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Abstract

Coordination in a group relies heavily on the type and quality of interactions
and communication among individuals. In swarm robotics, communication can
make the difference between a heap of isolated robots working independently of
each other, and a connected swarm displaying self-organisation. Communication
between robots in a swarm can be indirect, for instance through stigmergy
whereby robots exploit the sign of previous actions to coordinate, or direct, by
means of messages exchanged among robots for the purpose of influencing each
other’s behaviour. In the latter case, messages can consist either of simple signals,
or more structured information, possibly encoding some concept representing
features of the environment or of the desired coordination outcome. More
complex communication can support more complex self-organising behaviors,
deeply impacting on how the swarm tackles the task at hand. In this work, we
consider different ways of exploiting communication in the context of a foraging
task, in which robots search an open environment for resources to be exploited.
Foraging requires abilities such as navigation, exploration and collective decision
making. Coordination within a foraging context can lead to higher efficiency
in exploiting resources, both in the short or in the long run, by avoiding over-
exploitation. Throughout my thesis, foraging is used as a means to study the
coupling between different communication processes and the undertaking of a
meaningful task by the robots. Specifically, we study three different uses of
communication during foraging.

Firstly, we focus on simple aggregation of information, and study three
parameter-free information processing mechanisms. These result in varying
behavior, from the selection of a single resource by the whole swarm to the
robots splitting among the resources present. This study is supported by an
extensive analysis of navigation and congestion, helping to explain how swarm
density can affect the perceived quality of a resource.

Next, we consider an exchange of more complex signals, inspired by the
honeybee value-sensitive decision making abilities. This results in a fine-grained
load-balancing between resources, suitable for an adaptive exploitation of sources
at the collective level, without requiring individuals to compare the profitability of
different sources or a central planner with global knowledge of the environmental
conditions.

Last, we tackle the case of robots talking about the resources, that is, assigning
names to resources following dynamics typical of language evolution. Such a
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process initially leads to a temporary segregation of vocabulary, closely tied to the
swarm’s topology. However, over time, the swarm converged to a comprehensive
and accurate description of its surroundings, encompassing all relevant resources.
The emergent naming conventions facilitated effective coordination and decision-
making within the swarm, highlighting the potential of language dynamics in
enhancing collective behavior in complex environments.
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Chapter 1

Introduction

In multi-robot systems, collaborative efforts towards a common objective often
yield enhanced efficiency compared to individual agents operating independently.
The group performance arises not merely from the individual robot behaviors
but from the intricate interactions and coordination that occur among them,
facilitating the accomplishment of the shared goal. Swarm robotics, as a research
domain, delves into the design of multi-robot systems with an emphasis on
coordination and communication between relatively simple robots, fostering the
emergence of complex collective behaviors (Dorigo et al., 2021).

A crucial aspect of designing robot swarms is the principle of self-organization,
which stems from the numerous local interactions occurring among robots and
between robots and their environment (Şahin, 2004; Brambilla et al., 2013).
These local interactions are frequently designed with inspiration from natural
systems, drawing upon the intricacies of animal societies as guiding principles.
Specifically, social insects, such as ants, bees, and termites, have proven to
be a valid source of inspiration due to their ability to perform complex tasks
through decentralized, self-organized mechanisms. By emulating the cooperative
strategies and communication methods observed in these insect societies, swarm
robotics harnesses their inherent robustness, adaptability, and scalability. This
biomimetic approach facilitates the development of efficient and resilient multi-
robot systems capable of addressing a myriad of real-world challenges, including
search and rescue missions, environmental monitoring, and precision agriculture
(Dorigo et al., 2020).

In this context, communication plays a crucial role in enabling individual
robots to effectively collaborate and exhibit sophisticated collective behaviors. By
implementing well-designed communication protocols, robots can exchange vital
information, synchronize their actions, and cooperatively adapt to dynamically
changing environments. Swarm robotics research predominantly identifies three
interaction modalities: indirect communication, direct interactions, and direct
communication (Trianni and Dorigo, 2006). Indirect communication, commonly
observed in insect societies, is often referred to as stigmergy. It involves communi-
cation through environmental modifications, such as ants depositing pheromones
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14 CHAPTER 1. INTRODUCTION

during foraging activities (Deneubourg et al., 1990; Garnier et al., 2007). Direct
interactions entail physical contact-based influence between individuals, eliciting
a response in the receiving party (e.g., pulling/pushing forces during collective
transport, see Kube and Bonabeau, 2000). Lastly, direct communication entails
the real-time exchange of information between individuals without physical
contact and is the most prevalent interaction modality in swarm robotics.

The choice of communication modality in swarm robotics depends on the
task and environment the swarm operates in. Direct communication has been
employed as a foundational mechanism in the implementation of swarm behavior,
helping with the tackling of various tasks. For instance, self-organized aggregation
(Soysal and Sahin, 2005; Dorigo et al., 2004; Cambier et al., 2021) enables robots
to autonomously form clusters, which can enhance the system’s fault tolerance
and simplify tasks that require group effort; to achieve aggregation, robots
communicate to signal their presence and favour the formation of a large cluster.
Morphogenesis (O’Grady et al., 2009; Rubenstein et al., 2014; Slavkov et al.,
2018) enables robots to generate complex shapes and structures, supporting
the creation of adaptive and reconfigurable systems; to achieve morphogenesis,
robots communicate by exchanging messages about when and how to expand the
forming structure. Foraging (Ducatelle et al., 2011c; Talamali et al., 2020) focuses
on the search, collection, and transportation of resources; to achieve foraging,
robots communicate to share the location and quality of resources. Flocking
(Baldassarre et al., 2006; Çelikkanat et al., 2009; Ferrante et al., 2014) enables
robots to coordinate their movements as a cohesive unit, so to maintain group
integrity while traveling; to achieve flocking, robots communicate their preferred
motion direction and velocity. Furthermore, direct communication has exhibited
its versatility by replicating other interaction modalities in swarm robotics. One
notable example is the emulation of pheromone-based communication through
the use of robot chains (Ducatelle et al., 2011b; Nouyan et al., 2009; Campo
et al., 2010; Ferrante et al., 2013).

Notwithstanding the recognised relevance of communication in swarm robotics,
the interplay between the behaviour dynamics and the communication protocols—
i.e., the rules and conventions that determine the transmission of information—
has not been extensively studied. As a matter of fact, often the communication
protocols are a priori defined and the swarm behaviour is then designed to
optimise a given performance metric. Mostly, the effects of the communication
system on the swarm performance are studied with respect to limitations in
range (how far each robot can exchange messages) and bandwidth (how much
information each robot can exchange). The communication protocols themselves
are rarely the object of study. The overall goal of this thesis is to shed light on
the mutual influence among communication protocols and collective behaviours.
We chose foraging as the reference collective behaviour, as it represents relevant
tasks for many application domains (see also Section 1.1).

The contribution of this thesis is the exploration of how communication
methods affect and are influenced by foraging tasks. The different studies that
compose this thesis contribute to reveal the impact of different communication
protocols on swarm efficiency and decision-making, and how these adapt in
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dynamic foraging scenarios. Additionally, the role of embodiment and situated-
ness is investigated in relation to language dynamics, offering new insights into
the intricate relationship between task execution and communication in robotic
swarms. In particular, on the one hand, this thesis demonstrates how different
communication protocols are sufficient to radically impact the complex dynamics
of a foraging behaviour, whereby robots navigate an open environment to locate
and utilize resources. More specifically, the study focuses on the effects of the
communication protocols on the swarm topology and the collective performance.
On the other hand, the thesis explores how complex forms of communication
can emerge from the task execution dynamics. Specifically, the communication
system is made adaptive by the exploitation of language games, which lead to
the emerge of words that are relevant to the foraging task. The thesis studies
how the emergent communication system can be considered a tool to describe
how the swarm experiences the environment. In other words, the thesis provides
a demonstration of how the collective knowledge emerging from robot interac-
tions can be exploited to accurately represent the working environment, hence
pointing to a novel way of exploiting communication for more adaptive and
flexible collective behaviours.

In the remainder of this introductory chapter, we first introduce more details
about foraging as a suitable playground for studying the effects of communica-
tion in swarm robotics, focusing on aspects such as navigation, exploration, and
decision-making (see Section 1.1). Then, we touch upon the varying degrees of
communication complexity, ranging from basic to intricate forms, and discuss
their relationship with task performance, especially information aggregation
mechanisms (see Section 1.2). Subsequently, we outline the principal contribu-
tions of this thesis in Section 1.3. Lastly, we provide a detailed description of
the thesis content and organization in Section 1.4.

1.1 Foraging

In this thesis, foraging represents a prototypical example to investigate the
interplay between various communication processes and the execution of a
meaningful task by the robots, ultimately examining how this relationship
contributes to accurate decision-making during task execution. This investigation
will focus on two main objectives: (i) to evaluate the efficiency of a swarm during
foraging and its ability to make decisions based on environmental conditions while
utilizing various communication protocols, and (ii) to analyze how the swarm’s
engagement in a task—particularly in terms of emergent network topology—
influences language game dynamics. By addressing these aims, we strive to
deepen our understanding of the intricate relationship between swarm behavior
and communication, ultimately contributing to new paradigms for the design of
swarm robotics systems.

Foraging refers to the process of searching for resources within an unknown
environment. Resources in foraging are typically generated or made accessible in
specific regions, known as sources. Foraging theory is often examined in terms of
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optimizing the payoff that results from a foraging decision. In many behavioral
ecology models, this payoff is represented as the amount of energy an organism
acquires per unit time, minus the cost of foraging. However, in swarm robotics,
the cost is frequently disregarded, with emphasis placed on the efficiency of
resource retrieval from sources distributed throughout an arena. Foraging tasks
can involve abstract sources (e.g., zones to reach) or tangible resources (i.e.,
items to collect), with various spatial distributions (e.g., uniformly throughout
the environment or clustered). These experimental setups serve as analogs for
tasks necessitating exploration and exploitation, such as mining, cleaning, or
search and rescue operations.

While the primary objective of foraging is typically to maximize exploitation,
other goals may emerge depending on the specific application. For instance,
in hazardous environments, a swarm may prioritize exploiting a single source
to prevent excessive and unsafe dispersal of individual agents. Conversely, if
congestion is a concern, swarm agents may prefer to distribute among multiple
sources to minimize interference and achieve a balanced exploitation of sources.
In search and rescue scenarios, the focus shifts to enhancing exploration, enabling
the swarm to comprehensively locate points of interest, such as victims in need
of rescue.

At the swarm level, foraging necessitates capabilities including navigation,
exploration, and collective decision-making to effectively exploit the available
sources as a group. The most rudimentary approach to navigating and exploring
within a confined area is the random walk. This method involves robots moving
in random directions with varying step lengths, allowing for unbiased exploration
without any prior knowledge of the environment. Though not highly efficient, this
method guarantees that robots will eventually reach all parts of the environment,
albeit potentially over an extended duration due to repeated visits to already
explored areas. To improve upon purely random exploration, robots can employ
memory and mapping techniques to avoid revisiting previously explored regions
(Thrun, 2008) and to target specific areas of interest. Odometry is one of these
techniques, aiming to estimate a robot’s position and orientation based on its
sensors and actuators, typically involving measurements of wheel rotations or
accelerometers, which provide information on the robot’s movement relative to a
known starting point. However, the integration of such navigational information
over time is inherently susceptible to errors. As robots rely on the accumu-
lated sensor data to determine their position, any inaccuracies or noise in the
measurements can cause a gradual drift in their estimated location. This drift,
compounded over time, can lead to significant discrepancies between the robots’
perceived position and their actual location within the environment, ultimately
affecting their ability to efficiently navigate and explore the designated area.
Social odometry (Gutiérrez et al., 2010) rectifies these inaccuracies by enabling
robots to share their positional data and aggregate it with their own, ensuring
enhanced precision in self-localization and navigation towards designated areas.

In scenarios featuring multiple sources within the environment, a collective
decision regarding their exploitation is necessary for the swarm to operate
cohesively. Focusing on the exploitation of a single source may be advantageous
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under certain conditions, such as when a sufficient number of robots must
be aggregated to support collective localization or when exploitation requires
multiple robots at the source. Alternatively, excessive robot density can lead
to congestion, and partitioning the swarm can be beneficial depending on the
environment’s layout.

1.2 From simple communication to structured
language

As previously discussed, communication is a cornerstone of swarm robotics,
enabling coordination of activities. Throughout this thesis, we explore a range
of communication methods, from simpler forms to more complex ones, and
explore how the resulting decision-making processes influence both the swarm’s
performance in foraging tasks and its ability to interpret the environment it
navigates. Communication methods can be grouped within three broad categories:
indirect communication (stigmergy), direct interactions (such as pulling/pushing
forces between robots), and direct communication (messages sent and received).

