexibility. Based on 
these results, Sect. 6 discusses the suitability of HuGoS for studying human swarm intel-
ligence, and Sect. 7 concludes the paper by summarizing the main contributions.

2  Related work

A number of multi-user virtual environments have been developed for scientific experi-
ments with multiple humans participants. In this section, we discuss environments designed 
for experiments relevant to the following: (1) solving external problems, (2) ‘embodied’ 
collective behavior, (3) large-large-scale social networks, and (4) joint action. Lastly, we 
also discuss the potential of existing video games and robot simulators for studying swarm 
intelligence in humans.

The first category of environments harnesses the collective intelligence of multiple par-
ticipants to solve difficult problems. Many of these environments are aimed at solving com-
putationally intensive problems (Barrington et al. 2011; Cooper et al. 2010; Eberhart et al. 
2015; Kirschenbaum and Palmer 2015; Lin et al. 2014; Jensen et al. 2020). The UNUM 
platform  (Rosenberg et  al. 2016; Rosenberg 2015), also referred to as Swarm AI®, lets 
participants collaboratively explore a decision space. Each player controls a ‘magnet’ that 
exerts influence on a ‘puck.’ The participants can make a collective decision by moving the 
puck to one of several locations that are labeled with an answer to a question asked by the 
experimenter. While HuGoS is also used to study humans when they are solving complex 
problems, the platform is mainly developed to study participants’ behavior during problem 
solving, rather than the outcome.

The second category of virtual environments is geared toward studying real-time physi-
cal coordination between individuals. For example, Unity has been adopted to study crowd 
behaviors by supporting human-like avatars that have a first-person view of the envi-
ronment   (Moussaïd et  al. 2016; Zhao et  al. 2018, 2020). In these environments, partic-
ipants’ user inputs are accurately transferred to an avatar, which creates an almost eco-
logical (representative of real-life) setting (Thrash et al. 2015). Other environments (e.g., 
the HoneyComb game for human crowd movement in Boos et al. 2019) support the study 
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of leadership—specifically, the impact of better informed individuals on implicit leader-
ship (Boos et al. 2014). These environments are promising, but lack features for setting up 
complex tasks in a dynamic environment. They also have a limited range of possible inter-
actions and relations between participants that could be instrumental in solving complex 
tasks. For example, higher-order mechanisms for coordination such as hierarchies would 
require explicit leadership links between participants, reminiscent of the ‘follower’ func-
tionalities in online trading networks (Krafft et al. 2016).

The third category of environments takes an approach that is suited to study this type 
of advanced coordination. Participants are embedded in a network and make explicit 
decisions based on the information they see about their neighbors in the network. These 
approaches are useful for studying the impact of network ties on collective behavior (e.g., 
in experiments on game theory). A commonly investigated game theory scenario is the 
public good game (PGG), where people can behave as contributors (cooperators) or free-
riders (defectors). In the VIAPPL software,2 each participant is represented by a 2D dot 
that is embedded in a (often partially observable) network of other players who are also 
represented by dots. This software allows one to study the influence of social psychological 
factors, such as a shared identity, on behavior in a PGG (Titlestad et al. 2019). The Bread-
board software3 is similar but is more suitable for large-scale online experiments study-
ing the influence of changing network structures on behavior  (Rand et  al. 2011; Fowler 
and Christakis 2010). It also allows for some of the nodes to be replaced by autonomous 
agents  (Shirado and Christakis 2017). Similar tools such as Empirica  (Almaatouq et  al. 
2020) have been used to study collective intelligence in large networked groups. These 
platforms facilitate the study of several important modulators of human behavior and col-
lective intelligence; however, they leave out real-time embodied interaction between indi-
viduals. With HuGoS, we wish to integrate aspects of both by implementing an embodied 
approach with dynamic interactions that also supports the development of, e.g., interaction 
networks between participants.

The fourth category of virtual environments is used in disciplines such as social neuro-
science, experimental semiotics, and joint action. These environments are geared toward 
studying cognitive mechanisms that underlie human collective action, but at the level of 
the individual or of the dyad. These virtual environments consider simple tasks for two 
or three participants. For example, Stolk et al. (2013) used a simple game where precisely 
two participants have their own perspectives on a joint playing field. Participants could 
only communicate through the movements of their avatars. In a controlled fMRI experi-
ment, this game was instrumental in elucidating the neuro-cognitive mechanisms underly-
ing coordination based on mutual understanding. Similar approaches even study how sim-
ple languages emerge when participants are involved in a coordination game (Selten and 
Warglien 2007; Scott-Phillips et al. 2009). Other approaches allow unlimited text messages 
between participants and analyze the relationship between message content and task execu-
tion (Nölle et al. 2020). A typical feature of human collective action is the accumulation 
and usage of cultural practices. These dynamics can be studied on a short time scale with, 
e.g., a simple video game (Derex and Boyd 2015). We do not propose that our environment 
can study all these mechanisms with the same level of detail. Rather, we equip our environ-
ment with sufficient features to study the influence of many of these mechanisms, such as 
the development of signaling conventions, on collective behavior.

2 http:// viappl. org/.
3 https:// bread board. yale. edu/.

http://viappl.org/
https://breadboard.yale.edu/
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Many existing video games such as Minecraft can also be used and modified to conduct 
controlled experiments  (Nebel et al. 2016). For example, Minecraft is well suited to study-
ing a joint construction task. Data collected during these tasks can be used to study how the 
interdependence of sub-tasks impacts collaboration, performance, and learning among the 
participants (Nebel et al. 2017). Other approaches have studied how participants achieve coor-
dinated play on tasks that are specific to video games such as World of Warcraft, using audio 
and video recordings of players’ screens (Williams and Kirschner 2012). Games like World of 
Warcraft have also shown the potential to study collective behavior under external events such 
as pandemics (Lofgren and Fefferman 2007). Within the scope of existing video games, there 
is emerging research that builds computational models of players, characterizing the relation-
ships between player inputs and outputs during a game. Players have a large range of possi-
ble actions at each particular moment, such that modeling the rich interactions between play-
ers and game is considered “a holy grail of game design and development” (Yannakakis and 
Togelius 2018). By building on technology originally purposed for video game design, our 
approach includes many of the perks inherent to multi-player video games, such as an immer-
sive user experience. Beyond this, our approach supports the modeling of player behavior bet-
ter than most first-person video games. Because of the uncluttered nature of our game envi-
ronments, player modeling will be a more feasible undertaking than in existing video games, 
where specific interactions and influences are much more difficult to isolate.

Comparing human collective behavior with existing swarm robotics approaches requires 
simulated robots and player-controlled avatars to operate in the same environment. Tools such 
as ARGoS (Pinciroli et al. 2012), ROS (Quigley et al. 2009), and Webots (Michel 2004) have 
been used to support simulations of multi-robot systems. A few studies using these tools have 
looked at human–swarm interaction, e.g., using support from ROS (Walker et al. 2014), or 
simulated in Webots (Vasile et al. 2011). In these setups, human participants gave high-level 
commands to parts of the robot swarm and were not able to directly control any robot. Tava-
koli et al. (2016) provide human participants with the information that a robot would typically 
have, and let participants control a 2D avatar in a typical robot scenario. We aim to expand on 
these approaches by enabling not only scenarios used to study robots, but also those suitable 
to the study of human behavior. Specifically, we aim to provide a user experience that is intui-
tive and motivating to the participants, and to support the study of coordination patterns that 
humans would display in real-world scenarios.

We aim to expand on the scope of these tools by enabling human participants to control 
avatars in scenarios that are otherwise identical to those used to study robots. Lastly, existing 
video games that have been designed for multiple human players are increasingly being used 
to train and study AI agents (e.g., OpenAI et al. 2019; Jaderberg et al. 2019). Future research 
in this area could compare the collective behavior of human players with that of AI-trained 
artificial agents in video games. Since our environment can, next to player-controlled avatars, 
include autonomous agents and accurate robot models, we support the comparison of human 
collective behavior to that of robots or AI agents, as well as the study of hybrid human–robot 
swarms.
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3  HuGoS: ‘Humans Go Swarming’

We designed HuGoS as an environment to facilitate a wide range of experiments on the 
topic of human swarm intelligence. In this section, we identify the experimental scope that 
HuGoS targets and then describe the architecture and features of HuGoS that enable these 
experiments.

3.1  Experimentation scope for human swarm intelligence

We take the scenarios explored in existing studies of robot and artificial swarms as start-
ing points for studying human swarm intelligence. By studying both human and artificial 
swarms in the same experiment setup, one can more easily compare their performance 
and transfer behaviors between them. This allows studies of collective human behavior 
to build on results found in artificial swarms and can also generate new approaches for 
swarm robotics that are inspired by humans. With this in mind, there are several classes 
of experiments that HuGoS should support to facilitate comprehensive study of human 
swarm intelligence. One class of experiments would study physical coordination between 
individuals. This class includes behaviors such as aggregation, pattern formation, and self-
assembly (e.g., Rubenstein et al. 2014). In HuGoS, this would require an avatar controlled 
by each participant, which other participants can observe. Another class of experiments 
studies behaviors that involve observation of environmental features. In best-of-n collective 
decision-making, a swarm might choose the best of several options based on observations 
of the environment and move to the corresponding location  (e.g., Valentini et  al. 2017). 
In cooperative navigation, agents might extract and share information to find the shortest 
path in an environment (e.g., Ducatelle et al. 2013). In HuGoS, these experiments would 
require environments populated with observable and changeable features. A third class 
of experiments studies agents that actively modify the environment. For example, agents 
might use coordination via stigmergy by leaving a virtual pheromone trail (e.g., Hunt et al. 
2019). In tasks such as collective construction, agents might pick up and move construction 
blocks (e.g., Werfel et al. 2014). In HuGoS, this would require that some objects can be 
modified or manipulated using avatar controls.