Collective behaviours in robot swarms typically rely on straightforward
communication processes, which consist of simple and direct exchanges of a
limited amount of information. This is because swarm robots are often assumed
to be simple and limited in their computational and communication abilities.
Hence, basic communication mechanisms often utilize pre-defined signals or
messages to facilitate cooperation among swarm agents. While such an approach
is effective in certain situations, it offers limited adaptability to variations in
the task or alterations in the working environment, posing a constraint on the
swarm’s autonomy.

One approach to expand communication capabilities in swarm robotics is to
examine the communication strategies found in biological systems. For example,
animal societies often exhibit complex communication systems that involve
various modalities, such as visual, auditory, and chemical cues. By studying
and emulating these systems, researchers can develop innovative communication
methods for swarm robots.

Similarly, neural networks can play a significant role in enhancing communi-
cation within robot swarms. By employing artificial neural networks, robots in a
swarm can learn and adapt their communication strategies based on the data
they receive from their environment and interactions with other robots. Neural
networks can be trained to recognize patterns and associations, allowing swarm
robots to generate more complex and context-dependent communication signals.

Another approach relies on behavior modules, as a means to enriching
communication systems in swarm robotics. These modules are predefined sets of
behaviors that can be combined and activated to suit a specific situation or task.
By implementing behavior modules, swarm robots can adapt their communication
strategies based on the current context, allowing for more efficient cooperation
and coordination.
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In the cases presented above, the rules of communication are often designed
specifically for the task at hand. In order to enhance the adaptability and
performance of swarm robotics, it is crucial to explore alternative communica-
tion systems that go beyond basic predefined signals or messages. To address
the inherent limitation of a local sensory system, while still aligning with the
principles of swarm robotics, adaptability can be enhanced by incorporating
self-organization into the communication process layer. Developing more sophis-
ticated communication capabilities in swarm robotics would allow swarms to
engage in advanced negotiation dynamics, particularly in changing environments
where conditions may significantly vary over time. This would help swarms
better address the challenges posed by changing environments or complex tasks,
ultimately improving their autonomy and cooperative abilities.

One potential approach to achieving this objective draws inspiration from
the field of linguistics, specifically through the concept of language games. These
games are designed for agents or robots to engage in turn-based interactions,
simulating real-world dynamics that contribute to the emergence of structured
language. Language games serve as minimal algorithms that exhibit key charac-
teristics of comprehensive languages while also demonstrating their adaptabil-
ity.One potential approach to achieving this objective draws inspiration from
the field of linguistics, specifically through the concept of language games. These
games are designed for agents or robots to engage in turn-based interactions,
simulating real-world communication dynamics that contribute to the emergence
of structured languages. They are shaped by cultural evolution principles, reflect-
ing the collective and local interactions seen in natural language development.
Language games serve as minimal algorithms that exhibit key characteristics of
comprehensive languages while also demonstrating their adaptability.

Through language games, robots can develop and adapt their communication
strategies, enhancing their coordination and efficiency in task execution, particu-
larly in dynamic foraging scenarios. Language games thus play a crucial role in
demonstrating the capability of robot swarms to evolve complex, context-specific
communication methods.

1.3 Main Contributions

In this thesis, we aim to examine the relationship between a specific task (foraging)
and various communication methods (all falling within the broad category of
direct communication methods) used by robot swarms. In particular, we focus
on how task and communication influence each other.

First, this thesis aims to understand how different ways of communication
among robots in a swarm affect their ability to work together while searching
for and gathering resources. In particular, we will look at how different commu-
nication protocols impact the swarm’s ability to forage efficiently, the way the
swarm’s topology changes over time, and how robots make decisions and use
available resources.

Additionally, the thesis explores how the execution of a specific task impacts
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the way in which robots exchange information. In this context, communication
protocols are not examined in isolation but in relation to the swarm’s foraging
dynamics. This allows us to study communication protocols over complex and
dynamic topologies resulting from the swarm’s foraging. On top of that, when
language games are used to create words, we observe how these are anchored in
their environment, linked with the task at hand. This addresses the question of
how language can be used as a tool for describing the environment in relation to
a given task.

The main contributions of this thesis are highlighted in the following.

• The initial communication protocol we study is social odometry, by which
robots share with each others information based on their proprioception to
correct odometry errors (Gutiérrez et al., 2009). We introduce three novel
mechanisms that do not require any specific parameter and have varying
levels of tolerance for conflicting information (Miletitch et al., 2013b).

We analyzed the impact of each mechanism on the swarm’s resource
exploitation, environmental navigation, and resulting topology and its
link with communication between robots. Furthermore, we tested these
approaches in more intricate scenarios that involve object manipulation
(Miletitch et al., 2013a). The obtained results, particularly those related
to social odometry and congestion, serve as a foundation for my following
research. This work is discussed in Chapter 4.

• Building on top of the previous study, we studied how an algorithm
inspired by the nest site selection behaviour (NSS) of honeybees can best
exploit communication about the areas of interest to support foraging
(Miletitch et al., 2018). Unlike the information aggregation mechanisms
exploited within social odometry, as mentioned above, which are inflexible
with respect to changes in the environmental conditions, NSS enables
sustainable foraging in a multiple resource context and is flexible to varying
contingencies. This contribution is developed in Chapter 5.

• Lastly, we introduce two language games, namely the Minimal Language
Game and the Category Game (Miletitch et al., 2022), performed by the
robots on top of the NSS algorithm introduced in the above research. We
present how varying and evolving topologies influence the way language
games are played, and how this affects the convergence of the vocabulary
within the swarm and its subgroups. Additionally, we study how language
games can be used to provide a correct and complete description of the
swarm’s environment. This study is presented in Chapter 6.

• In addition to the research on social odometry and NSS algorithms, we pro-
pose a framework for advanced communication in swarm robotics (Cambier
et al., 2020) with a focus on language games and more complex cognitive
representations and behaviors. This framework highlights the potential for
interdisciplinary research using swarm robotics as a test bed, particularly
in the fields of linguistics and sociology. Ultimately, this could lead to the



20 CHAPTER 1. INTRODUCTION

development of more sophisticated swarm robotics systems that can adapt
to complex environments and tasks. This framework is discussed in the
conclusions, with some preliminary results as examples.

Relevant publications:

• R. Miletitch, V. Trianni, A. Campo, and M. Dorigo. Information aggrega-
tion mechanisms in social odometry. In Proceedings of the 20th European
Conference on Artificial Life (ECAL 2013), pages 102–109. MIT Press,
Cambridge, MA, 2013b

• R. Miletitch, M. Dorigo, and V. Trianni. Balancing exploitation of re-
newable resources by a robot swarm. Swarm Intelligence, 12(4):307–326,
2018

• N. Cambier, R. Miletitch, V. Fr éemont, M. Dorigo, E. Ferrante, and V.
Trianni. Language evolution in swarm robotics: A perspective. Frontiers
in Robotics and AI, 7:12, 2020

• R. Miletitch, A. Reina, M. Dorigo, and V. Trianni. Emergent naming
conventions in a foraging robot swarm. Swarm Intelligence, 16(3):211–232,
2022

1.3.1 Additional contributions

Contributions to additional studies were provided during the timeframe of the
PhD studies. I participated in the research aimed at the creation of a novel
tool to design automatically the control software for robot swarms (Francesca
et al., 2014, 2015). This tool, named AutoMoDe-Vanilla and later developed in
another version called AutoMoDe-Chocolate, combines simple behavioral blocks
and optimizes the resulting behavior in order to create a control software for
a robot swarm. The aim of the studies I participated in was to test this tool
against behaviors designed by human experts of the field under a constraint of
time. I was one of the programmers recruited for the study. Results revealed
that in both articles, the automatic tool outperformed on average the human
expert designers.

Additionally, I participated to a research study about quantifying the link
between the local scale and the global one in the context of foraging and decision
making (Reina et al., 2015a). In this context, I provided code for simulated
robots and contributed to develop the overall swarm behaviour that have led to
the experimental validation.

Finally, I participated in a study that explored the cultural evolution of
language in swarm robotics, specifically examining the human self-domestication
(HSD) hypothesis (Cambier et al., 2022). This hypothesis posits that the evolu-
tion of modern languages may be partially attributable to the self-domestication
of the human species. To investigate this hypothesis and the process of language
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evolution in general, we created an embodied model using swarm robots, simulat-
ing the effects of prosociality on language formation. Our model featured robots
in multiple nests engaged in a foraging task while playing a naming game, with
novel features such as robot individuation and parametrizable prosociality. The
results demonstrated the formation of an “in-group bias”, an increased efficiency
in resource collection with higher prosociality values, and the modulation of the
effect of physical distance on lexical convergence by prosociality.

Relevant publications:

• G. Francesca, M. Brambilla, A. Brutschy, L. Garattoni, R. Miletitch, G.
Podevijn, A. Reina, T. Soleymani, M. Salvaro, C. Pinciroli, et al. An ex-
periment in automatic design of robot swarms: Automode-vanilla, evostick,
and human experts. In Swarm Intelligence: 9th International Conference,
ANTS 2014, Brussels, Belgium, September 10-12, 2014. Proceedings 9,
pages 25–37. Springer, 2014

• Francesca, M. Brambilla, A. Brutschy, L. Garattoni, R. Miletitch, G. Pode-
vijn, A. Reina, T. Soleymani, M. Salvaro, C. Pinciroli, et al. Automode-
chocolate: automatic design of control software for robot swarms. Swarm
Intelligence, 9 (2-3):125–152, 2015

• A. Reina, R. Miletitch, M. Dorigo, and V. Trianni. A quantitative micro-
macro link for collective decisions: the shortest path discovery/selection
example. Swarm Intelligence, 9(2-3):75–102, 2015a

• N. Cambier, R. Miletitch, A. B. Burraco, and L. Raviv. Prosociality
in swarm robotics: A model to study self-domestication and language
evolution. In Joint Conference on Language Evolution (JCoLE), pages
98–100. Joint Conference on Language Evolution (JCoLE), 2022

1.4 Structure of the thesis

This thesis is organized into seven chapters, including this introduction. Two
chapters are dedicated to background knowledge, followed by three chapters that
discuss specific experimental studies in detail. Chapter 7 concludes the thesis
and outlines related works that build upon it. In the following, we provide a
more detailed overview of the content of each chapter.This thesis is organized
into seven chapters, including this introduction. The next two chapters are dedi-
cated to background knowledge, followed by three chapters that discuss specific
experimental studies in detail. Chapter 4 lays the groundwork by exploring
information aggregation mechanisms in social odometry, a foundational concept
for the subsequent chapters. From then, we consider that positioning is a solved
task. Chapter 5 builds up on this work, as it proposes a more refined load-
balancing exploitation then the one presented in the previous chapter, setting up
the groundwork for Chapter 6. Chapter 6 keeps the same exploitation behavior,
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and introduces an additional communication layer through language games. This
advancement is key for moving towards a linguistic representation of the entire
space and potentially enables more intricate information exchanges. This pro-
gression illustrates an increasing complexity in communication techniques. Each
chapter builds upon the previous one, progressively enhancing the integration
of task execution and communication within the swarm. Chapter 7 concludes
the thesis and outlines related works that build upon it. In the following, we
provide a more detailed overview of the content of each chapter.

Chapter 2 — State of the art Following this introduction, we present a
review of the topics addressed in this thesis: foraging and exploitation
dynamics, navigation and exploration, collective decision making, and
language games in the context of swarm robotics.

Chapter 3 — Tools All experiments in this thesis are conducted using the
ARGoS simulator with either marXbot or e-puck robots. In this chapter,
we introduce these tools and describe the basic algorithms employed for
creating the robots’ behaviors, such as random walk exploration, collision
avoidance, and object grabbing. The chapter also discusses the ratio-
nale behind the choice of these tools and algorithms and highlights their
advantages for the experiments conducted.

Chapter 4 — Information Aggregation Mechanisms in Social Odom-
etry In this chapter, we examine three distinct information aggregation
mechanisms applied to social odometry. The focus is on understanding
their impact on the swarm decision process concerning the choice of split-
ting or converging on a single resource. This analysis provides valuable
insights into optimizing swarm performance, highlighting the importance
of effective information aggregation mechanisms for adapting to diverse
foraging situations.

Chapter 5 — Balancing Exploitation of Renewable Sources Building
upon the insights from Chapter 4, we implement an algorithm inspired
by the nest site selection abilities of honeybees. This algorithm involves
exchanging more complex signals among robots, introducing recruitment
and cross-inhibition feedbacks. The result is a more refined load-balancing
approach between resources, which allows for better adaptation to changes
in the environment and in task requirements.

Chapter 6 — Emergent Naming Conventions in a Foraging Robot
Swarm Lastly, on top of to the load-balanced foraging, we introduce
a language game played by the robots in which they assign names to
resources and reach consensus on these names. This language game allows
the swarm to converge on an accurate representation of its environment,
enhancing its ability to make informed decisions. This chapter emphasizes
the importance of communication in swarm robotics and demonstrates its
potential for improving the swarm’s performance and overall knowledge.
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Chapter 7 —Conclusion and Future Perspectives In the concluding chap-
ter, we synthesize the principal findings from preceding chapters and em-
phasize the potential of integrating language games with swarm robotics
tasks. This includes exploring various language games and more advanced
linguistic/social frameworks, and drawing inspiration from mammalian
and primate social systems (such as the self-domestication hypothesis) for
more intricate language dynamics.
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Chapter 2

State of the art

Swarm robotics is a growing field within robotics and artificial intelligence that
explores the design and control of decentralised multi-robot systems capable
of self-organisation. This chapter highlights the state of the art in the field,
limited to aspects relevant for the work presented in this dissertation. We
start with collective navigation (see Section 2.1), stating the challenges in
developing effective navigation strategies to enable exploration of an unknown
environment. In Section 2.2, the focus shifts to foraging and exploitation
of sources, addressing the study of how robots find valuable resources, often
drawing inspiration from nature. Section 2.3 addresses collective decision
making and examines how individual decisions by robots can lead to meaningful
group actions. Communication systems are considered in Section 2.4, which
reviews the different ways robots can communicate with each other, including
both simple and more complex methods. The chapter then moves on to the
discussion of language games (see Section 2.5), an area that explores how
artificial systems can mimic the evolution of natural languages. Finally, in
Section 2.6, we discuss the coupling between task and language, that is,
how the connection between language and behavior can become an essential
aspect to consider when designing a swarm robotics system.

2.1 Collective Navigation

In swarm robotics, computational and sensorimotor limitations do not allow the
exploitation of advanced self-localisation and navigation strategies, e.g., based
on SLAM approaches (Thrun, 2008). Instead, random walks are often exploited
(Dimidov et al., 2016). Such a stochastic exploration of the environment can be
inefficient, as robots tend to re-visit previously visited areas multiple times.

Several studies in swarm robotics implement navigation and exploration
algorithms without any sharing of structured information, sometimes exploiting
robots as physical landmarks. Rekleitis et al. (2001) divided the swarm into two
teams, one moving and the other stationary, serving as a reference for navigation.

25



26 CHAPTER 2. STATE OF THE ART

The teams alternate between stationary and moving states. Nouyan et al. (2008,
2009) exploit robots to form complex structures such as chains, in which one
end of the chain connects to a central place while the other end explores the
environment. Once the goal location is reached, the chain can be exploited by
other robots for navigation purposes, or a bucket brigade method can be used to
transport objects along the chain (Ostergaard et al., 2001).

On the other hand, there are various ways to improve navigation through
information-sharing within a swarm (Martinelli et al., 2005). Ducatelle et al.
(2011a) model a swarm as a communication network that propagates relevant
information. Each robot in the swarm maintains a table with navigation infor-
mation about all known robots, similar to how nodes in a mobile ad hoc network
maintain routing tables. Then, the robots propagate the available information
and use the table to find the best path to reach a target robot within the swarm.
Sperati et al. (2011) also study navigation in a swarm robotics context. In this
case, communication is performed through visual signals only and therefore
the information exchanged is much less structured. For this reason, they used
artificial evolution to synthesize effective navigation strategies.

Alternatively, information-sharing in groups of robots can be used as a means
to collectively reduce the overall odometric error, for instance by sharing the
estimated position of specific landmarks (Martinelli et al., 2005), or directly
sharing the position of target areas. This is a straightforward mechanism that
easily lends itself to implementation on very simple robots, scaling well in big
swarms. This mechanism was first introduced by Gutiérrez et al. (2009) and
is referred to as social odometry.Alternatively, information-sharing in groups
of robots can be used as a means to collectively reduce the overall odometric
error. Some methods rely on sharing the estimated position of specific landmarks
(Martinelli et al., 2005) and using Kalman filters to fuse both proprioceptive and
exteroceptive sensor data to correct the robot’s position information. Although
Kalman filters are effective as recursive filters, they necessitate external data and
are computationally demanding. Another approach referred to as social odometry
and firstly introduced in Gutiérrez et al. (2009) relies on directly sharing the
position of target areas with a simpler information aggregation process (detailed
in Chapter 4). This is a straightforward mechanism that easily lends itself
to implementation on very simple robots, scaling well in big swarms. In this
approach, the robots estimate the navigation path between two target areas in
the environment (i.e., home and goal locations) using odometry and attach to
this estimate a confidence level that decreases with the distance travelled. At
the same time, the robots share their navigation information within the swarm
in a local peer-to-peer manner. Thanks to this process, information about target
areas spreads gradually within the swarm, contributing to reduce the error in the
position estimation. Overall, this decentralized process results in an increased
efficiency in the swarm navigation abilities.
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2.2 Foraging and exploitation of resources

Exploration of the environment and exploitation of valuable resources represent
problems commonly studied in robotics, and in particular in the multi-robot
systems and swarm robotics sub-fields (Winfield, 2009; Ducatelle et al., 2014;
Trianni and Campo, 2015). In (Winfield, 2009), robots have to retrieve items
(preys) spread around the environment or in specific goal areas (resources) and to
bring them back to a specific location (nest). Such exploitation patterns are often
found in biological systems. Among others species, ants display complex foraging
behaviours through which they are able to adapt to a dynamic environment and
retrieve preys (Camazine, 2003). The abilities of a robot to move in space and
to autonomously identify locations of interest make this problem particularly
relevant for a number of different application scenarios, from search and rescue
to mining, from precision agriculture to space exploration (Murphy et al., 2008;
Cheein and Carelli, 2013; Yoshida, 2009; Trianni and Dorigo, 2005).

The exploration and resource exploitation problem has been previously
approached in swarm robotics, mainly for non-renewable resources. Several
studies present adaptive foraging algorithms inspired by the well-known response
tresholds model (Bonabeau et al., 1996). Krieger et al. (2000) studied the
effects of heterogeneities in the individual response thresholds and of additional
recruitment mechanisms to adapt the size of the foraging group to the features
of the available resources. Labella et al. (2006) tested an extended response
threshold model with individual learning abilities in a group of robots that
foraged for sparse resources, and observed the adaptation of the robot activities
between foraging and idleness, linking it to hardware differences among robots.
Liu et al. (2007) employed a similar adaptation mechanism to allocate workers
for a foraging task, and later presented a macroscopic probabilistic model that
predicts the robotic system dynamics (Liu and Winfield, 2010). An adaptive
response treshold model was presented by Castello et al. (2015), tailored to
fast adaptations to changing environmental conditions. In the above mentioned
studies, task allocation resulted from the adaptivity of the individual behaviour,
which balances the foraging rates on the basis of information collected about the
resource availability.

When resources are clustered in specific areas in space, recruitment of robots
to areas in which resources are likely to be found becomes important (Krieger
et al., 2000). Gutiérrez et al. (2010) studied the collective behaviour of robots
foraging from static resources and sharing information about the resources
position, eventually leading to the exploitation of the closest one thanks to
a positive feedback given by a larger number of robots promoting the closer
alternative. Hecker and Moses (2015) developed a foraging algorithm based on
a delicate balance between individual search and recruitment from peers, and
optimised the system parameters through a genetic algorithm to fit different
environmental conditions, including clustered resources. Similarly, Pitonakova
et al. (2016) considered foraging of resources possibly clustered in various deposits,
also taking into account dynamic conditions where the quality of the deposit
abruptly changed, to evaluate the plasticity of the proposed behaviour. In similar
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conditions, the need to select the most profitable resource among many available
can lead to collective decision-making problems (Valentini et al., 2017).

The studies mentioned above did not deal with sustainable resource exploita-
tion, but instead optimised the foraging efficiency, either by choosing the most
profitable resource or by switching to different resources when the current one
gets depleted. Sustainable or continuous foraging was instead focused on the
optimisation of the foraging rate, and in the maintenance of resources in lieu
of their depletion (Song and Vaughan, 2013; Liemhetcharat et al., 2015). The
“maximum sustainable yield model” introduced by Song and Vaughan (2013) pre-
scribes that resources characterised by a logistic growth should be maintained at
the level of maximum regeneration rate. An algorithm was proposed to allocate
a slightly higher number of robots to each resource, where each robot adapted its
foraging rate to maintain the resource around the optimal size for regeneration.
Maximisation of the foraging rate was also studied by Liemhetcharat et al. (2015),
who however employed an heterogeneous system in which some agents could
have an overview of the resource exploitation level, and helped the other foraging
agents to adjust their activity rate so as to maximise the system efficiency.

When robots forage from the same resource, interferences arise as congestion
builds up. Rybski et al. (2007) showed in their work that the introduction
of communication in real foraging experiments does not always increase the
performance of the system because of an increase in interference.

2.3 Collective decision making

Collective decision-making deals with how the sum of robots’ local decisions
can result in a meaningful decision at the swarm level. In its simplest form, it
aims to reach a common agreement between robots: a consensus, defined by
having enough robots converging towards a single possibility among different
alternatives. This common agreement is often linked with maximised performance
of the swarm, as it focuses its resource appropriately. Consensus can be made
about destinations, foraging patches, words in a vocabulary, aggregation areas,
traveling paths, etc. A consensus is often difficult to reach due to the limited
sensing and information sharing range of the robots. Information leading to the
best possible alternative is often hard to reach and spreading that information
to the rest of the swarm can be costly and lengthy.

Finding the best alternative among many is studied under the umbrella term
of best-of-n problem, an abstraction capturing the structure and logic of discrete
consensus achievement problems. The best-of-n problem requires a swarm of
robots to make a collective decision over which option, out of n available options,
offers the best alternative to satisfy the current needs of the swarm. Each option
is characterized by a quality and by a cost that are function of one or more
attributes of the target environment (Reid et al., 2015). In this specific definition
of the problem, the aim is for the swarm to take into account cost and quality of
each option and to reach a decision, defined as having a large majority of the
robots favoring the same option (threshold set by the designer of the experiment).
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For instance, Valentini et al. (2016) propose a collective perception scenario
in which the floor of a closed arena is covered with tiles of different colors. They
compare three different strategies in which the swarm aims to determine which
color is the most frequent in the environment. In this experimental setup, the
color is the feature, the quality is defined as the total arena surface of a particular
color, and the cost is null (instant perception of the color once a robot is on it).

Montes de Oca et al. (2011) study robots that perform multiple parallel
executions of collective transport in groups of three from a nest area to a goal
area. Both area are connected by two paths, one longer than the other. Each
robot starts with a preferred path and votes in their group of three for which
path to take. Once a path is decided upon, it is updated as the preferred path
for each robot of the group. As robots choosing the short path return more
quickly to the nest area, they are more often joining new groups and influencing
other robots. This leads to a convergence toward the shorter path.

Parker and Zhang (2011) proposed a consensus achievement behavior based
on quorum sensing. The algorithm is inspired by how social insects choose the
best nest over multiple alternatives (as described in (Seeley et al., 2012b)). When
a robot finds a new potential nest, it evaluates its quality and advertises it by
sending recruiting messages. The frequency of these messages is proportional to
the perceived quality of the alternative which influences over time the overall
convergence of the swarm toward the best alternative. A similar result can be
achieved by keeping track of the number of encounters of robots (in order to
estimate an encounter rate) as seen in Pavlic et al. (2021) where memory-less
robots modify their environment in order to keep track of such information.

While voting works by having robots directly comparing information, robots
can converge on a similar behavior by mimicking each other. Both mechanics
are compared in Wessnitzer and Melhuish (2003) where robots try to reach two
moving targets. They decide which target to reach first and then focus on the
second target. Two mechanics are compared: in the first, the robots simply
follow the robot closest to a target, resulting in a decision based on the spatial
distribution of the swarm; in the second, the robots vote, using a majority rule,
to decide which target to follow.

Methods of information gathering are particularly important as a first step
toward collective decision. As such, through collective perception, sparsely
distributed agents aim to form a shared global view of a spatially distributed
problem with access to only locally perceived information. Such information is
subject to spatial correlations and depends on the positions of the robots. This
rises the question on how to share and combine the collected information among
robots in order to achieve a precise global estimate efficiently.

Bartashevich and Mostaghim (2021) compare the performance of multiple
common belief combination operators from evidence theory, extending from pre-
viously introduced benchmark for a collective perception scenario (Bartashevich
and Mostaghim, 2019). Here, the authors consider several possible environments
that differ in the type of noise experienced by individuals: from uniform noise
throughout the entire environment, to highly heterogeneous levels of noise across
different locations. Their results show that swarms of limited size benefit the
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most by employing the fusion operator of “proportional conflict redistribution”
(Smarandache and Dezert, 2005).