Several HuGoS capabilities are required across all classes of experiments. Each class 
involves various methods of direct and indirect communication between players. Studies 
of direct communication might include, for instance, the impact of simple signals and mes-
sages on group performance. HuGoS is therefore equipped with simple signaling between 
avatars (such as placing a crown above the avatar), and the exchanging of short text mes-
sages. It is also important that an experimenter can place express limitations on commu-
nication. For instance, during indirect communication via observation, an experimenter 
might limit a player’s view to include only its avatar’s immediate neighbors.

Any class might also include studies of explicit coordination approaches, such as self-
organized hierarchical control structures  (Mathews et  al. 2017; Zhu et  al. 2020; Zhang 
et al. 2021) or task allocation (Labella et al. 2004). By analyzing—or imposing—commu-
nication network structures, HuGoS can facilitate the study of coordination mechanisms. 
Each class could also include comparison or collaboration between human and artificial 
agents. This requires HuGoS to support autonomous agents with avatars that may be indis-
tinguishable from human players. For direct comparison between humans and robots fol-
lowing the same approach, HuGoS should also support robot models as avatars. In our 
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initial presentation of HuGoS (Coucke et al. 2020), we have integrated a 3D model of an 
e-puck robot (Mondada et al. 2009), such that each instance of the robot runs its control 
independently in 3D space with a 3D physics engine, roughly similar to the setup of the 
ARGoS multi-robot simulator  (Pinciroli et  al. 2012). Therefore, it should be feasible to 
replicate state-of-the-art swarm robotics studies conducted in a robot simulator such as 
ARGoS, for the purpose of one-to-one comparison with human behaviors. Furthermore, 
autonomous avatars following simple behavioral rules might be used to verify conclusions 
drawn from experiments with human players. If results from human experiments indicate 
that certain behavioral rules lead to certain group dynamics, the hypothesis can be further 
investigated by encoding those behavioral rules into artificial agents in the same setup as 
the human participants (i.e., the same information, capabilities, environment, and task), 
see Fig. 1. With this approach, studying human behavior in tasks relevant to robots could 
inspire new algorithms for the control of robot swarms.

Beyond experiment classes that relate to artificial swarms, HuGoS may also serve as 
a new tool to study topics in cognition, psychology, and social psychology. For instance, 
the study of human behavior in real-world scenarios, such as collective self-organization 
in emergencies (Drury 2018), could be supported by further study in a game environment. 
The graphical capabilities of Unity could be used to create valid simulations of real-world 
scenarios in HuGoS.

3.2  Features of HuGoS

HuGoS is built in Unity, a game development platform that supports networked games 
with multiple players, as well as autonomous agents (Juliani et al. 2018). In this section, 
we summarize some features and capabilities of HuGoS (for a more detailed description, 
see “Appendix 1”). Figure 2 shows a simplified architecture of the HuGoS platform. Both 

Fig. 1  HuGoS can be used to 
define agent-based models that 
both provide insights into human 
behavior and lead to swarm 
robotics applications

Fig. 2  Illustration of the HuGoS 
infrastructure. Both experi-
menter and participant start their 
HuGoS instance on their local 
client device and are connected 
via a server. Participants can 
be recruited using external 
services. Data are stored either 
in an online repository or on the 
experimenter’s local device
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the experimenter and participants run their own instance of the platform on their work-
stations and connect to a server. The experimenter can change setup options before and 
during an experiment (see Sect. 3.4). During each experiment trial, the experimenter sees 
an overview of the environment. Players (i.e., recruited participants) observe the environ-
ment through a first-person or third-person view of their avatar, which they control with 
their keyboard and mouse. Depending on the nature of the experiment, the environment 
can be populated with many game objects that are either static or controlled via behavior 
scripts. These scripts program game objects to change according to player behavior (e.g., 
lava spills in Sect. 4). An experimenter can also use the scripts to program avatars to act 
as autonomous agents, for instance, to perform the same tasks as human participants or to 
interact with human-controlled avatars.

Players can interact and communicate in several ways. They can communicate indirectly 
by each individual observing the motion of other avatars. They can also send explicit sig-
nals by changing avatar appearance or sending text messages in the HuGoS chat system. 
This direct and indirect communication is recorded during each experiment and can be 
analyzed to study communication network dynamics over time. Communication networks 
between players can also be explicitly manipulated by the experimenter, to study the effect 
of different configurations on collective behavior (see Fig. 17 in “Appendix 1”).

Measures of collective performance can be calculated in real time and provided as feed-
back to the participants in the form of a group score. The group score can be calculated 
based on various recorded data, including player actions (e.g., position, orientation, and 
interactions with objects), changes players make to game objects, and information available 
to players (e.g., game objects and other players in their field of view).

3.3  Network

The experimenter and all participants run their own instance of HuGoS and connect to a 
server. Computing generally happens at the local client, while synchronized environment 
variables and explicit messages between players are mediated by the server (see Fig. 15 
in  “Appendix 1”). We integrate HuGoS with Photon Unity Networking (PUN) by Exit 
Games,4 to enhance flexibility and usability for the experimenter. PUN automatically man-
ages server hosting and facilitates easier definition of the variables that need to be synchro-
nized by the server. With this server setup, experiments can be conducted in a laboratory 
setting or can be conducted online with participants in other locations. If using a laboratory 
setting, the setup can also be modified to run on a local server or local area network. There 
is no theoretical limit on the number of participants that the server can support. However, 
in practice, the number of participants will be limited by conditions external to HuGoS or 
specific to the experiment setup, such as the bandwidth used in a given game (see “Net-
working considerations” in “Appendix 2”).

3.4  The sequence of an experiment

Once connected to the server, the experimenter accesses a control panel where certain 
options can be modified, such as experiment conditions and the number of participants. 
Once the experimenter has connected and modified these options, participants connect 

4 https:// www. photo nengi ne. com/.

https://www.photonengine.com/
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to the platform with their participant IDs (retrieved from, e.g., the recruitment platform) 
and enter a lobby, where they are given a pre-game questionnaire. The experimenter 
can start the game once the correct number of participants has joined and completed the 
questionnaire.

The game experience is organized into scenes. When the experimenter starts the game, 
all participants are transferred from the lobby scene to the first tutorial scene, where they 
receive a visual explanation of the task. In the second tutorial scene, they control an ava-
tar while receiving instructions. After the tutorial, participants are redirected to the lobby 
scene to wait for the first trial. The experimenter chooses the number of trials to conduct. 
The length of each trial can be fixed or can depend on player behavior (e.g., the trial could 
end when participants complete a certain task). After each trial, participants are redirected 
to the lobby scene, where they can see their group score from the previous trials. When 
all trials are complete, participants enter the final scene, where they are given a post-game 
questionnaire about their experience. In this scene, participants can also be given informa-
tion to receive remuneration for their time. See Fig. 3 for an illustration of the experiment 
sequence for case study 1.

4  Methodology of case studies to assess HuGoS

The features of HuGoS5 are designed to support comprehensive studies on human swarm 
intelligence. We conduct three case studies to demonstrate the capacity of HuGoS in the 
experimentation scope defined in Sect. 3.1. Each case study is a variant of a general setup, 
in which participants coordinate their actions to contain lava spills in a dynamic environ-
ment. The three case studies focus on collective decision-making, messaging and signal-
ing, and stigmergy. Anonymous participants for these case studies are recruited via Prolific 
(“Appendix 2” for details). Each group of participants completes an experimental session 
that includes three separate trials of one case study, each lasting five minutes. The experi-
mental sessions are run with group sizes ranging from four to nine participants.

Fig. 3  Experiment sequence for case study 1

5 HuGoS is available on GitHub at https:// github. com/ Nicol asCou cke/ HuGoS- code- MAIN.

https://github.com/NicolasCoucke/HuGoS-code-MAIN
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4.1  HuGoS setup

In all case studies, each participant controls a bulldozer avatar in a shared environment. 
Using the mouse or touchpad, each participant can rotate their avatar without restriction, 
to change their first-person field of view and the avatar’s orientation. All avatar functions 
other than rotation are triggered by keystrokes. By using the arrow keys, each participant 
can move their avatar forward, backward, right, or left, relative to the avatar’s current ori-
entation. In some case studies, participants can use the space bar to trigger a crown6 to 
appear above their avatar, seen by all participants. The crown can be used as a simple tool 
for boolean communication with the other participants. In some case studies, participants 
can alternatively communicate via chat messages. In other case studies, participants can 
use the space bar to pick up a block in their avatar’s vicinity, or to put down a block their 
avatar is already carrying.