2.4 Communication systems

As mentioned in Section 1.2, three forms of communication are often considered
in swarm robotics: indirect communication (stigmergy), direct interactions
(pulling/pushing forces), and direct communication. Direct communication is
implementable with radio links, simple devices like infra-red transceivers or
through visual signals (e.g., coloured LEDs), whereas indirect communication
and direct interactions require much more specific sensors and actuators (e.g.,
UV-light emitters coupled with a bespoke floor material, see Alers et al. (2014),
or force/torque sensors, see Groß et al. (2006)). In this thesis, we focus on
direct communication, which was successfully employed in a variety of tasks, like
self-organised aggregation (Soysal and Sahin, 2005), morphogenesis (O’Grady
et al., 2009), foraging (Ducatelle et al., 2011c), flocking (Ferrante et al., 2014),
collective exploration and navigation (Ducatelle et al., 2011b; Nouyan et al.,
2009; Campo et al., 2010; Ferrante et al., 2013). In the cases presented above,
the rules of communication are designed specifically for the task at hand, offering
little to no adaptation toward variations of the task or changes in the working
environment, which may become a strong limitation for successful deployment.
Consider, for example, the case of self-assembly and coordinated motion, which
have been implemented in robot swarms to negotiate obstacles such as hills
or holes during exploration of complex unstructured environments (O’Grady
et al., 2010). If the conditions necessary to trigger the self-assembly in a given
shape are predefined by the experimenter and are specific for a few types of
obstacles, no adaptation is possible when the robots have to navigate in an
heterogeneous environment with obstacles of different kinds. Therefore, for
robot swarms to cope with uncertain environments with unknown obstacles,
the set of shapes in which they can self-assemble should be part of the robots’
action and communication space. Conversely, the rules of communication should
be sufficiently adaptable to induce the type of self-assembly required for said
obstacles. This adaptability is even more important when the nature of the tasks
itself might change over time.

To date, however, there has been limited work on providing robot swarms
with adaptive forms of communication that can scale up with the task complexity.
Except for a subset of studies that use artificial systems as a means to explain
linguistic features, efforts in producing adaptive communication for multi-robot
systems have mostly focused on automatic design (Nolfi and Mirolli, 2009), often
within the framework of evolutionary robotics (Nolfi and Floreano, 2000). The
main challenge in evolving a functional communication system resides in the
need to concurrently determine both the signal and a suitable response to the
signal. Either of the two traits, if taken individually, may be either maladaptive
or neutral and can easily be selected out by the automatic design process. Hence,
specific conditions must be met to observe the emergence of communication.
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The situation grows in complexity when a non-trivial swarm behaviour must
be synthesised. As a matter of fact, research on evolving communication that is
useful for robot swarms represents only a small fraction of the available studies.
In a prominent study on this topic, small colonies of robots were evolved within
a particular scenario that did not especially encourage communication (Floreano
et al., 2007). In this experiment, the robots were assigned a foraging task.
However, the environment also hosted poison sources indistinguishable from
food sources. At the end of an evolutionary optimisation process, the robot
swarms equipped with a visual communication system showed significantly better
performance with respect to communication-less swarms. Specifically, two types
of signals emerged in different populations, whereby agents either shared the
position of the food sources to attract teammates, or they signalled the poison
sources to repel other robots.

Other works used evolutionary robotics to evolve signalling for categorisation
of environmental features (Ampatzis et al., 2008), expecting these signalling
systems to produce more adaptable behaviours, especially when porting con-
trollers evolved in simulation to the real world. In successfully evolved controllers,
signalling emerged without any incentive as a cue to distinguish between two
different environments, that the robots could recognise only after some explo-
ration. Minimal instances of communications have also been evolved to allow the
synchronisation of a swarm (Trianni and Nolfi, 2009), as well as to coordinate the
activities in robot pairs (Tuci, 2009; De Greeff and Nolfi, 2010; Uno et al., 2011).
Besides evolutionary approaches, other automatic design methods have been
proposed that are capable of producing efficient communication for behaviours
such as aggregation, coordination and categorisation (Hasselmann et al., 2018).

By looking at these research studies, some important lessons can be learned.
Indeed, communication systems may emerge spontaneously, even if there is
no explicit reward (e.g., no selective pressure from the fitness function in the
evolutionary robotics approach). Furthermore, they evolve to provide an advan-
tage to evolved populations compared to those that evolved without means to
communicate.

Except for a handful of examples that present features of communication
necessary for the emergence of human languages (i.e., compositionality and
joint attention Tuci, 2009; Uno et al., 2011), the studies available in the swarm
robotics literature obtained communication systems limited to simple instances
of signalling, very far away from the complex communication schemes that
characterise animal societies and, of course, humans. Indeed, the emerged
communication systems are defined as a limited set of fixed signals triggering a
pre-determined and hard-wired reaction in conspecifics, akin to early definitions
of signalling (Owren et al., 2010). This is especially obvious in several studies
within the swarm robotics literature (Trianni and Dorigo, 2006; Ampatzis et al.,
2008; Trianni and Nolfi, 2009; Tuci, 2009), wherein the signal produced by an
individual robot yields reactions from its neighbours as well as from itself.

Automatic design methods present several disadvantages for the evolution of
communication. Indeed, these design methods rely on simplistic building blocks
(e.g., neurons, as in Trianni (2008), or predetermined behaviour modules, as in
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Francesca et al. (2014)), allowing for little variety in the resulting communication
processes. Moreover, the emergence and evolution of the communication rules is
strictly confined to the training step and thus the evolved rules remain identical
after deployment. The current use of automatic design methods therefore limits
the adaptivity necessary for communication in uncertain environments.

2.5 Language games

Multi-agent artificial systems have been widely used to study the evolution of
natural languages in silico. For instance, the “talking heads” experiment (Steels,
2015) was the first to showcase self-organisation of language in a complex system
within a population of artificial agents.

This approach does not rely on evolutionary computation or any other
automatic design methods to grow the language mechanics. Instead, inspiration is
from linguistics, whereby the self-organisation of natural languages is classified as
cultural evolution, in opposition to biological evolution. Cultural evolution is the
result of the sum of local interactions based on confirmation and agreement rules.
In computer science, such interactions are often modelled by simple games played
by a population of agents, seen as potential ways for them to cooperate (Ackley
and Littman, 1994). When linguistic interactions are considered, a language game
can be defined to be played between agents/robots, turn by turn, with the purpose
of mimicking real-world dynamics leading to the emergence of a structured
language. Language games make direct reference to concepts developed in the
philosophy of language (Wittgenstein, 1953). If, for Wittgenstein, language
games were simple abstractions of a real-world language, in computer science
language games are minimal algorithms that display, in an artificial context, the
salient characteristics of a whole language.

In such context, linguistic conventions can provide compact ways of identifying
relevant aspects of the environment (e.g., different terms to identify different
resources from which to forage), which can evolve to adapt to a changing
landscape (e.g., assigning new terms to newly discovered resources, or dropping
terms associated with depleted resources), hence maximising the communication
efficiency. Moreover, an evolving language can be useful to represent sequences
of terms, providing swarms the ability to decide on the most useful course of
action (e.g., a sequence of resources from which to forage).

Various kinds of language games have been proposed to date, such as the
imitation game which deals with vowel vocalisation (De Boer, 2000). In this work,
agents are equipped with an articulatory synthesizer, a module for calculating
the distances between different vowels (according to human perception) and a
repertoire for storing vowel prototypes. Then, two agents (among many) are
selected randomly and start the game interaction. The first agent (the initiator)
selects a random vowel from its repertoire and utters it. The second agent (the
imitator) then tries to imitate this vowel by uttering the closest vowel in its own
repertoire. The initiator subsequently has to find the closest vowel to the one
uttered by the imitator in its own repertoire, the goal being to thus find the



2.5. LANGUAGE GAMES 33

initial vowel. Depending on the issue of previous games and on the success of
the current one, both agents then either “merge” their vowels (they shift their
vowel in the articulatory space towards the one they perceived) or add a new one.
This protocol, coupled with some communication noise, causes the emergence
of vowel systems that are strikingly similar to those found in actual human
languages because the agents self-organise in order to produce vowels that are
as distinguishable from each other as possible.

The imitation game requires to separate the agents into initiator and imitator
categories. Other language games instead rely on a speaker and a hearer, which
are interchangeable roles for the agents playing the game. This is the case
for the guessing game (Steels, 2001), where the speaker chooses a concept
within a context (physical or abstract), and communicates the corresponding
word to the hearer. The latter has to guess which topic was chosen based
on the communicated word. If it fails, both speaker and hearer update their
inner representation of the concept. The guessing game can be seen as an
implementation of the Gavagai thought experiment (Quine, 2013), addressing
the question of the inscrutability of reference in a computational context, that
is, the fact that one word can never have exactly the same meaning for different
agents. Similar to the guessing game, the category game (Puglisi et al., 2008;
Baronchelli et al., 2010) aims to self-organise discrete sub-intervals of one or many
perceptual channels through negotiation dynamics. The agents start without any
predefined category, and develop a pattern of categories shared among the agents
via repeated interactions. Eventually, a global agreement emerges within the
population. The negotiation dynamics lead to a communication grounding among
all agents (as detailed in Clark et al., 1991), assuring a matching signified/signifier
link between words and concepts to be exploited in future communications.

The category game can be simplified into the naming game (Steels, 1995,
2003) where categories are provided from the beginning, shifting the emphasis
of the game on the negotiation dynamics and the emergence of an agreement.
In this game, two or more robots interact to assign a unique name to a set of
objects. At each interaction, one robot is chosen as a speaker and another as a
listener. The speaker chooses a referring object and an associated word from its
vocabulary—or invents one when no word is available—and then transmits it
to the listener. If the listener knows the word, then the game is a success, and
both agents remove all other words associated to the chosen object from their
vocabulary, keeping only the shared word. If instead the listener does not know
the received word, then the game fails, and the listener adds this new word to
its vocabulary. We use in our study a specific version of the naming game, the
minimal naming game (MNG, see Baronchelli et al., 2006b; Baronchelli, 2016).
In this version, focus is given only to reaching consensus on a single word within
a population of communicating agents. In a specific variant, speakers broadcast
their word to all agents in their neighbourhood, while the listener is the only
agent that updates the vocabulary upon success or failure of a game (Baronchelli,
2011).
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2.6 Coupling between task and language

Various degrees of coupling are possible between language games and the be-
haviour of a robot swarm. First, at the lowest level of complexity, the robot
behaviour is not affected at all by the language game, which is simply played
by the robots upon repeated encounters (Trianni et al., 2016b). Second, the
language game can affect the behaviour of the robots, but the latter has no direct
influence on the way in which language evolves (Cambier et al., 2017). Finally, in
the third case, the behaviour of the robot affects the evolving language, resulting
in a strong coupling between the two (Cambier et al., 2018, 2021). As the
strength of the coupling between language and robot behavior increases, so does
the complexity of the emergent swarm behavior. This heightened coupling allows
the swarm to leverage the entire spectrum of language complexity (Group" et al.,
2009)). In the first two types of coupling, language merely conveys information
useful for the swarm designer, serving as descriptors of the environment or task.
However, in the third scenario, the language carries an emergent semantics
intrinsically relevant for the task execution, hence enabling the robots to pur-
posefully utilize language themselves. This capacity becomes a crucial aspect in
the development of grounded symbols (Harnad, 1990).

Trianni et al. (2016b) studied the consensus dynamics generated by the MNG
in a dynamic network formed by robots moving about in a bounded arena,
without any interaction between language game and robot behaviour. In this
research, the communication network was shaped by the encounters between
the robots, each independently performing a simple random walk. This work
concluded that the collisions between wireless transmitted messages, due to
the simple communication protocol and the relatively high density of robots
used in the experiments, led to the abortion of a significant portion of games.
This turned to be a positive fact as the strain on the robots’ memory was thus
reduced, which is advantageous considering the limited capacities assumed in
swarm robotics (Brambilla et al., 2013). Moreover, the embodiment of the robots
and their collisions led to the formation of aggregates of robots that do not easily
disband, leading to a reduced interaction rate in the population and a slower
convergence with respect to simulated agents. This second phenomenon impacts
the capacity of information transfer within the swarm, but does not impair the
ability of the swarm to reach consensus, albeit with longer delays.

Recent studies focused on the effects that a self-organised behaviour and
the MNG can have on each other. In Cambier et al. (2017), a swarm of robots
performed self-organised aggregation and concurrently played a MNG where
the exchanged words were used to identify the aggregate to which robots would
belong to. Under specific density conditions, robots split into a controllable
quantity of coalitions, each characterised by a different word used as identifier.

Cambier et al. (2018, 2021) considered a further improvement, as the words
used within the MNG encode the parameter of the aggregation controller, directly
impacting the quality of the self-organised aggregation behaviour. As a matter
of fact, in the MNG, words supported by highly-connected agents propagate
more (Baronchelli, 2011). This means that agents that better aggregate are able
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to widely propagate their words, and, thus, the aggregation parameters. This
creates a positive-feedback loop that selects and maintains parameters promoting
the formation of stable and large aggregates. Variations of the available words
are introduced in the swarm from errors in the communication, which is modelled
as a stochastic process in which some bits are flipped during the transmission.
Such variations allow to explore new aggregation parameters, which can lead to
changes in the way robots behave. The dynamics of the MNG therefore leads to
the cultural evolution of the aggregation behaviour itself.
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Chapter 3

Tools

Throughout this thesis, the aim is to have results from foraging experiments run
in controlled environments that still replicate to some extent real life conditions.
For that, the best appraoch would be to use real robots and tangible objects
to be retrieved. However, this can be time consuming and can introduce issues
that do not relate with the main research questions addressed in this thesis, and
potentially skew the appreciation of the design of the experiment. For instance,
the quality of sensors and actuators of the specific robots being used can have a
strong impact on the success of their behavior (reaching a destination, grabbing
an object, and so forth). The capacity of their battery limits the length of the
experiments, and the number of physical robots available limits the size of the
swarm studied. Working in simulation alleviates these issues, enabling quicker
prototyping and frequent feedback loops on the design of the robots’ behavior.

In the present work, all experiments were done in simulation, using the
ARGoS simulator (Pinciroli et al., 2012), which has been widely exploited for
swarm robotics experimentation and proved sufficiently realistic to enable a
smooth transfer of robot behaviours observed in simulation to the real-world.

3.1 The ARGoS Simulator

ARGoS is an open source multi-robot simulator (Pinciroli et al., 2012) designed
to simulate complex physical experiments involving large swarms of robots
of different types. It allows simulated robots and simulated objects to share
a 3D environment, and lets them interact through an array of sensors (e.g.,
light sensors, IR sensors detecting the ground color, omnidirectional cameras,
proximity sensors and many others) and actuators (e.g., grippers, coloured
LEDs, wheels, to name a few). ARGoS allows to simulate in detail real robotics
platforms (e.g., the marXbot shown in Figure 3.1a or the e-puck shown in 3.1b).
The fidelity of the simulated model (plus potential noise on sensors/actuators)
aims at reducing the simulation-to-reality gap, allowing to substantially trust the
results achieved in such simulation. To counteract the high computational power
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required by detailed simulations, ARGoS was designed with a specific focus on
both efficiency (performance with many robots) and flexibility (customisation
for specific experiments of the robots’ model, sensors, actuators, as well as the
representation of the experimental environment).

In this work, the overall aim of each robot is to start moving from a home
location (often referred to as nest), explore the environment (which can be open
or closed) and locate sources from which to forage valuable items. The foraging
activity consists in navigating between nest and source to bring home as many
items as possible. Within ARGoS, the home location is represented as a black
disk painted on the ground, recognisable by the robots through ground sensors
when they are on top of it. The rest of the environment has instead a white
ground. Sources can be either intangible (represented as a gray disk on the
ground) or tangible (a cluster of physical objects representing resources scattered
around a specific location). A open environment is modelled within ARGoS as
an experimental arena without boundaries, while a closed environment is limited
by surrounding walls, which can be perceived by robots through their proximity
sensors.

3.2 Robots

Two different types of robots where used in the experiments presented in this
work. First, the marXbots (Bonani et al., 2010b) (Figure 3.1a)—used mostly in
the first part, see Chapter 4 and 5—is a 17 cm high and 17 cm diameter robot
developed for swarm robotics research (Bonani et al., 2010a; Dorigo et al., 2013).
In the final experiment presented in Chapter 6, the e-puck was used instead.
The e-puck is a 4.5 cm high and 7.4 cm diameter robot, similar in the basic
functionalities to the marXbot (see Figure 3.1b). This later change of robot was
made to simplify comparison with previous studies.

Both robots have a differential drive motion, and their speed is measured
by a wheel encoder (with noise modeled using a Gaussian distribution), which
supports simple odometry and local positioning/navigation. Both robots have
a differential drive motion that supports simple odometry and local position-
ing/navigation. Their speed is measured by a wheel encoder. In order to approach
the characteristics of a real robot, noise is added on the wheel actuation as
follows:

W = N(0, σ)A (3.1)

The actual actuated value W is the result of the ideal wheel actuation A (as
set in the controller) multiplied by a random factor represented as a Gaussian
distribution of standard deviation σ. When present in our experiments, we use
σ = 0.05.

The e-puck has a maximum linear speed of v = 0.1 m/s, and the marXbot
of v = 0.3 m/s. Avoidance of both obstacles (when present) and other robots is
done at short range (≈ 10 cm) with infra-red proximity sensors. Robots can also
avoid each other at a longer range (≈ 1 m) exploiting the infrared range and
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(a) Picture of the marXbot robot. Re-
trieved from https://www.swarmanoid.
org/swarmanoid_hardware.php.html
(2023)

(b) Picture of the e-puck robot. Re-
trieved from Wiki Commons, by
Stéphane Magnenat, CC BY-SA 3.0.

https://www.swarmanoid.org/swarmanoid_hardware.php.html
https://www.swarmanoid.org/swarmanoid_hardware.php.html
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bearing system (Roberts et al., 2009; Gutierrez et al., 2009), which is also used
for communication among robots.

Both types of robots perceive nest and sources only when they are located in
the corresponding areas by means of infrared ground sensors, that robots use to
differentiate between the white colour of the floor, the grey colour of the sources
and the black colour of the nest. In each of our experiments, the robots start
from (or near) the nest without any knowledge about the number and position
of available sources, which need to be located through exploration.

Robots can locally broadcast short messages (e.g, 10 bytes) through the
infrared range and bearing system within a range that is limited to 0.2 m for
the e-puck, and 0.7 m for the marXbot. Robots can broadcast a message at
regular intervals of 0.1 s with no re-broadcast of information received (no multi-
hop communication). They keep track of the position of the nest and of the
known sources through odometry. The error on positioning produced through
this tracking method can be efficiently compensated through social odometry
(Gutiérrez et al., 2010; Miletitch et al., 2013b), as discussed in Chapter 4. Owing
to this, in the later experiments using the e-pucks, we neglect odometry errors.

When present in the experiments, marXbots can localize the items to be
collected using the omnidirectional camera, which is used to perform a simple
blob detection, and are able to recognise items up to a distance of 1m. Items
can be reached and then grabbed with a specific claw that rotates around the
marXbots, making it easier to navigate while holding an item.

The control loop of the robots is executed 10 times per second.

3.3 Navigation

In order to achieve their goals, robots need to navigate the open arena. This
includes searching for resources through a random walk, navigating toward
a specific location (nest or known resource), or approaching specific objects,
while avoiding robots and objects present in their surroundings. Each of these
sub-tasks results in a force vector characterising the movement direction of the
robots which is translated into wheel velocity according to the differential drive
model.

3.3.1 Goal Vector

In our experiments, robots are aiming to move toward a specific direction at
each step, defined as a goal vector. The goal vector is defined by the position of
a source (or the nest), depending on the current state in the foraging behaviour.
When they are exploring, a random unit vector is computed, with orientation
drawn from a uniform distribution. This vector (changing every τ timestep in the
case of experiments with marXbot, and every 5 τ for experiments with e-pucks)
represents the next random move the robot will perform, to be aggregated with
other force vectors from obstacle and robot avoidance.
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3.3.2 Targeted Object Approach

When tangible resources are considered, we implemented a grabbing behavior
for the marXbot. Once an object is in sight (located through its camera), the
marXbot approaches the object using its location as the goal vector. Once close
enough, it enters a grabbing behavior, opening its claw and closing it on the
object. Once finished, the robot rotates its claw to put the object in its back, and
then executes its next behavior (e.g., coming back to the nest to bring back the
object). Postured this way, the object does not cause any meaningful occlusion
for the robot sensors, and does not impede movements, allowing the robot to
navigate in the same ways as when not holding any object.

3.3.3 Avoidance of robots and objects

Both marXbots and e-pucks exploit information from their long range sen-
sors to compute a repulsive virtual force that pushes them away from their
neighbours (Borenstein and Koren, 1989):

~V =
∑
i∈N

DM − |~vi|
DM

e−i 6 ~vi (3.2)

The virtual repulsive force ~V in Equation 3.2 is computed for all neighbours
N found within a maximum distance DM . The expression considers the relative
positions of neighboring robots, ~vi, and the force contribution from each robot is
inversely proportional to its distance, growing stronger as robots come closer. The
directional component, represented by the exponential term with 6 ~vi, ensures
that the force acts in the opposite direction to the relative position vector,
pushing the robots away from each other. The sum over all robots within the
set N provides the total repulsive force, allowing for controlled separation and
collision avoidance within the swarm.

The short-range avoidance behavior is described by Equation 3.3, where ~S
represents the total repulsive force within the short-range maximum distance
DS . The sum runs over all robots or objects in the set Ns, considering their
relative positions ~vi. Unlike the long-range behavior, the weights wi are binary,
with a value of 1 if proximity is detected and 0 otherwise, reflecting the low
resolution of the proximity sensor. This ensures a distinct reaction to close
neighbors, allowing the robots to respond effectively to immediate obstacles or
other robots in their path.

~S =
∑
i∈Ns

wi
DS − |~vi|
DS

e−i6 ~vi

wi =

{
1 if proximity detected
0 otherwise

(3.3)
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3.3.4 Aggregation of force vectors

The final direction vector, ~D, is a weighted combination of the goal vector ~G,
the long-range avoidance vector ~V , and the short-range avoidance vector ~S, as
shown in Equation 3.4. The weights ωg, ωl, and ωs balance the contributions
of these components, allowing for a navigation strategy that takes into account
both targeted movement and obstacle avoidance. This aggregation enables the
robots to smoothly navigate through the environment, minimizing interference
and congestion.

~D = ωg ~G+ ωl~V + ωs~S (3.4)

This aggregation has been optimised for the marXbot to minimise the effects
of robot density and congestion on the ability to navigate back and forth between
resources (as studied in Chapter 4). The speed of each wheels of the robots is
calculated from this direction vector as follows:

ωL = ωb − ωb ×
(

1− αM − α
αM

)
(3.5)

ωR = ωb + ωb ×
(

1− αM − α
αM

)
(3.6)

where α corresponds to the angle of the direction vector, ωb to the base speed of
the robots, and αM the maximum angle allowed for turning, defined here as

π

2
.

When running experiments with the e-puck, the robots always take a small
negative 30◦ deviation with respect to their direction vector in order to approach it
from the right-hand side. In this way, during exploration, robots moving back and
forth between nest and source create a loop that allows to minimise interference
between robots, resulting in less congestion between robots entering/leaving the
nest/resources (see Chapter 6 for details).



Chapter 4

Information aggregation
mechanisms in social
odometry

The goal of this chapter is to develop a cooperative exploration and resource
exploitation strategy based on a peer-to-peer exchange of information between
robots in a swarm. This chapter contributes to the overall goal of the thesis by
showing how the communication protocols determining how robots aggregate
information received from peers can influence the foraging dynamics, which in
turn can have an impact on the swarm topology and the spread of information
among robots.

Specifically, we introduce three novel information aggregation mechanisms
built on top of the social odometry methodology. Indeed, the efficiency of social
odometry as a navigation and resource exploitation mechanism—and the resulting
collective dynamics of decision-making—depends heavily on the way information
is shared and aggregated in the robot swarm. In particular, we found that even
small variations in some parameters of the individual behaviour may lead to huge
differences in the swarm dynamics. For this reason, we propose parameter-free
mechanisms for information aggregation and processing that make the swarm
adapt to the distribution of resources in the environment. These mechanisms have
varying levels of tolerance for conflicting information. I analyze the impact of
each mechanism on the swarm’s resource exploitation, environmental navigation,
and resulting topology and its link with communication between robots. I test
these approaches in scenarios involving navigation between nest and resources
as well as in more intricate scenarios that involve object manipulation. We then
study the resulting dynamics of the swarm in simulation.

Section 4.1 presents the basic methodology for navigation and introduces
the three proposed parameter-free mechanisms. Then, Section 4.2 focuses on
navigation. Here, the only variable of the experimental setup that impacts the
decision of the swarm is the distance of the source to the nest. This condition
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changes in Section 4.3, in which we focus on the exploitation of the source. In
this case, the sources are defined both by their distance from home and by
their quality (e.g., rate of regeneration of items in the source, and size of a
source). When the sources vary in quality, they are not only valued based on
their distance from home but also on the ease in finding/processing items from
them. In this case, the swarm must adapt to the dynamics of the environment
and find a balance between exploiting close sources which are easier to reach
or farther sources that might be of better quality. In doing so, the swarm must
continuously choose between focusing on one single source or splitting among
many.