In the shared environment, the participants use their avatars to work on the task of stop-
ping lava spills, which appear spontaneously and then grow larger if they are not barri-
caded. The locations, sizes, and growth speeds of the lava spills are unknown to the par-
ticipants prior to the experiment; they can only access this information by observing the 
environment. In order to stop a spill, participants must fully barricade it, using either their 
bulldozer avatars or blocks that they have picked up.

The task requires participants to coordinate as a group. Where bulldozers are used to 
barricade, the size of a spill requires six bulldozers to surround it simultaneously. Where 
blocks are used, all participants can place blocks at the same spill sites. In each session, 
there are between four and ten participants. All participants co-occupy one arena and can 
see the same information. The avatars each have a unique ID, displayed on the front of the 
bulldozer and visible to all participants and themselves.

The arena is 150 m × 150 m and is enclosed. Each bulldozer avatar has a footprint of 
3.8 m × 5.2 m and has a speed of 6 m/s when in motion. The participant’s field of view is 
75◦ horizontally and 60◦ vertically, centered above the avatar’s heading (see example field 
of view in Fig. 4b). In case studies where blocks are used, the blocks are 1.6 m cubes and 
can be picked up by an avatar if its heading is within 5 m of the block. At any given time, 
there can be up to 14 active lava spills in the arena. The spills are circular and start with 

Fig. 4  Case study 1. a Experimenter’s view of the environment. b A participant’s first-person view while 
barricading a lava spill. c Experimenter’s view of a lava spill encircled by 6 players

6 Bulldozer and crown models were retrieved from Poly by Google (at https:// poly. google. com/) under a 
CC-BY 3.0 license.

https://poly.google.com/
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a radius between 2 and 4 m. An invisible barrier prevents participants from entering the 
starting circle. While active, the lava spills increase in radius at a constant rate predefined 
for each spill, between 0.01 and 0.1 m/s. The lava spills are spread out across the arena, in 
arbitrary locations defined by the experimenter. The spill locations, times of appearance, 
and growth rates vary between the three trials of one session. The setup is identical in each 
of the sessions, which have unique groups of human participants.

In trials where spills are barricaded by bulldozers, participants can temporarily barri-
cade the growth of the spill in a certain direction by touching it with the front edges of their 
bulldozers. The spill will continue to grow in directions that have not been barricaded. Par-
ticipants can inactivate a spill by simultaneously barricading 90% of its starting circumfer-
ence (not its current edge after growth). In this case, the spill permanently stops growing in 
all directions, and its color changes from red to black, indicating to all participants that it is 
now inactive. In order to achieve this, the size of the spill requires that multiple bulldozers 
touch it simultaneously. In trials where blocks are used, a spill can similarly be barricaded 
by avatars placing blocks around it. The spill always grows in directions where it has not 
yet been barricaded. To completely barricade it, the blocks need to form a closed loop 
around the spill. Once a block has barricaded part of a spill’s edge, that block is stationary 
and cannot be picked up again.

In this setup, we integrate HuGoS with several external infrastructures. Participants 
were recruited via Prolific, an online recruiting platform, and then were redirected to an 
external website where they accessed a WebGL instance of the experiment, via the Photon 
cloud server. Data from the experiments were saved to the experimenter’s device. A more 
extensive discussion, including other possible implementations, is found in “Appendix 2”.

4.2  Case study setups

4.2.1  Case study 1: basic collective decision‑making

The first case study focuses on coordination and collective decision-making, with minimal 
communication capabilities. Participants barricade spills with their avatars. Participants 
have to achieve a consensus on the spill they will enclose, and have to coordinate their 
avatar movements to construct a circle around the spill. The size and spawn sequence of 

Fig. 5  Case study 2: Participants have additional communication capabilities via either text messaging or 
elementary signaling. a A participant’s first-person view of the chat window (lower right of window) that 
they can use for in-game text messaging. b A participant’s first-person view of another avatar, that is signal-
ing a desire to lead by displaying a crown
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the spills varies in the three trials. In the first and second trials, a larger spill size requires 
six bulldozers to barricade, while in the third trial, a smaller spill requires only three bull-
dozers. In the third trial, the best score can be achieved if participants split themselves into 
two groups. The variation in spills facilitates the study of speed and accuracy in collective 
decision-making. Additionally, because the best performance in the third trial requires two 
groups, this setup can be used to study changing group structure in a dynamic environment.

4.2.2  Case study 2: messaging and signaling

The second case study is identical to the first, except that participants have the added capa-
bility of explicit communication, either through text communication or elementary sign-
aling. In text communication, the players can exchange messages using an in-game chat. 
Participants can interrupt their avatar control and start typing a message by pressing the 
return key; they can press the return key again to send the message and resume control of 
their avatar. Once sent, the message is visible in the message box for all the other partici-
pants (Fig. 5a). In elementary signaling, participants can choose to display a crown above 
their avatar (Fig. 5b), and are told that this can indicate their desire to lead others. They can 
activate and deactivate the crown at any time by pressing the space bar. After deactivating 
the crown, a participant has to wait 4 s before reactivating it, in order to prevent ‘flashing’ 
of the crown. The two types of communication can be used to study the effect of different 
communication abilities on group dynamics and performance.

4.2.3  Case study 3: stigmergy

In the third case study, participants use a form of stigmergic communication, and can barri-
cade spills by placing blocks. The center of the environment is filled with an unlimited pile 
of blocks (Fig. 6a). Participants can pick these up and release them again using the space 
bar (Fig. 6b). This setup can be used to study indirect coordination via observation of the 
modifications made by others, rather than observation of avatar motion.

4.3  Assessment metrics

With HuGoS, we aim to develop a broad tool that is flexible and easy to use, and that cap-
tures data about human behavior with sufficient detail to support research on individual 
actions as well as group dynamics. To assess HuGoS, we provide the case study results and 

Fig. 6  Case study 3: Participants 
can use blocks to contain a spill. 
a Experimenter’s view of a lava 
spill being partially contained 
with blocks. b A participant’s 
first-person view while transport-
ing a block
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demonstrate example analyses of individual and group behavior. We also evaluate the over-
all performance and usability of HuGoS.

4.3.1  Individual behavior

Each participant has a limited repertoire of actions they can use to interact with the envi-
ronment and other participants. All these actions are captured and available for analysis 
(e.g., avatar position and rotation, time of signaling, or time and content of text messages). 
The unique IDs, positions, and properties of game objects (i.e., bulldozers, spills, and 
blocks) are also captured, along with participants’ interactions with those objects (e.g., the 
IDs and properties of objects in the FoV). A more extensive description of data and analy-
sis types can be found in sections “Data types” and “Analysis types” in “Appendix 1”.

4.3.2  Group behavior

Group behavior is primarily assessed according to a performance score that tracks par-
ticipant success at the given task. Group behavior is also assessed using network analysis, 
according to the degree of centralization occurring in the communication graph.

4.3.2.1 Performance score In each trial, all participants are scored as a single group. The 
score represents the group’s performance at the task of stopping lava spills. The score is 
tracked continuously and is displayed to each participant throughout the game. The score G 
is defined as the total surface area that the group has prevented from being covered by lava, 
for all spills that have appeared. At time t, the score Gt is calculated as:

where Amax
it

 is the surface area that would have been covered by spill i at time t if no barri-
cades had been placed, and Aactual

it
 is the actual surface area covered by spill i at time t.

For example, if participants were to not interact with any spills, then Amax
it

 and Aactual
it

 
would be of equal value, and the score would be Gt = 0 . If participants barricade part of 
the spill, Gt will increase, because Amax

it
 is increasing faster than Aactual

it
 (see Fig. 11). New 

spills appear constantly and grow at different speeds, requiring participants to constantly 
evaluate the best spill to target. Participants receive rough information about score calcula-
tion. Specifically, they are informed that better scores can be achieved if they target larger 
spills, spills that are growing more quickly, spills that are closer. The final performance 
score of a given trial reflects not only the speed and effectiveness of physical maneuvering 
and coordination, but also the speed and accuracy of the collective evaluation of spills.

4.3.2.2 Network analysis Communication networks can represent explicit communication 
such as text messages, or implicit communication such as presence in the FoV. Network 
centralization reflects dynamics of self-organization in the group, such as the emergence 
of implicit ad hoc leadership. We assess player communication as directed networks and 
using indegree network centralization. Indegree network centralization C of a network with 
n nodes is calculated based on Freeman (1978), as:

(1)Gt =

n
∑

i=1

Amax
it

− Aactual
it

,
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where deg(pi) is the indegree (i.e., number of incoming communication connections) of 
player i.

4.3.3  Overall performance and usability of HuGoS

For overall performance and usability, we assess connection issues in the case studies and 
compare them to a controlled latency study with known clients and connection speeds. We 
also assess HuGoS using participant responses to questionnaires. When participants join 
the game, they are given a questionnaire on personality traits related to leadership. After 
the last trial, they receive a questionnaire on their game experience. Finally, assess the 
advantages and limitations of HuGoS from the point of view of a potential experimenter, in 
terms of performance, usability, and flexibility.