Overall, we demonstrate that the proposed information aggregation mecha-
nisms not only find the best split among sources at a given time, but also react
to the upcoming variations in quality as the sources get depleted and hence
continuously exploit the environment in an efficient way. For that, it aims for a
fine balance between exploration and exploitation so that the swarm can react
quickly to variations while keeping a steady pace of exploitation.

4.1 Social odometry

In our experiments, the goal of the robots is to locate both a home area and
a source area and then to efficiently navigate/forage between them. In all our
scenarios and experiments, once a target area is discovered, its position is kept
in memory and updated using odometry.

The information about target areas is shared with other robots upon en-
counter, following the social odometry principle. The way in which the informa-
tion exchanged is shared and processed is independent of the individual behaviour
of the robots, which is different in the two scenarios we present in this chapter.
Therefore, we start by introducing the information processing mechanisms we
have devised.

4.1.1 Information Sharing

While robots navigate between target areas, they share the information they have
on the relative locations in order to counterbalance the reduction in information
confidence. How and when this information is shared has a strong influence on
the overall quality of the information in the swarm, and on its decision-making.
Not all information is shared at the same time. When randomly exploring, the
robots share the sole information they have. In the other cases, the robots share
only the information of the last visited location.

Given that robots do not share a global coordinates system or a common
reference frame, a transformation of the shared position is needed in order to
fit the frame of the receiving robot (Gutiérrez et al., 2009). To that end, the
robots use as a reference the communication axis defined by the usage of their
range-and-bearing device. This transformation is presented in Fig. 4.1 for two
robots i and j, j receiving a message from i.
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For that transformation to be possible, robot i first needs to know the direction
of robot j. To this end, our communication protocol follows a handshaking
approach in which robots constantly broadcast their needs (nest or source) while
the other robots in range answer back with relevant information only when they
possess it. When receiving calls for information, the robots not only come to
know which information they should share but also the direction of the robot
(γi).

Communication axis

Communicated direction

dy

φ
α

Y Axis

Y Axis

AREA A

γ

α

ROBOT i

dy

ROBOT j

X axis (Robot’s heading)
i

i

γ iφi

i

ji

j

j
j

j

X Axis (Robot’s heading)j

λ

Figure 4.1: Diagram of the transformation of the shared position of area A
between the frame of reference of robot i (emitting) and robot j (receiving),
reprinted from Gutiérrez et al. (2009)

Once robot i receives a call for information from robot j, it shares back the
distance (dyi) to the relative area as well as its direction (α), the latter in the
new frame of reference defined by the axis of communication: α = φi − γi

Now j needs to transform the received data in its own frame of reference. For
that it must first find the communicated direction of robot i: φj = γj +α−π. It
can then calculate the position of the target area in its own coordinate system:

dyix = λij · cos(γj) + dyi · cos(φj)

dyiy = λij · sin(γj) + dyi · cos(φj)

with λij being the distance between two robots, provided by the range-and-
bearing device.

4.1.2 Information Processing

Once the information is received by robot i, it is aggregated with the robot’s own
knowledge. The way this aggregation is performed depends on the information
processing mechanism implemented. Let pi, pj be the estimated position of an
area (either home or source) for robots i and j, and ci, cj be the confidence over
their respective estimation. The result of any aggregation performed by robot j
when receiving information from robot i is the updated pair 〈pj , cj〉.
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Here, we first describe the information aggregation mechanism used by
Gutiérrez et al. (2009), and then we introduce our contributed mechanisms.

Fermi distribution The aggregation mechanism used by Gutiérrez et al.
(2009) is based on a Fermi distribution. A weight is calculated from the difference
in confidence in order to make a linear combination of the positions:

〈pj , cj〉 ← 〈k · pj + (1− k) · pi, k · cj + (1− k) · ci〉

k =
1

1 + e−β(cj−ci)

The parameter β measures the importance of the relative confidence levels
in the information aggregation. For low values, the aggregation is close to an
average, ignoring the confidence. For higher values, the aggregation is stiff: only
the information with highest confidence is kept.

Finding the right value of β is often a process of trial and error. Our contri-
bution in this chapter is the introduction of three parameter-free aggregation
mechanisms: Hard Switch (HS ), Random Switch (RS ) and Weighted Average
(WA).Finding the right value of β is often a process of trial and error. Our
desired outcome in this chapter is to find a workaround to this issue. To this
end, we provide parameter-free algorithms that behave in a similar way as the
Fermi mechanism, given different β value: Hard Switch (HS ), Random Switch
(RS ) and Weighted Average (WA).

Hard Switch (HS) In this winner-take-all mechanism, the robots keep the
information with highest confidence (either the current information or the
received one) and discard the other one. In case of equal confidence, the current
information is kept. This mimics the Fermi mechanism with a high β.

〈pj , cj〉 ← 〈px, cx〉, x = arg max
k∈{i,j}

ck

Random Switch (RS) As in the mechanism above, here the robots keep one
piece of information and discard the other. In this case, however, the switch is
stochastic: the higher the confidence, the higher the probability of accepting the
information. In practice, this mechanism is a stochastic version of the HS.

P (〈pj , cj〉 ← 〈pi, ci〉) =
ci

cj + ci

Weighted Average (WA) This mechanism consists in a linear combination
of both estimated positions with their confidence as weight. On the one hand this
implies no loss of information; on the other, when information about different
sources is aggregated, the new position may not coincide with a real source
location, leading to the apparition of artefacts. While the Fermi mechanism
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focuses on the difference between the two confidences, here we directly use each
of them as weights.

〈pj , cj〉 ←
〈
cj · pj + ci · pi

cj + ci
,
cj + ci

2

〉

4.2 Navigation Task

In this chapter, we focus on the navigation ability of the swarm as supported
by the social odometry navigation mechanism. To this purpose, robots have
to navigate between target areas represented as grey circles painted on the
ground. We will study the influence that the different information aggregation
mechanisms described in Section 4.1.2 have on navigation efficiency and collective
decisions.collective decisions and navigation efficiency, defined as the number of
round trips of the robots between nest and source.

First of all, we introduce the individual behaviour of the robots. Then, we
introduce the experimental setup and finally we discuss the obtained results.

4.2.1 Individual Behaviour

The behaviour of the robot is defined by a finite state automaton with five
states: Explore, Go Home, Go to Source, Leave Home, Leave Source (Fig. 4.2).
Robots start in the Explore state and return to it whenever they lack relevant
information. The other four states form a loop that corresponds to the robot
navigating back and forth between the target areas: go to a target area, enter
and leave it, then go to the next one. On top of these control states, both short
and long range collision avoidance are implemented.

The robots start without any knowledge about the location of the target
areas. Therefore, they first have to explore the arena. When in the Explore state,
the robots perform a random walk until they discover the position of both target
areas (home and source). This can happen in two ways: either they receive
relevant information from team-mates or they stumble upon a target location
(Got(Area) becomes true, with Area ∈ {Home,Source}). In both the Go to
Source and Go Home states, the robots move straight to the target location,
possibly avoiding other robots and obstacles. Along their way, they update
the target areas location using odometry and update their confidence in the
information. The confidence is defined as the inverse of the distance that the
robot had travelled from the target area. Therefore, a straight path results in a
higher confidence than a curved one.

Once a robot reaches an area (i.e., In(Area) is true), it traverses it in a
straight line (possibly dodging other robots to avoid collisions) and stores the
area location. In order to get an estimated position closer to the center of the
area, the robot averages its entering and its exiting positions. No matter how
many sources there are in the arena, the robots always memorize only one home
and one source (the last seen or agreed upon).
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Go to Source
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Figure 4.2: Robot’s finite-state automaton. The circles define the states while
the arrows define the transitions. In(Area), Area ∈ {Home,Source}, is true
when the robot senses the grey level of the area, Know(Area) is true when the
robot knows the position of the area, Got(Area) is true when it just gets this
estimation. The robots start in the Explore state.

4.2.2 Experiments

We used an experimental setup with as few variables as possible: a circular arena
(radius: 11 m) with the home in the center and the sources scattered around
(Fig. 4.3). The sources are characterized by their distance from the home (di)
and the angle between each other (αij ∈ [π/3, π]). Both source and home have a
radius of 50 cm, and are coloured with grey levels to be distinguished by the
robots. Unless stated otherwise, we used 75 robots spawned randomly.

By varying the number of sources, we study different aspects of the collective
behaviour, such as the impact of the density of robots on their navigation abilities,
the collective decision made by the swarm in a two sources setup, and how this
generalizes in multiple sources setups.

Single Source When a single source is present, we expect that all robots will
converge on the same path. The more robots in the arena, the harder it is for
them to avoid each other. As density rises, the robots have to handle more and
more congestion on their path, which leads them to travel bigger distances and
to accumulate more error. This also corresponds to fewer round trips between
the home and the source, hence lowering the efficiency of the swarm. We define
the density on a path as the number of robots on it divided by its length.

In order to study the impact of density on navigation, we devised an exper-
imental setup in which we vary both the distance between the home and the
source and the number of robots. All three information processing mechanisms
are tested and compared with a benchmark condition in which the robots are
provided with perfect information (PI ) about the source and home locations. In
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Home

Source i

di

αij

Source j

dj

Figure 4.3: Setup of the experimental arena. The home area is placed in the
center of a circular arena of 11 m radius, surrounded by walls. The sources are
characterised by their distance to the home di, dj and the angles they form with
each other αij .

each experiment, we measure the navigation speed, computed as the number of
round trips over time. We study its evolution for values of density between 2
and 40 robot/m. For each density value, we run 100 trials in which we randomly
draw the distance between the home and source in the interval [3,8] m, and we
compute the corresponding number of robots to obtain the specified density
value (which is in the range [6,320]).

Two Sources When there is more than one source, a decision has to be made
about how to spread the robots among the available paths. In this setup, we
study if and how the robots converge on a single path as well as the implications
of such a convergence on efficiency. In order to study this decision-making
process, we count the number of robots committed to each source, as well as
the uncommitted ones. Given that robots do not distinguish between different
sources and only store one estimated position pg, a robot is considered to be
committed to a source i among n possible if it has information about both source
(cg 6= 0) and home (ch 6= 0), and if source i is the closest one to the robot’s
estimated source position pg.

In this setup, we have two sources which can either be at a short distance
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(5 m) or a long distance (8 m). We run experiments with both equal and different
distances for the sources: Short/Short (SS ), Short/Long (SL) and Long/Long
(LL). For each condition, we perform 1000 replications by randomly varying the
angle between the sources with αij ∈ [π/3, π] (cf. Fig. 4.3).

Multiple Sources The environment in which a swarm evolves is rarely as
simple as in the two sources setup. Through a multiple sources setup, we
enquire about the scalability of the previously gathered results. M sources are
uniformly distributed around the home location, with an angular separation
between adjacent sources of π/M , where M ∈ [3, 6]. To investigate both the
navigation and the decision-making abilities, we test three different conditions.
Either all sources are at the same distance, short (SSS ) or long (LLL), or a single
source is closer to home (SLL). For each condition, we performed 250 trials.

4.2.3 Results
Each trial in all the previous setups lasts 20 minutes of simulated time. We
use the same random initialization in all the runs for the different opinion
processing. For each run we compute the number of robots on each path to
study the dynamics of collective decisions, the number of round trips to study
the navigation efficiency and the error made by the robots on the estimated
position of the nest to gauge the quality of information in the swarm
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Figure 4.4: Impact of density on navigation efficiency for each mechanism and in
the perfect information control condition. Each line is the mean over 100 trials.

Congestion

As we can see in Fig. 4.4, all the proposed mechanisms follow the same tendency.
For low densities, we can observe a linear increase in the number of round trips.
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With higher densities, the growth slows down. As expected, robots with perfect
information are the most efficient at first, but their efficiency reaches a peak
because of the artefacts created by perfect information. With PI, since all robots
aim for the center of the target areas (either home or source), as the density
rises they have increased difficulties avoiding collisions and entering or exiting
the target areas.