5  Results and assessment

Our dataset includes 117 participants (42 females) with a mean age of 25.3 (SD = 7.8) . We 
first summarize the results of each case study (all data are available in the supplementary 
materials7), analyze individual and group behavior, and compare the results of the three 
case studies. Second, we evaluate HuGoS in terms of participant connection and latency, 
and participant questionnaire responses. Finally, we give an assessment of the overall per-
formance, usability, and flexibility of HuGoS as a tool for experimenters.

5.1  Case study 1: basic collective decision‑making

In case study 1, participants need to coordinate their actions to collaboratively barricade 
spills. This task can be completed more effectively if participants improve their speed 
and effectiveness in reaching consensus about the next spill to barricade. This could be 
challenging, as participants cannot communicate directly, and must rely on observing the 
actions of others. We analyze players’ coordination of their positions, as well as the con-
sensuses and group dynamics that support this coordination. We present the results of one 
example trial, with 8 participants.

Figure  7a gives the Euclidean distance between each player and the next barricaded 
spill, over time, during an entire example trial. Each red circle represents an instance in 
which a spill is successfully barricaded and deactivated. Figure 7a shows that the players’ 
positions repeatedly converge toward the next spill. It takes players a much longer time to 
reach a consensus and barricade the first spill than later spills. After the second spill, play-
ers seem to have learned how to take cues from each other and reach consensus, as the time 
to converge on a new spill becomes much shorter. Figure 7b–c shows the results of one 
example trial in terms of a directed connectivity graph, where nodes represent players, and 
an edge from player a to player b corresponds to player b being present in player a’s field 

(2)C =

∑n

i=1
(n − 1) − deg(pi)

(n − 1)2
,

7 The supplementary materials are available in a Zenodo data repository: http:// doi. org/ 10. 5281/ zenodo. 
43848 05.

http://doi.org/10.5281/zenodo.4384805
http://doi.org/10.5281/zenodo.4384805
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of view. In Fig. 7b, indegree network centralization C during one trial is plotted over time. 
In Fig. 7c, the connectivity graph is given, with the weight of connections (indicated by the 
darkness of the lines) corresponding to the percentage of time two players were mutually 
included in each other’s fields of view. The results in Fig. 7b–c are relevant to the analysis 
of collective decision-making, because, if one player is more often in others’ fields of view, 
this player could be expected to have more influence on group behavior. Network centrali-
zation can therefore be taken as an implicit measure of the presence of leadership in group 
dynamics. Figure 7d shows the xy positions of players during one example trial (red circles 
indicate spill locations). To improve plot legibility, a moving average filter with a window 
of 0.6s is applied to the xy positions of each player. Players’ motion trajectories over time 
are indicated by line color (darker lines are later in time). This plot shows the motion coor-
dination achieved between players, as they generally move toward the same next spill, but 
also stay fairly distant from one another, avoiding collisions and interference.

(A)

(B)

(C) (D)

Fig. 7  A trial of case study 1 with eight participants. a Euclidean distance over time, from each player to 
the spill that will be barricaded next (red circles indicate barricade completions). The plot gives both the 
individual players (light blue) and the average of all players in the trial (dark blue). b The indegree network 
centralization of the player field of view (FoV) network over time, during one trial. This measure is used 
as an indication of player network clustering. Vertical red lines indicate barricade completions. c The FoV 
network between players. The darkness of connections represents the percentage of time those two players 
were in each other’s FoV. d xy positions of all players in one trial, used to show player motion trajectories 
over time (darker color lines indicate later times). Spill locations are indicated by red circles (Color figure 
online)
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Overall, the results of case study 1 show that players collaborate fairly well using only 
observation of each other’s movements and the environment. At each instance that a spill is 
deactivated, and consensus must be reached about which spill to barricade next, there are 
up to 14 active spills present in the environment. Throughout the trial, players consistently 
reach a consensus about the next spill and then coordinate their positions to complete a 
barricade.

5.2  Case study 2: messaging and signaling

Case study 2 follows the same setup as case study 1, except that participants are now able 
to communicate explicitly. The additional communication between players could facilitate 
coordination and improve the effectiveness of reaching a consensus. We present the results 
of two example experiment sessions: one in which participants could send text messages, 
and another in which participants could send a boolean signal via crown. We examine these 
two types of communication and their relationships to group behavior and performance.

In sessions with text communication, all messages are broadcast to all other partici-
pants. We present the results of the second and third trials of a single session; the group of 
human participants is the same in both trials and has already interacted as a group during 
one complete trial. Figure 8 shows each message that each participant (indicated by partici-
pant IDs 1–6) broadcasts over time in both trials (blue circles), compared to the group per-
formance score G (in red). In the second trial, shown in Fig. 8a, participants seem to have 
initially struggled with barricading a spill. Several participants broadcast messages in the 
beginning of the trial, while the score does not increase. Once the score begins increasing, 
most participants stop sending messages, and only participant 1 continues sending mes-
sages throughout the whole trial. One interpretation of these results is that participants first 
went through a deliberation phase, after which they agreed on a course of action that is 
led by participant 1. Figure 8b shows the same results for the third trial (performed imme-
diately after the second). Again, participants initially seem to struggle to increase their 
score, although there are far fewer participants sending messages. Presumably, this hap-
pens because the environment has changed to contain smaller spills, which required par-
ticipants to change their strategy, which was perhaps negotiated by the previously chosen 
leader. Toward the second half of the trial, participants succeed in coordinating, resulting 
in a score increase. Participant 1 seems to have maintained a leadership role and continues 

(A) (B)

Fig. 8  Text messaging communication in case study 2 (cf. session 5 in Fig. 11), during two example trials. 
Messages (each blue circle is one message) sent by each participant (indicated by participant ID on the y 
axis), compared to the group performance score G over time (red line). Participant 1 continues to send mes-
sages throughout both trials, and seems to have taken a leadership role (Color figure online)
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sending messages throughout the trial. Participants’ full chat logs are available in the sup-
plementary materials.8

In sessions with boolean signaling (crown on, or crown off), each participant can view 
signals from other participants currently in their FoV. Figure 9 gives the signaling behavior 
of two participants during an example trial (signal activation in red), compared to that par-
ticipant’s indegree—i.e., number of other participants visible in the FoV—in the communi-
cation network (in blue). The first participant, shown in Fig. 9a, activates the crown signal 
for two periods during the trial. This participant has a large indegree during a long period 
following the end of the second activation. The second participant, shown in Fig. 9b, acti-
vates the crown signal during almost the whole trial, with two brief intermissions. This 
participant has fairly high indegree throughout the trial, but with more variation than par-
ticipant 1. A causal analysis of whether signaling systematically influences a player’s cen-
trality in the communication network is beyond the scope of this paper. Participants’ full 

(A)

(B)

Fig. 9  Signaling in case study 2, for two participants in one example trial. Each subplot represents one par-
ticipant. A participant’s crown is displayed when the signal is 1, and is hidden when the signal is 0 (see red 
line). The blue line represents the participant’s indegree (Color figure online)

Fig. 10  An example trial of case study 3, with eight participants. The cumulative number of blocks placed 
at a lava spill by all participants (green), compared to the spill surface area in m 2 (yellow). Participants 
place blocks at a roughly consistent rate and have stopped spill growth 250  s into the trial (Color figure 
online)

8 The supplementary materials are available in a Zenodo data repository: http:// doi. org/ 10. 5281/ zenodo. 
43848 05.

http://doi.org/10.5281/zenodo.4384805
http://doi.org/10.5281/zenodo.4384805
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signaling logs and the data associated with the communication network are available in the 
supplementary materials.9

Together, these results indicate that participants make use of the provided opportunity 
to explicitly communicate, during completion of the task. Further research should be con-
ducted to elucidate the relationships between communication and collective behavior.

5.3  Case study 3: stigmergy

In case study 3, participants use blocks to barricade spills. Each participant selects a spill 
to target when transporting blocks, and can only coordinate with others by observing their 
motions and the blocks they have placed. By influencing the behavior of others through 
environment modification, the participants can engage in stigmergic coordination. We 
describe the results of one example trial with eight participants and two lava spills. Fig-
ure 10 shows the cumulative number of blocks placed at one spill (in green), compared to 
the surface area of that spill (in yellow). The spill surface area initially increases, because 
its growth is not restricted by any barricades. The surface area stagnates when a sufficient 
number of blocks are placed around the spill. The stagnation indicates that the participants 
coordinated their block placements well enough to form a complete barricade loop around 
the spill. The increase in placed blocks occurs at an approximately consistent rate over 
time. Near the end of the trial, when the spill surface remains approximately constant, the 
intervals between block placements become only slightly longer, perhaps indicating that 
participants are taking more time to find a good position for the next block placement.

Collectively, participants were able to completely barricade a spill by coordinating the 
placement of blocks. A more detailed analysis of the coordination mechanisms could be 
conducted, for instance, by combining data represented in Fig. 10 with positional and FoV 
data similar to Fig. 7.

Fig. 11  Score progression in seven sessions of case studies 1 and 2, each consisting of three 5-min trials. 
The legend indicates a session ID number, and the experimental condition in that session: basic indicates 
case study 1; comm indicates case study 2 with text messaging; signal indicates case study 2 with crown 
signaling

9 The supplementary materials are available in a Zenodo data repository: http:// doi. org/ 10. 5281/ zenodo. 
43848 05.

http://doi.org/10.5281/zenodo.4384805
http://doi.org/10.5281/zenodo.4384805
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5.4  Group performance in all case studies

In total, across the three case studies, 131 participants recruited via Prolific took part in 20 
sessions, each consisting of three trials. The group performance score G was recorded in 
all trials. Scores from case studies 1 and 2 can be compared directly, as these sessions were 
identical apart from the communication capabilities. All experiment data are available in 
the supplementary materials.10

Figure 11 compares the score progressions for seven sessions from case studies 1 and 
2. The score varies greatly between different sessions. For example, participants in ses-
sion 4 seem to quickly succeed in coordinating. Once they barricade a few spills, their 
score starts to increase rapidly. Conversely, participants in session 3 did not manage to ade-
quately coordinate, leaving them without a superlinear increase in score. Participants from 
this session were able to barricade some spills in the third trial, presumably because the 
smaller spills did not require the full group to succeed in coordination. Participants in ses-
sion 6 achieved the highest score in the third trial, which indicates that they were the most 
successful at splitting their group into two smaller sub-groups. In summary, the large vari-
ation in scores can reflect a difference in group cohesion, coordination, or strategy between 
sessions. Further analysis into the underlying variables causing these differences could be 
conducted with the data described in Sects. 5.1, 5.2 and 5.3.

Four sessions of case study 3 were conducted, with 6, 7, 8, and 9 participants. Figure 12 
shows the score progression of all five sessions across the three trials. When considering 
session 2 in Fig. 12, for example, the end score of a session seems proportional to the num-
ber of players in that session. The score differences in Fig. 12 are less pronounced than in 
Fig. 11, presumably because performance did not depend on a group’s ability to achieve a 
consensus and synchronously encircle a spill, but rather resulted from participants’ asyn-
chronous coordination of block placement through stigmergy. These results indicate that, 
for experiments with different aims, the score can reflect different aspects of collective 
behavior.

Fig. 12  Score progression across four sessions of case study 3. The legend indicates a session ID number, 
and the number of participants in that session

10 The supplementary materials are available in a Zenodo data repository: http:// doi. org/ 10. 5281/ zenodo. 
43848 05.

http://doi.org/10.5281/zenodo.4384805
http://doi.org/10.5281/zenodo.4384805
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5.5  Assessment of connection and latency

A performance requirement for HuGoS is that participants stay connected throughout an 
experiment, with an acceptable latency between the participants’ game instances. In prin-
ciple, disconnections could occur due to a player having a poor internet connection, issues 
on the server side, bugs in the back-end code, an overflow of traffic caused by the game, or 
the player voluntarily deciding to leave. When more players are connected, it presumably 
becomes more likely one of them will disconnect voluntarily or due to an internet con-
nection problem. When more players join, the traffic through the network also increases. 
Figure 13a shows the number of disconnections against the number of players in five ses-
sions of case study 3. As participants recruited over Prolific are not always available to 
be contacted when connection issues occur, it is not always possible to determine why a 
player disconnected. In most cases, players were able to reconnect to the game server after 
a disconnection. In addition to the case studies described above, we ran a series of quality-
assurance connection tests with known participants (the connection tests replicated two 
sessions of case study 3, with a total of 13 participants). In those connection tests, none of 
the participants experienced a disconnection. Therefore, we infer that most disconnections 
experienced by anonymous players recruited through Prolific were attributable to a poor 
internet connection or a voluntary (perhaps inadvertent) disconnection.

(A)

(C) (D)

(B)

Fig. 13  Assessment of connection issues. a The number of player disconnections experienced by anony-
mous participants recruited from Prolific, in each of the five sessions of case study 3. b The latency (ping), 
defined as the time taken for a message to travel from the player to the server and back, for anonymous 
participants recruited from Prolific. Each value represents a player’s average ping during the first trial. The 
values are plotted for five sessions of case study 3, with different numbers of players. c In-game ping in a 
latency test with known participants, compared with the player’s internet speed. d In-game ping in a latency 
test with known participants, compared to a player’s ping on a standard internet speed test. For (c) and (b), 
outliers are plotted at the edge of the plot with their value
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Another important factor to ensure smooth gameplay is the latency between clients and 
servers. In principle, the latency might be influenced by the number of players connected, 
the geographical location of players, and the players’ internet speed. To assess this, we 
measured latency in terms of ping—the time in milliseconds it takes to send a message 
from the client back and forth to the server—in five sessions of case study 3. Figure 13b 
shows the latency experienced, according to the numbers of players in the session. Most 
players experienced average pings of less than 150 ms. We also ran a series of latency tests 
with known participants (replicating two sessions of case study 3, with a total of 13 par-
ticipants). For these 13 known participants, we compared latency between client and game 
server to the client’s standard ping and internet speed in Mbps, measured with a standard 
internet connection test.11 The in-game latency with respect to unloaded latency and speed 
is shown in Fig. 13c, d. No clear impact from either the number of players or the players’ 
internet speed is apparent from the latency results.

Average in-game latency for most players was in the range 0–200  ms. Most online 
games can be adequately played with delays up to 500 ms (Claypool and Finkel 2014).

5.6  Participant questionnaire responses

At the end of each trial, participants were asked to fill in a questionnaire about their experi-
ence during the experiment. In total, we received completed questionnaires from 117 play-
ers. The answers to the questions are summarized below and in Fig. 14. Participants’ full 
responses are available in the supplementary materials.12

In one set of yes/no questions, participants were asked about the performance and strat-
egies of themselves and others within the task. 84% indicated that they thought they per-
formed well as an individual, while 77% indicated that they performed well as a group. 
Another set of questions asked about leadership within the task. 21% of participants indi-
cated that there was a clear leader in the group, and 44% indicated that they could lead 
others in some capacity. In further research, these answers could be compared to actual 

Fig. 14  Results of post-game questionnaires. (1) I understood the goal of the game. (2) I feel like I per-
formed well. (3) I think we performed well as a team. (4) I felt like I could lead the others. (5) There was 
clearly a leader. (6) Did you experience lag/slow/bad connection? (7) I used my keyboard and mouse to 
control my avatar. (8) I could move my avatar where I wanted. (9) The game was fun

11 Internet connection tests were conducted using https:// fast. com/.
12 The supplementary materials are available in a Zenodo data repository: http:// doi. org/ 10. 5281/ zenodo. 
43848 05.

https://fast.com/
http://doi.org/10.5281/zenodo.4384805
http://doi.org/10.5281/zenodo.4384805
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performance in the trials (Figs. 11, 12), to assess participants’ ability to self-assess. They 
could also be compared to the player networks (see Fig.  7c), to assess the relationship 
between players’ judgments of leadership in the group and actual observed behaviors. In 
an open question, participants were also asked to report their strategy for achieving the best 
performance (available in the supplementary materials).

Participants were also asked questions about their experience with gameplay during the 
experiment. 16% of participants indicated that they experienced problems with connec-
tion or lag at some point during the experiment. 89% indicated that they could correctly 
use their mouse and keyboard to control the avatar and 76% indicated they felt they could 
always move their avatar where they wanted. 94% reported understanding the goal of the 
task, while 74% reported having enjoyed the experience. The issues with avatar control that 
24% of players seemed to have, could be due to connection speed (as part of the 16%) or 
potentially due to a deficiency in the tutorial at the beginning of the game. The open-source 
version of HuGoS will be continually updated to address such issues as they become appar-
ent. Also note that the default response to the questions was negative and that participants 
had to change the answer in order to give an affirmative.

5.7  Assessment of performance, usability, and flexibility

We chose to build HuGoS in Unity because Unity provides a reliable, accessible,13 well-
documented, and well-supported platform for both experimenters and participants. 
Unity supports all common operating systems (including Windows, macOS, Linux, iOS, 
and Android) and supports WebGL14 (Web Graphics Library) in all common browsers 
(Chrome, Firefox, Safari). Participants in an experiment can join via a web browser, with-
out having to download or install any specialized software. Unity’s support and documen-
tation ensure that when participants run HuGoS in a browser via WebGL and cannot be 
directly monitored by an experimenter, user keystrokes will reliably be recorded and sent to 
the game server. The system requirements for both experimenters (i.e., in Unity Editor) and 
participants (i.e., in Unity Players) are minimal,15 although the exact performance, speed, 
and rendering quality will of course depend on the user’s system. Importantly, Unity also 
provides experimenters with an intuitive user interface and open-source repository of code 
examples, increasing the accessibility of HuGoS to experimenters with various levels of 
programming experience. Unity even provides a visual scripting interface, via its Bolt16 
product. Given the interdisciplinarity of this topic, we regard this as a crucial usability 
feature—HuGoS needs to be as accessible as possible to researchers in many fields (e.g., 
psychology or anthropology), regardless of their programming background.

There is no technical limit on the size of the environment in Unity; it can be set as large 
as required for the experiment. If desired, the environment and task can be programmed to 
automatically adjust to changing game specifications. However, there is of course a practi-
cal limit on the size of the environment that can be populated by game objects, in terms of 
time and cost overhead involved for the experimenter. To push back against this limitation, 
however, experimenters could potentially populate infinitely large environments with game 

13 Unity is open-access when used in an academic capacity.
14 https:// devel oper. mozil la. org/ en- US/ docs/ Web/ API/ WebGL_ API.
15 https:// docs. unity 3d. com/ Manual/ system- requi remen ts. html.
16 https:// unity. com/ produ cts/ unity- visual- scrip ting.

https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API
https://docs.unity3d.com/Manual/system-requirements.html
https://unity.com/products/unity-visual-scripting
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objects, with the help of procedural content generation (cf. Shaker et al. 2016; Liu et al. 
2020).