Congestion has a lower impact on navigation efficiency with social odometry.
In this case, WA proves to be more resilient to congestion than HS and RS. This
is due to a smoother navigation in the surrounding of the home and sources,
where robots try to enter small and densely populated area. First, since the
WA mechanism never discards information but averages it, the precision on
the estimated position is better than with HS or RS. Second, the reception of
even slightly better information is smoothly integrated in the WA mechanisms
resulting in better average information (Fig. 4.5), while in both HS and RS
it may cause a large leap of the new location, which may be difficult to reach
in case of high densities. Contrary to what could be expected, the quality
of such information does not rise with the density of robots. Once there are
enough robots to manage a steady connection between locations, the quality of
information is virtually at its best. As the number of robots rises, congestion
creates issues for them to reach each location, implying longer travelling distances
and hence worse information kept in memory, despite enhanced communication
relying on a denser network of robots.
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Figure 4.5: Evolution of the error of the estimated position of the centre of the
nest for each mechanisms. Each line is a mean over 100 trials.

Collective Decision

Congestion explains why sometimes it is better to spread along multiple paths
when there is more than one source. This decisions impacts not only the efficiency
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but also the spatial arrangement of the swarm and the way it reacts to changes
in the environment.

Decision The decision pattern of the swarm results from the sum of local
decisions made by the robots. The dynamics of the collective decision are shown
in Fig. 4.6, which plots the convergence pattern generated by the HS and WA
mechanisms when confronted with the SL experimental condition. In all cases,
the swarm decides to focus on the closest area/source and most robots converge
on the associated path. This behaviour is typical of all three social mechanisms
when there is a source closer to home. We can already see a strong difference
between the two mechanisms, where HS converges quicker, with less variations
among experiments.

We can observe three different phases. At first (0-120 s), most robots are
uncommitted and explore for source areas, reinforcing each as they discover
them. Then (120-400 s), a competition among the two alternative paths occurs.
The shorter path is reinforced more because of the improved information the
robots have when encountering robots coming from the other source. Eventually,
the swarm enters a maximization state in which mostly one path is exploited
while uncommitted robots continue to join.

Fig. 4.7 shows the percentage of robots that choose path A (i.e., the short-
est path in the SL condition). We note that in the SL case, all information
aggregation mechanisms lead to a single path convergence of at least 90% of the
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robots. Both HS and RS always lead to a convergence on the closest source.
The same is the case for WA, which, however, also presents a low probability for
the robots to converge on the distant source. This happens because with WA no
information is discarded. When a large number of robots discovers the distant
source early in the experiment, they may influence the whole swarm despite the
lower confidence of their information. This cannot happen with HS and RS,
because low quality information is instantly discarded. In both the SS and LL
experimental conditions, when there is no better choice, HS and RS lead to a
split in the swarm, and robots spread among the two paths (Fig. 4.7). In these
experimental conditions, the more robots on a path, the higher the congestion,
and the larger the distance the robots travel. This causes robots to have worse
confidence in their information with respect to these from a less congested path.
Therefore, switches to the other path are very likely. Congestion creates a sort of
negative feedback that leads to an oscillating dynamic in which no decision ends
up being taken. On the contrary, WA is not affected by such negative feedback
and systematically leads to convergence (randomly on either path, the setup
being symmetrical). Indeed, the poor confidence that results from congestion is
counterbalanced by the larger number of robots with which the information is
shared and averaged. Therefore, the swarm converges to the more populated
path.
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Figure 4.7: Robots repartition on path A. Each histogram shows the observed
frequencies of the number of robots committed to path A (the shortest possible
path).

Efficiency The robot behaviour does not explicitly encode the ability to make
collective decisions. Instead, it is conceived to provide efficient navigation ability
thanks to the information shared within the swarm. The decision process is an
emergent result of this behaviour and so is the variation in efficiency depending
on the setup and the mechanisms involved, as shown in Fig. 4.8. In the SL
condition, all three mechanisms make the robots converge on the closest path,
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therefore resulting in density of 15 robot/m. As shown in Fig. 4.4, WA is more
resilient to congestion, which is why it is the most efficient mechanism in this
setup, followed by RS and HS. In the SS condition, both HS and RS result in
the swarm splitting between the two paths as discussed above. By exploiting two
paths with a low density of 7.5 robot/m (instead of one with high density of 15
robot/m) the robots create less congestion, which explains why the performance
for HS and RS is slightly better than in the WA case. Indeed, WA makes
the swarm converge on a single path with a high density, and navigation is
slightly less efficient. Congestion has a lower impact in the LL conditions as both
densities (9.4 robot/m on a single path, 4.7 robot/m on two paths) fall in the
linear part of the congestion curve (see Fig. 4.4), explaining why the mechanisms
result in the same efficiency.
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Figure 4.8: Efficiency of the swarm for two sources, for all mechanisms and
conditions. Each box represents the inter-quartile range, whiskers extend to 1.5
times the corresponding quartiles, and the dots represent outliers.

Switching Patterns Social odometry and the various mechanisms studied
above not only influence the efficiency of navigation and decision-making, but
also the physical shape of the swarm. This can be seen not only by studying the
movement of the robots, but by focusing on their switching patterns. A robot
switches from one source to another when it encounters better information that
directs it to another source. The switching patterns for each mechanism are
displayed in Fig. 4.9, in case of both sources being at the same distance, or in
the presence of a closer source.

First, we note that most of the switches occur in or near the nest. This is
because the nest is the destination that all robots have in common, no matter
their choice of source. This is where the density of information, and even more its
variety, is at its highest. Furthermore, as mentioned above, robots do not share
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and request both pieces of information (the nest’s and the source’s position) at
the same time. In order to switch from one source to another, a robot has first
to enter the nest to request new directions. The halo of switches around the nest
is the result of the range of communication allowed by the range-and-bearing
device. Its shape varies for different arena setup (for instance more centred when
the sources are on each side of the nest).

Figure 4.9: Cloud dot of the positions of the robots’ switches from one source to
another. In red are the switches to the red source (north, always the closest to
the nest) and in blue the switches to the blue source. Red switches are drawn on
top of the blue switches. Top: SL setup condition, bottom: LL setup condition -
in both case the angle between the sources is alpha = π/2. From left to right:
HS, RS and WA.

All mechanisms do not show the same pattern of switches. For instance,
when there is a better solution, the HS mechanism only needs a few switches for
all the robots to converge on the closest source. On the contrary, RS and WA
show a much higher number of switches. Both observations are coherent with
the speed of each mechanism’s convergence. When no closer source is present,
all mechanisms present a high number of switches, as robots oscillate between
one possible solution and another. WA converges as in the previous condition,
but with a higher number of switches.

In both LL and SL conditions, the switches pattern displayed have the
tendency to grow toward the barycentre of both source. This effect is even
stronger in the case of WA because of its averaging aggregation of information.
This leads to the creation of a trail of switches, in which they are no longer the
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result of a communication with the nest, but with either path connecting the
sources.
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Figure 4.10: Robots repartition on path A for different number of source areas
(3,4, 5 and 6). Each histogram shows the observed frequencies of the number of
robots committed to path A (the shortest possible path).

Generalization to Multiple Sources

The dynamics we observe with multiple source locations are similar to the ones
displayed in the two sources setup, no matter the number of added sources.
Fig. 4.10 shows the percentage of robots that choose path A (i.e., the shortest
path in the SLL condition), when multiple source locations are present. All
mechanisms leads to convergence in the SLL case, even if WA sometimes leads
to the selection of one of the distant sources, for the same reasons discussed in
the two sources setup. We can observe a similar splitting behaviour in the SSS
and LLL conditions for both HS and RS, while convergence is observed for WA.
When the swarm splits, the repartition of robots is no longer centred on 50%
but is closer to 33%, implying that the repartition is no longer between only two
paths. Nonetheless, not all are exploited at the same time, as can be inferred
from the existence of paths selected by no robot. This can be explained by the
oscillation dynamics discussed earlier. When the amplitude of the oscillations is
greater than the number of robots on a path, all the robots on this path switch
to another one. This happens in the case of multiple sources because the robots
are spread among more paths, and their number on each is therefore lower.

To better understand the exploitation of the available sources, in Tab. 4.1
we report the average percentage of robots on the different paths, ordered from
the most to the least exploited path. We note that the number of exploited
sources is usually no greater than 3. This explains why the efficiency of the
swarm does not vary with the number of available sources, as shown in Fig. 4.11.
The slight increase in performance can be attributed to the fact that the more
sources there are, the easier it is for uncommitted robots to join a path earlier
in the experiment. Overall, we note similar patterns over efficiency between the
multiple sources condition and the two sources condition.
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Figure 4.11: Efficiency of the swarm for multiple sources and all mechanisms
and conditions. Each box represents the inter-quartile range, whiskers extend to
1.5 times the corresponding quartiles, and the dots represent outliers.

When there are multiple sources, WA in the SLL condition leads to a frequent
selection of a distant source instead of the closest one, as shown in Fig. 4.10. If
several distant locations are present, they end up reinforcing each other as their
angular distance becomes smaller. In other words, two distant source locations
that are close to each other attract more robots than a single closer location.
This explains why the chance of WA leading to the selection of a distant source
increases with the number of sources.

Discussion

The experiments above reveal the specificities of the three information aggregation
mechanisms. WA leads to convergence to a single path in all conditions, but this
is slower and error-prone (similar to the behavior resulting from a low β value for
the Fermi mechanism). On the whole, WA leads to better cohesion of the swarm
and deals better with congestion thanks to more accurate information about the
target areas. HS and RS also lead to convergence when there is a shorter path
to exploit, and handle better the presence of multiple distant source locations
(similar to the behavior resulting from a high β value for the Fermi mechanism).
When congestion results in inefficient navigation, both mechanisms lead to the
exploitation of multiple paths, spreading the load of robots in a balanced way
with similar dynamics, although HS appears to be stiffer than RS.



58 CHAPTER 4. INFORMATION AGGREGATION MECHANISMS

Table 4.1: Repartition in percentage of robots for 3, 4, 5 and 6 sources. The 1st

source is the one associated with the highest number of robots. The mean and
maximum of the standard deviation is (4.7, 10.5) for HS and RS and (6.1, 16.9)
for WA.

SL SS LL
HS RS WA HS RS WA HS RS WA

1st 98.5 98.1 96.0 48.0 52.6 93.0 48.8 47.0 90.8
2nd 0.1 0.6 2.3 34.3 37.3 5.7 33.4 32.5 7.0
3rd 0.0 0.0 0.0 17.2 9.7 0.0 17.4 19.7 0.1
1st 98.4 97.7 95.2 50.6 54.1 92.3 44.8 43.8 89.5
2nd 0.2 1.0 3.6 35.2 38.0 6.8 32.0 31.0 9.2
3rd 0.0 0.1 0.0 12.5 6.9 0.0 17.6 17.2 0.1
4th 0.0 0.0 0.0 2.1 0.7 0.0 5.1 7.0 0.0
1st 98.6 97.3 92.4 51.1 51.1 94.8 44.9 42.6 89.4
2nd 0.2 1.0 6.8 35.2 37.0 4.5 31.6 30.0 9.5
3rd 0.0 0.1 0.0 12.5 10.4 0.2 17.7 17.7 0.5
4th 0.0 0.0 0.0 1.1 1.1 0.0 5.1 7.3 0.0
5th 0.0 0.0 0.0 0.0 0.0 0.0 0.3 1.4 0.0
1st 98.6 97.3 93.6 50.1 53.0 94.7 43.7 42.4 88.5
2nd 0.2 1.5 5.4 34.9 36.1 4.7 31.7 28.2 10.4
3rd 0.0 0.1 0.5 13.5 9.2 0.2 17.2 17.3 0.6
4th 0.0 0.0 0.0 1.4 1.3 0.0 6.0 8.3 0.0
5th 0.0 0.0 0.0 0.1 0.2 0.0 0.8 2.3 0.0
6th 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0

4.3 Exploitation Task

In this section, we focus on the exploitation ability of the swarm as supported
by the social odometry navigation mechanism. To this end, the sources are
represented as a distribution of cylindrical items on the ground. By using
objects, we give a topology to the source areas, and hence we can study how the
different information aggregation mechanisms described in Section 4.1.2 react
when confronted with physical resources, and their exploitation efficiency.

As in the previous set of experiments of this chapter, we start by introducing
the individual behaviour of the robots. Then, we introduce the experimental
setup and finally discuss the obtained results.

4.3.1 Individual Behaviour

The behaviour of the robot is defined by a slightly different finite state
automaton (Fig. 4.12). The state Leave Source is now replaced by the state
Grab Item for resources are no longer painted areas on the ground but items to
be retrieved. The robots now go toward the source area, grab an item, return
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Explore

Go to Source

Leave Home

Grab Item

Go Home

!In(Home)
In(Home)

See(Item) & P(grabbing)

Have(Item)
See(Item) & P(grabbing)

In(Home)

!See(Item)

Know

Know(Home) & Have(Item)

!Know(Home) & P(explore)

!Know(Source) || P(explore)

(Source) & !Have(Item)

Figure 4.12: Robot’s finite-state automaton. The circles define the states while
the arrows define the transitions. In(Home) is true when the robot senses a grey
colour on the ground. Know(Area), Area ∈ {Home,Source}, is true when the
robot has an estimation of the position of the area. Have(Item) is true when
the robot is holding an item. See(Item) is true when the robot is able to see a
grabbable item with its camera sensor. P (grabbing) is the probability a robot
will go grab the closest item.

home, drop the item, and start again following the foraging loop defined by the
states Go to Source, Grab Item, Go Home and Leave Home. When lacking
information, the robots fall back to the Explore state in which they start at the
beginning of each experiment. On top of these control states, both short and
long range collision avoidance are implemented.