Beyond the functions supported by Unity, HuGoS provides an out-of-the-box solu-
tion for multi-player experiments in scenarios relevant for swarm robotics, including the 
user interface for the experimenter. The HuGoS source code and tutorial is available on 
Github.17 Experimenters can download and use the basic HuGoS setup with the case stud-
ies described in this paper. The only actions required to run basic HuGoS are: (1) update 
the local file path for data storage, (2) make a free account on the Photon game server, and 
(3) define a new application in Photon and link it to the local instance of the HuGoS Unity 
project. Some key changes can be made with minimal adjustments, including the number 
of trials, length of trials, and content of questionnaires. For more extensive changes, cus-
tom models and packages can be easily added, by referring to the documentation of HuGoS 
and Unity. Visual recordings of the bird’s eye experimenter’s view can be made using the 
on-screen capturing tool Open Broadcaster  Software®,18 or equivalent.

6  Discussion

We have introduced HuGoS, a novel multi-user virtual environment built in Unity, 
designed for conducting experiments with human participants interacting as avatars. We 
specifically designed HuGoS to facilitate a wide scope of experiments that we consider of 
interest to the domain of human swarm intelligence. In three case studies, we have shown 
how the features embedded in HuGoS enable experiments across this scope. In all case 
studies, participants completed a task that required both physical coordination and observa-
tion of the environment. In the first case study, we showed that participants could complete 
rudimentary collective decision-making in this setup, reaching consensus to complete a 
task that required cooperation. In the second case study, we showed that participants could 
use make use of two additional channels of communication during the same collective 
decision-making. In the third case study, we showed that participants could complete a task 
that required asynchronous coordination through modification of the environment. The 
base ingredients of these case studies can be used to design many of the scenarios within 
the scope of human swarm intelligence.

Section 5 demonstrates the capabilities of HuGoS in terms of data analysis. The data 
captured from the case studies can comprehensively represent the collective behavior and 
performance of players. Additionally, detailed data on each player’s actions and observa-
tions can be captured and linked to dynamics at the group level. We also implemented 
questionnaires before and after the experiments. In future studies, participants’ responses 
to the questionnaires can then be linked to the behavioral data observed and captured dur-
ing the experiments.

By using a virtual environment, we can implement scenarios that would be either 
impossible or too costly to implement with human participants in real setups. Also, the 
dynamical interactions between participants’ avatars are a better simulation of embodied 
social interactions than existing online multi-participant studies that focus on discrete deci-
sions. Yet, our virtual environment, like most other existing online studies, leaves out many 

18 https:// obspr oject. com/.

17 https:// github. com/ Nicol asCou cke/ HuGoS- code- MAIN.

https://obsproject.com/
https://github.com/NicolasCoucke/HuGoS-code-MAIN
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types of interactions that would be present in real settings, such as eye contact, speech 
characteristics, and body language. Their absence might decrease the ecological validity 
of findings on human behavior (Hermans et al. 2019). Accordingly, we do not propose that 
HuGoS is a replacement for in-person studies. Rather, studies in HuGoS might be comple-
mentary to in-person studies. Our virtual environment enables us to isolate specific interac-
tion types and study their impact on collective behavior, while removing factors that are 
challenging to quantitatively capture (also in in-person studies), such as body language and 
speech characteristics.

We have illustrated the potential of HuGoS for controlled experiments with human par-
ticipants by performing online experiments that participants could run as an online browser 
game from their personal device. Online experiments necessarily require us to give up 
some degree of control over participants’ equipment, internet connection, and voluntary 
behavior. Participants might have variable screen resolutions, computer mice, and internet 
connections. These factors can be better controlled when performing experiments in one 
shared computer room, where the experimenter has better control and overview of condi-
tions experienced by participants, and where every player has the same workstation and 
connection speed  (cf. Zhao et  al. 2018). The choice between online and on-site experi-
ments then becomes a trade-off between logistical ease of recruiting large numbers of par-
ticipants online, and the control and uniformity of on-site experiments.

In terms of technical specifications, we will aim to improve the latency of HuGoS in 
future work. Our current delays do not normally exceed 200 ms, and in real-time strategy 
games such as World of Warcraft, delays can be larger than 500 ms without affecting player 
performance, as performance depends on decisions made on longer timescales (Claypool 
2005). However, in fast-paced games such as first-person shooters, player performance 
might decrease for latencies as low as 100 ms (Claypool and Finkel 2014). Many partici-
pants in our pilot studies had latencies larger than that. However, given that the tasks in our 
experiments do not require such fast coordination, we do not expect this latency to affect 
player performance. Yet, to achieve dynamic real-time interactions between players, we 
would ideally like to see latency around 100 ms. Future versions of HuGoS will aim to 
mitigate delay by further limiting traffic that passes through the server. Latency could also 
be diminished by organizing experiments on a local area network. In the current version of 
HuGoS, the effects of latency are partly diminished by interpolating, e.g., avatar positions 
between network updates in order to achieve the apparently smooth interactions between 
players.

Beyond the workstation and connection conditions of participants, their engagement in 
the study and other voluntary behavior can also be a factor. To reduce the need for moni-
toring participant engagement during the online experiments, we incentivized participants 
with a possible bonus payment for better performance. Additionally, we designed the 
experiment to be intrinsically motivating by making sure that the tasks have a clear goal 
that is neither too difficult nor too easy to achieve, giving participants sufficient control over 
the outcome of the task, and giving them regular feedback about their actions (Nakamura 
and Csikszentmihalyi 2014; Jung et  al. 2010). Given that the experiments are designed 
to be intrinsically motivating, future experiments might also be conducted as “citizen sci-
ence” (cf. Cooper et al. 2010; Sørensen et al. 2016), where participants take part in scien-
tific studies voluntarily, to advance science by contributing to novel solutions or theories. 
Performance trackers such as leaderboards might be an additional motivator  (Wang and 
Sun 2012). However, a game’s intrinsic impetus has often been shown to contribute more 
to motivation and performance than external rewards such as bonus payments and leader-
boards (Nakamura and Csikszentmihalyi 2014; Jung et al. 2010).
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In addition to motivation, many other factors might influence participants’ behavior and 
performance. When a group of participants starts a game as naïve players, a learning curve 
is always present. We expect participants to roughly converge to similar strategies once 
they learn how to play the game. Therefore, while the case studies reported here last for 
only 20 min—consisting of a tutorial and three trials of five minutes each—future studies 
may benefit from longer experiment times. However, with longer game times, new issues 
may arise such as user fatigue, developing stronger social relationships with other players, 
or a higher chance of disconnections. The influence of understanding the game, or devel-
oping strategies, can be investigated by observing the difference between sessions where 
participants go through a tutorial, and sessions where they must figure out the task without 
instruction—similar to what a group of AI agents would have to do if using reinforcement 
learning. Interesting manipulations might also be done by introducing naïve participants 
during an already started experiment, adding an experienced player to a group of naïve 
players, or exchanging participants between game sessions that have converged on different 
strategies. With minor adjustments, HuGoS supports these possibilities by keeping partici-
pants in the room for some time without letting them participate in the game and by run-
ning multiple rooms with the same game simultaneously, between which participants can 
be exchanged.

Many social psychological factors can influence how participants interact with each 
other. For example, experiencing a shared identity with other participants might enhance 
performance. A shared identity might be established by asking participants to imagine that 
they had already experienced a certain event together or by having similar avatar appear-
ances (Titlestad et al. 2019). Interesting manipulations could be done where avatar appear-
ance is varied systematically. Creating two different groups with different avatar character-
istics that compete on a certain task could also yield interesting results.

When conducting experiments in a virtual environment, participant behavior is heav-
ily impacted by whether they believe that other avatars are controlled by humans  (Blas-
covich et al. 2002). When performing experiments solely with human-controlled avatars, 
participants should be informed that other avatars are also human players. In cases where 
autonomous agents are used, an interesting manipulation could be to let some avatars be 
controlled by autonomous agents, while participants are told that they are human con-
trolled (cf. Shirado and Christakis 2017).

In short, we hope that the presentation of the virtual environment, together with the 
presented case studies, illustrates how HuGoS can be used to conduct a wide range of 
experiments and analysis, in a way that is useful to the research community. Although the 
virtual environment provides some level of control over participants’ range of behaviors, 
many factors such as personality, culture, shared identity, understanding, and motivation 
still have to be taken into account. We do not consider these factors merely as artifacts to 
neutralize; they are important modulators of human cognition that could be instrumental in 
understanding successful human strategies in swarm intelligence tasks.

7  Conclusion

We have designed and presented HuGoS, a multi-user virtual environment that supports 
the study of human interactions and group behaviors relevant to the topic of swarm intel-
ligence. HuGoS is a versatile tool that allows implementation of a large number of possible 
scenarios. We have shown the functionality of HuGoS with anonymous human participants 
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in a coordination task, under conditions of (1) dynamic best-of-n collective decision-mak-
ing, (2) additional messaging or signaling, and (3) stigmergic interactions. The software is 
open-source and can be easily adapted to other experiment types. With this contribution, 
we hope to encourage further research into human swarm intelligence, including unique 
aspects of human psychology that are not usually studied under swarm intelligence.

Appendix 1: Detailed features of HuGoS

This appendix provides a more detailed description of the HuGoS architecture described in 
Sect. 3. The sections below describe the general architecture, before moving to the avatar 
capabilities, the data that can be captured, and eventually the types of analysis that can 
be conducted with the captured data. Sections “Avatar capabilities”–“Analysis types” in 
“Appendix 1” are largely reproduced from our previous work (Coucke et al. 2020).

Multi‑player Unity implementation

HuGoS is built in Unity, a 3D game development platform that can support intelligent 
agents in a physically realistic game environment (Juliani et al. 2018). In Unity, basic build-
ing blocks of virtual environments are termed game objects. Each game object represents 
a physical 3D object within the game environment that is subject to physics engines (when 
desired) and can additionally be equipped with specific behaviors, defined through spe-
cific C# back-end scripts. These back-end scripts can be used to define fully autonomous 
artificial behaviors for the game objects and to define player controls (e.g., keystrokes) and 
their impact on game objects. Depending on the behaviors defined via these scripts, we 

Fig. 15  Client and server communication: All clients run their own instances of the game. The experi-
menter is the master client and determines the course of the experiment. Black arrows indicate informa-
tion flow mediated by the server. Full black arrows indicate predominant information flow from the experi-
menter to the players. Dashed black arrows indicate information originating mainly from players. Gray 
arrows indicate local information flow that is not (yet) mediated by the network
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define the categories of game objects in HuGoS to be: (i) passive immobile (e.g., obstacle), 
(ii)  passive mobile (e.g., building block), (iii) controlled by simple rule-based behaviors 
but immobile, (iv) mobile and equipped with a controller to act as an artificial agent, or (v) 
mobile and controlled by a human player. We refer to game objects in HuGoS as avatars if 
they act as artificial agents or are controlled by human players. Using Unity’s networking 
capabilities, we organize the multi-user architecture of HuGoS as follows (see Fig. 15).

Each game object can have multiple behaviors attached to it. For example, an ava-
tar might have one behavior to move according to player controls and another behavior 
to change color according to an environmental stimulus. Game objects can possess many 
behaviors—they have a negligible impact on the game file size during the initial download. 
However, the number of simultaneously updated or activated behaviors is limited by the 
maximum traffic on the server (see section “Networking considerations” in “Appendix 2”).

Game objects influence each other both according to their interactions in the 3D phys-
ics engine (e.g., collisions) and according to their programmed behaviors that govern rules 
of interaction. For example, in order for a player to pick up and move a building block, 
both the player and the block object must be equipped with behaviors that allow for this 
interaction. Physics engine calculations and behavioral interactions are executed locally on 
the client who initiates the interaction. The results from that interaction (e.g., player a car-
ries block x) are then synced to all players over the network (see Fig. 15). After the phys-
ics engine calculations and behavioral interactions are complete, the new positions of the 
game objects are synced over the network. To ensure smooth interactions between players 
during an experiment, the latency between the server and the clients should be kept as 
small as possible (see Sect. 5.5).

The visual appearance of game objects—both avatars and passive objects in the envi-
ronment—can be easily manipulated according to the needs of an experiment. Game 
objects can be adjusted in several ways, while the game mechanics remain identical. Game 
objects are built from meshes and materials—e.g., a mesh in Wavefront ASCII object for-
mat (OBJ) and a material in Material Template Library format (MTL). Meshes and materi-
als for game objects can be built in third-party tools and imported into Unity. For easier 
changes to the visual appearance of game objects, materials with plain colors can be easily 
defined within Unity; an experimenter can make use of the mesh modeling tool ProBuilder 
that Unity provides, or can source mesh models from any third-party open-access CAD 

Fig. 16  Simple environment setup of a collective decision-making scenario. Each participant has a third-
person view of a block avatar that they control. Participants estimate the percentage of blue/red landmarks 
(cylinders) in the environment and indicate their opinion by changing the color of their avatar (for a detailed 
explanation, see Coucke et al. 2020). a Each player has an oblique view of their avatar and surroundings. b 
Top view of the whole environment. c Limited top-down view of an avatar. This figure is reproduced from 
our previous work (Coucke et al. 2020)
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library (e.g., GrabCAD,19 containing over 4 million models). Visual appearance may have 
a substantial impact on player experience, and therefore, an experimenter must have flex-
ibility and control over these features. Some features might also be designed to change 
during an experiment, such as the color of an object changing to indicate a player’s current 
performance at a given task (e.g., see Sect. 4.2.1).

Game objects, such as those in the environment, can be programmed to automatically 
change during runtime, according to the task or the status of other game objects. For 
instance, the experimenter can program given parts of the task and environment to scale 
according to the number of player avatars that join the experiment. Game objects can also 
be instantiated at any time during the experiment. For example, in a simple estimation task, 
all objects might be instantiated at the beginning of the experiment (see Fig. 16b). For a 
dynamic task, the experimenter can program the options to be added at different times dur-
ing the experiment (see Sect. 4).

An experiment session is initiated once the experimenter opens an instance of HuGoS 
and connects to the server. The connection established by the experimenter creates a room 
on the server that can be joined by a predefined number of players from their own HuGoS 
instances. Most of the calculations in the game happen locally on the client instance. Only 
variables that are important for events that have to be synchronized between clients are 
passed through the server. An illustration of this architecture is shown in Fig.  15. The 
course of the experiment is mostly synchronized through messages originating from the 
experimenter client (the master client) to the player clients (full arrows). Changes originat-
ing from the players (such as movement) are indicated by dashed arrows. These changes 
get passed to other players to achieve a synchronized game experience and also to the 
experimenter to keep track of task progression, calculate the score, and store data.

The activities taking place in each instance are divided into three modules: the player 
module, the environment module, and the task module. The player module tracks player 
actions and mediates interactions between players. The environment module instantiates 
and tracks game objects in the scene, including changes made to them by either players or 
controllers. The task module determines the sequence of task-related events in the environ-
ment and passes them to the environment module. By tracking variables in the player mod-
ule and environment module, the task module also keeps track of the task progression (e.g., 
the score). The relevant variables of each module are synced between clients (see Fig. 15).

Fig. 17  Manipulating player 
communication networks. a Each 
player can see other player’s ava-
tar positions; b but the exchange 
of opinions/signals is governed 
by a super-imposed network 
structure. c There can be differ-
ent layers to control different 
communication abilities

19 https:// grabc ad. com/ libra ry.

https://grabcad.com/library
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Avatar capabilities

Each player controls an avatar that is situated in the virtual environment. The capabilities 
of the avatars in a given experiment setup are defined in the player module. In HuGoS, 
players have a first-person or third-person view of their avatar through a virtual camera that 
follows the avatar position and rotation. Players move their avatar by pressing four user-
customizable keys (e.g., WSAD) and rotate via the left/right arrow keys or cursor move-
ment. Depending on the experiment scenario, specific additional actions can be activated 
for the avatars. For example, the player can be permitted to manipulate the environment 
by clicking on game objects to grab them, then moving, and releasing the cursor to move 
them. Indirect communication between players can occur via changes to the environment, 
for instance, by moving game objects or by changes to display features of the player’s ava-
tar, such as color. Direct communication can also be permitted—and limited as desired—
by sending written messages. In the player module of HuGoS, the players’ environment 
perception can be controlled firstly by changing the field of view (FoV) of the player. A 
player that has a limited top-down avatar FoV (Fig. 16c) can only perceive the environment 
in a small perimeter, while a player that has first-person avatar FoV (Fig. 16a) can see a 
much greater proportion of the environment (Fig. 4b) in the viewed direction. Unlimited 
top-down FoV—similar to the view of the experimenter—is also possible, giving a player 
global view (Fig. 16b). Additionally, game objects can be programmed to be invisible to 
players, or to be visible only for a subset of players.

Player interactions can be modulated by changing the structure of the player networks 
in the player module, which are directed graphs. If a player network is fully connected, for 
instance, then every player can interact with all other players in the way associated with 
that network. Player networks manage different types of interaction and have independently 
defined structures. For example, a fully connected network might be defined for viewing 
avatar positions, while a sparsely connected network might be defined for viewing avatar 
colors (Fig. 17c). Player networks also govern explicit message passing between players. 
As connections are directional (e.g., player 1 might be able to see player 2, while player 
2 cannot see player 1), the information privileges of players can be made hierarchical 
(Fig. 17b). Certain players can have higher node indegrees or outdegrees. The structure of 
player networks can be changed during experiment runtime, and can optionally be triggered 
by the players. For instance, players might be permitted to ‘follow’ another player by click-
ing on its avatar, causing their own decisions to automatically copy those of the followed 

(A) (B)

Fig. 18  Implementation of robot models as autonomous agents. a Three robot models are in the same envi-
ronment as a player-controlled avatar (blue cube). b The robot models follow the player-controlled avatar 
(blue line) at a certain distance. This figure is reproduced from our previous work (Coucke et  al. 2020) 
(Color figure online)
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player, until that player is un-followed (for an implementation, see Coucke et al. 2020). The 
ability to control communication links between players also allows for comparison between 
limited communication networks and fully connected communication networks. This can 
facilitate the study of information cascades, bias in the group, or dysfunctional dynamics 
that may lead to low performance. Avatars can also act as autonomous agents when their 
behavior is controlled by algorithms. In some cases, these autonomous avatars might have 
the same visual appearance as player avatars. In other cases, they might be accurate models 
of actual robots. These autonomous can interact with each other, the environment, and with 
player-controlled avatars. Figure 18 shows an implementation where three robots interact 
with a human-controlled avatar in the same virtual environment. The control of the robots 
is given in Algorithm 1 (for details, see Coucke et al. 2020). 

Data types

Data about the players, environment, and task are logged for analysis. Each player has a 
unique anonymized player ID (defined by the recruiting service in most cases), and each 
avatar has an avatar ID. These two IDs are important in cases where players switch avatar 
identities between trials, so that the behaviors of specific players can be analyzed sepa-
rately from the features accumulated by a shared avatar. Additionally, the player IDs would 

Fig. 19  Primary variables from the environment can be used for analyses specific to the experimental con-
ditions, for calculation of secondary variables, and to conduct further analyses
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be important when the experiments would be conducted in a lab environment (e.g., play-
ers occupy the same physical environment and can communicate, or players’ physiological 
data is monitored, such as EEG). Avatar capabilities, positions, orientations, fields of view, 
and actions are all logged, according to the avatar ID. These logs enable the calculation of 
other simple data about avatars, such as which other avatars are in one avatar’s FoV. Mes-
sages passed by avatars are also logged, including the content, time, sender avatar ID, and 
receiver avatar ID. All other player interactions are also tracked and logged as events—for 
instance, a player choosing to follow another player—again including content, time, and 
sender and receiver IDs. Changes in the environment are also logged, including positions 
and states of all game objects. When artificial agents such as robots are included in a setup, 
their positional data can be logged in the same way as other avatars (Fig. 18b). Addition-
ally, any data specific to that agent can be logged. For instance, in a setup with models 
of e-puck robots  (Mondada et  al. 2009), proximity sensing and motor control might be 
logged.

Analysis types

The data logged as primary variables (i.e., recorded directly) allow many secondary vari-
ables to be calculated and analyzed during runtime or post-processing (Fig. 19). Here, we 
use task performance as an illustrative example. Task performance can be continuously cal-
culated by the task module, according to the specific scenario. For example, in a flocking 
scenario the task performance would depend on player positions; or in decision-making, on 
player opinions. Once task performance is calculated, additional analysis might assess, for 
instance, how this performance relates to the in-game behavior of players. Player behavior 
might be represented by distances between avatars, the network of implicit connections 
between individuals that occur when avatars enter each others’ fields of view, or the net-
work of direct messages between players with connection weights representing message 
frequency. The primary variables also allow for analysis of individual behavior, which can 
be used to give feedback to players during the experiment. For instance, in a collective 
decision-making scenario, comparing individual opinion to overall task performance yields 
relative player performance. If this is provided as feedback to players, players can use it to 
determine and display their opinion confidence. If the calculated player performance is not 
provided to the player when the player determines opinion confidence, then a comparison 
of these two variables will yield the player’s self-assessment (i.e., the ability to evaluate 
their own performance). Using player IDs, out-of-game data can also be used in post-anal-
ysis. For example, each player might be asked to fill in a questionnaire about personality 
traits or subjective experience during the game. In an extended out-of-game setup, game-
play could even be linked to real-time physiological recordings, such as eye-tracking, ECG 
or EDA tracking of stress (Weibel et al. 2018), or neural recordings via EEG or fMRI. Such 
extensions could be used to analyze the connection between individual cognitive mecha-
nisms and collective performance during gameplay.

Using the data gathered, several behaviors can be studied both implicitly and explicitly. 
For example, players who wish to lead others could display a crown to signal their desire 
to lead. They could also try to lead others by acting as an example to be emulated. Vari-
ous leadership options could be used to study social learning patterns using HuGoS. To 
analyze social learning explicitly, participants could be given a control option to click on 
another player’s avatar and activate a follow behavior, making the follower automatically 
adopt the choice of the chosen leader. Social learning could also be studied implicitly. For 
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example, the field of view, position, and performance data from an experiment could allow 
the experimenter to infer whether a player discovers a new strategy by watching other play-
ers, or by executing their own trial-and-error process.

Appendix 2: Detailed setup of additional infrastructure

To carry out these case studies experimentally, the HuGoS platform was integrated 
with external tools that provided the networking service, data recording, and participant 
recruitment.

Networking considerations

As described in Sect. 3.3, the networking part of HuGoS is built on PUN.20 Every game 
takes place in one room. Multiple rooms can be opened simultaneously. This means that 
multiple experiment sessions can be run simultaneously, in different rooms. The limit on 
the number of players is not likely to arise from explicit restrictions by Photon. Rather, the 
number of players that a room can support is the result of the ‘server side limit for client 
buffers’ which is 500 KB. Since every player receives information from all the other play-
ers in the experiment, this puts the actual limit on the number of players and attributes that 
can be synchronized. The maximum number of simultaneous participants in a shared envi-
ronment thus depends on the requirements of the specific experiment.

Data extraction

Data from the experiments can be recorded either locally or online. In the local version, 
all the data about the task and the participants are stored in a csv file on the experimenter’s 
workstation. In the online version, the data of all participants are sent to an online file (e.g., 
Google Docs) via a webhook; in this case, the experiment can take place without the pres-
ence of the experimenter, but it generates extra traffic. In the experiments presented in this 
paper, data were recorded locally.

Participant recruitment

In the current version, HuGoS is fully accommodated to run online experiments. Partici-
pants are recruited via an online platform and can access the experiment in a browser win-
dow. This implementation has the advantage that many participants can be recruited with 
minimal time and cost. Alternatively, HuGoS could be easily adapted to conduct experi-
ments in laboratory settings which would allow the experimenter to have more control over 
the participant behavior and internet connection. Since these approaches are well estab-
lished (e.g., Zhao et  al. 2018; Boos et  al. 2019), we do not discuss them here. Instead, 
we investigate HuGoS’s potential to facilitate experiments in a completely online way—
including the difficulties and limitations.

20 We used the free open-access version that allows up to 20 concurrent users; using the paid license ver-
sion, Photon can in principle support up to 50,000 concurrent users.
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An important challenge when recruiting participants online is to make a certain number 
of participants simultaneously log in and stay connected to the platform. Addressing this 
challenge requires making choices as to the following: (1) the way through which to recruit 
participants, (2) how to maintain the right number of participants in the trial, and (3) how 
to reimburse the participants.

Recruitment process

We discuss three approaches for planning experiments and recruiting participants: instan-
taneous recruitment, planned recruitment, and ad hoc voluntary participation. The first two 
approaches can be done with online recruiting platforms. In these case studies, we used the 
online recruiting platform Prolific21 to recruit participants. We opted for Prolific instead of 
other platforms such as Amazon Mechanical Turk because Prolific enables the selections 
of participants based on past performance and participation (Palan and Schitter 2018).

In the first approach, participants can be allowed to join a game lobby in real time until 
enough players joined to start a session. This approach only works if a large number of 
participants are instantly available. If not, participants joining earlier will have to wait too 
long in the lobby and might leave again. In our experiments, participants usually joined fast 
enough to make all players stay. The experimenter can define the number of participants 
required for a given study. Once they registered for a study, participants are giving a link 
to the website where they can access their HuGoS instance by entering their Prolific ID. 
At the end of the experiment, participants receive a code that they can enter on Prolific to 
receive reimbursement.

The second approach for recruiting participants is to design a schedule with different 
time slots that participants can join. This approach works both with online recruiting plat-
forms and other avenues such as student recruitment at universities. This approach provides 
the possibility to compose groups of participants based on questionnaires administered at 
some time before the experiment. A disadvantage of this approach is that the right num-
ber of participants rarely shows up at the scheduled time, especially in the case of online 
platforms.

A third approach makes use of online citizen science (e.g., Cooper et  al. 2010; Heck 
et  al. 2018). In this approach, participants can voluntary participate in the study at any 
time. This would require volunteers to be able to start studies at any time on a website that 
is constantly active and captures data of any game played. The ad hoc volunteering might 
make it difficult to have the desired number of players to start a session at any time.

The right number of participants

Since the participants’ behavior and internet connection cannot be controlled, the planned 
number of participants will not always show up. When working with instantaneous recruit-
ment, the number of participants that can connect to the game server within several min-
utes is usually lower than the number recruited—even when all participants join the study 
at the same time. This might be due to some participants’ slow internet connection, or by 
the participant’s own decision to delay connecting to the server. Additionally, participants 
might disconnect during the experiment (see Sect.  5.5). Therefore, we always opted for 

21 https:// www. proli fic. co/.

https://www.prolific.co/
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redundancy in players; for example, a session of 7 or 8 spots was created for a session with 
6 participants.
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