In the Go to Source state, the robot moves straight to the target location,
possibly avoiding other robots and obstacles. As in previous experiments,
each robot updates its information (position and confidence) using odometry.
Whenever a robot sees a resource item, it probabilistically enters the Grab Item
state with a probability P (grabbing). We wanted on average to allow the robots
to cross the source, which led to P (grabbing) = 1/(v · d), where v is the speed
of the robots and d is two times the standard deviation of the Gaussian spread
of items characterising all sources. If the robot reaches the estimated location of
the target source before getting to grab an item, it goes back to the Explore state.
The robot has a small probability P (explore) of going back to the explore state,
which ensures that the robot does not remain idle in case it cannot reach the
estimated position of the source area. This allows the swarm to reach a balance
between the maximisation of currently known sources and the exploration of
potential new ones.

Once in the Grab Item state, the robot moves toward the closest item. Then,
once in contact, it grabs it and at the same time stores the source location as
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the average position of all grabbable items in sight. The robot always selects
and goes toward the closest grabbable item, which may change over time due to
robot movements or changes in the environment. Having grabbed the item, the
robot enters the Go Home state. If for any reason no further items are in sight,
the robot goes back to the Go to Source state.

The Go Home state works closely as the Go to Source state. In this case,
the robot moves straight toward home. If it reaches the grey painted area, it
enters the Leave Home state, and iterates the loop anew. If not, it goes back
to the Explore state, either because it has reached its estimated position of the
home location (without entering the grey area, implying that the robots had bad
information memorised), or because of the probability P (explore) to explore
again.

Finally, when in the Leave Home state, the robot moves in the home area fol-
lowing a random walk pattern (possibly dodging other robots to avoid collisions)
and probabilistically drops its item with probability P (dropping). Once out, it
stores the home location as the average of its entering and exiting positions.

When a robot is out of the foraging loop, it is in the Explore state. In this
state, it performs a random walk, either searching for grabbable objects or for
the home location. If the robot sees an item, it enters the Grab Item state with
probability P (grabbing). Otherwise, the robot exits from the Explore state only
when it obtains the position of either the source or home, either from its own
sensors or through social interaction.

4.3.2 Experiments

At the beginning of an experiment, the robots are spread inside an arena
containing a home (circular grey area painted on the ground) and one or more
sources of varying quality, as depicted in Fig. 4.13. The sources are regions with
items to be grabbed and brought back home. Using real objects lets us shape
these regions and define their topology through the items themselves, as opposed
to regions painted on the ground, which are defined symbolically (allowing for
only abstract interactions). Sources are Gaussian distribution of items around
their centre with a fixed standard deviation of 0.5. Source regions were intended
not as a dense bulk of numerous items (forcing interaction only on its edge) but
as a wide spread of objects between which the robots can manage to get around.
For this purpose, we introduced a minimum distance dmin between the cylinders
equal to 5 times the robot’s radius.

Furthermore, using real objects has the added effect of making the sources
more complex, allowing for greater variations. The main motivation for using
real objects (despite growing closer to real life conditions) was to integrate a
notion of quality in the new source areas. The quality characterises the number
of items present in a source at a given time. A source is defined by the maximum
number of items and their rate of replenishment, expressed in items per second.
This way, the quality of a source is grounded in reality and shares common
proprieties with real life conditions. In the following experiment, we focus on the
study of the rate of replenishment: the maximum number of items in a source is
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fixed at 35, which means that higher qualities are provided by higher rates of
replenishment.

In all the following experiments we measure when possible: the number of
items brought back home per second from each source, the number of objects in
each source, the number of robots exploiting each source, the robots’ switches
among sources, and the quality of their localization information.

Home

Source i

di

αij

dj

Source j

dmin

Figure 4.13: Setup of the experimental arena for the exploitation task. The home
area is placed in the center of a circular arena of an 11 m radius, surrounded by
walls. In this setup, the sources are defined as a Gaussian spread of items with
a minimum distance between them of dmin (five times the robots’ radius). They
are characterised by their distance from home di, dj , the angles they form with
each other αij and their respective quality.

Congestion in the presence of items Our first objective is to understand
the swarm behaviour with respect to navigation between the home and the
sources, and the impact of the presence of physical items on previous congestion
results. In order to compare painted area sources and spread item sources, sources
should always have enough items for robots to grab in this setup. For that,
the sources need to have a high constant number of grabbable items, implying
an infinite quality. When an object is grabbed, it is immediately replaced by
another one in the same position, so that the source size remains constant over
time. This way, we focus on the navigation dynamics only.
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Similar to the preceding congestion experiment, here we study the impact
of the density of robots on congestion and hence navigation. For that, we use
a setup with only one source. We vary both its distance from home and the
number of robots to reach the wanted robot density values.

The following two sets of experiments focus on the exploitation of sources of
varying quality, and the way a swarm of robots using social odometry reacts to
a dynamic environment.

Optimal exploitation of a single source As mentioned above, the main
interest of using real objects is the ability to study the impact of the quality of a
source on the decision-making process of the swarm. In this experimental setup,
we redo the same experience as above (one source of items, varying density of
robots), but with a finite rate of replenishment. We vary its rate (0.1 item/s,
0.5 item/s and 1.0 item/s) and study how various density of robots (5 robot/m
to 23 robot/m) manage to exploit a source bearing this rate. While the density
variations are made by varying the number of robots, in this setup the distance
between the source and the nest is constant, at the average of both the previously
defined short and long distance (i.e., d = 6.5 m). Through these experiences, we
search for optimum rates of a source’s exploitation and their link with density
and the rate of replenishment.

Optimal exploitation of two sources Finally, we study how the swarm
decides and adapts in the presence of two sources. We study both the impact of
the distance among sources as well as the impact of the rate of replenishment.
For that, we choose among two possible distances (dshort = 5 m and dlong = 8 m)
and two possible rates (ratemin = 0.1 item/s and ratemax = 1 item/s) for the
sources. We will study each possibility. First, same rate and distance and same
rate but different distance (to compare with the previous results). Then same
distance but different rate (to study the impact of the rate). And last, different
rate and different distance with the further source having the best replenishment
rate (to compare the effect of the rate and the distance from home). Through
these experiments, we explore the dynamics of the swarm and its ability to
balance between the distance and quality of a source, and switch dynamically
among sources in order to maximise its efficiency.

4.3.3 Results
In this section we present the current results over each experimental setup
described above and compare them to the results presented in Section 4.2.3. We
kept the same duration for the trials (20 minutes of simulated time) and the
same random seeds. For each run we compute the number of robots on each
path to study the dynamics of collective decisions. We also compute the number
of round trips to study the navigation efficiency, as well as the error made by the
robots on the estimated position of the nest to gauge the quality of information
in the swarm.
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Congestion

As can be seen in Fig. 4.14 left, all mechanisms follow a commonly shared
tendency (sharp rise in low value of density, stalling for higher values). We can
not make a direct comparison with results on density from Section 4.2.3 because
the sources are not defined in the same way. For instance, the actual perceived
distance can be much smaller for sources represented through items because the
spread can grow closer to the nest than a static painted ground area would be.
Furthermore, in the updated individual behaviour, each robot has the probability
P (grabbing) to stop exploiting the current source and explore. The density values
output in Fig. 4.14 are starting densities. In previous experimentations, the
robots had no possibility to go back to explore. We observed then a much
erratic curve, a quick stall and even a drop in efficiency as density rose. Allowing
the robots to explore again when they are stuck on the exploitation path not
only give the swarm an opportunity to find better source, but helps the swarm
exploiting the current source at an optimal rate by reducing the interferences
between robots. In this experimental setup, the swarm self-organises to find a
balance in the number of robots: too few would be a loss of potential, too many
would make navigation non-practical.
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Figure 4.14: Left: Impact of density on navigation efficiency for each mechanism
and in the perfect information control condition. Each line is the mean over
100 trials. HS_Nav and PI_Nav are taken from our previous results from
Section 4.2.3 on congestion with simple painted sources, for reference. Right:
Evolution of the error of the estimated position of the centre of the nest for each
mechanism. Each line is a mean over 100 trials.

If we cannot actually compare the efficiency in absolute value, we can compare
the evolution of this efficiency. HS_Nav and PI_Nav references of previous
results shows us that the tendencies of results in each arena setup are similar,
with a slightly stronger RS compared to both WA and HS. As in the previous
setup, congestion has too a lower impact on navigation efficiency with social
odometry. We note that WA is more resilient to congestion than HS and RS
for the same reasons mentioned in section 3.3.1. The same trends as with the
previous arena setup can be seen for the evolution of error (Fig. 4.14 right):
error grows with density and WA is doing better through its averaging process.
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Finally, if both physical setups differ a lot, the end results are similar. This
proves first that adding physical interaction with items and the resulting updated
individual behaviour do not change dramatically the higher level behaviour of
the swarm. Second, such similarity indicates that our first abstraction of the
physical setup is pertinent in a simple case with one nest and one source.

Optimal Rate of Exploitation

Using infinite rate allows us to study only the navigation aspect of the exploitation
task. If we want to understand the dynamics of the swarm while exploiting a
source, we need to study how the swarm reacts to the presence of a source of
various finite rates (Fig. 4.15).

As in previous subsection, we plotted the efficiency of the swarm over its
density. The three chosen rates show the three archetypical results. The top
figure corresponds to a low rate (0.1 item/s) and display a virtually constant
efficiency, no matter the number of robots. Indeed, in this case the rate is so low
that even a small number or robots is enough to deplete the source and hence
exploit it in an optimal manner. In the bottom figure, the rate is high (1 item/s)
and the trends of each mechanism displayed in the plot are similar to the ones
displayed in the previous subsection. In this case, for all density values tested,
the source does not get depleted. Last, the middle figure has an in between rate
(0.5 item/s). If at first increasing the density increases the efficiency, the curve
reaches quickly a plateau around a density of 13 robot/m. After that, the rate
is not high enough to withstand so many robots; increasing the density would
only increase the number of exploring robots.

Exploitation of Two Sources

In this section, we study in a similar way as in section 3.3.2 the swarm dynamics
and the collective decision when sources have varying distances and rates.

Decision In this section, we find on average similar tendencies than in the pre-
vious experimental setup with two source area painted on the ground (Fig. 4.16).
WA always converges, even if sometimes on the longer path. HS and RS converge
when a closer source exists. If such a source does not exist, then the swarm is
split over the possible paths.

The plotted histograms reveal a few differences compared to previous experi-
ments with two sources. First, the convergences are not as strong as previously
observed. This is a result of the possibility for the robots to go back to explore
when they are already on a path. Second, we see that when there is a competition
between a closer source and a source with a better replenishment rate, the latter
is the one toward which the swarm converges. Last, we note that in the perfectly
symmetrical setup (LL with equal rate for both sources), the results are not
symmetrical. The reason for this asymmetry is the now significant number of
uncommitted robots. Each path bear in average less robots, the effect of which
is that all the graphs are translated toward the left. Since the graphs are not
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Figure 4.15: Impact of density on navigation and exploitation efficiency for each
mechanism and for sources of various replenishment rate. From top to bottom,
the rate is 0.1, 0.5 and 1.0. Each line is the mean over 100 trials.
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Figure 4.16: Observed frequencies of the number of robots committed to path A
(the shortest possible). S: short, L: long, E: equal rate, D: different rate.

symmetrical anymore, it can be hard to spot a convergence just by looking at
the histogram. Fig. 4.17 makes this convergence clearer by showing the evolution
of the number of robots.

The black separators (at 120 s and 400 s) present in Fig. 4.17 correspond
to the three different phases previously observed in Section 4.2.3 (exploration,
competition and maximization). They show that despite both experimental
setup having different swarm dynamics, their resulting evolution of the number
of robots follow a same pattern.

Despite a clear spread of robots in the histograms, we observe in Fig. 4.17
top a clear convergence on the path with a better rate of replenishment for the
HS mechanism. The remaining robots are not committed to the other path but
mainly exploring the environment. In this experimental setup, HS converges even
in the case of sources at similar distance, but only if their rate of replenishment
differs. Here the swarm self-organise and proves that not only it can value a
source on its distance from home but also on its rate by the amount of robots
returning to an explore state when the source is being over exploited.

The Middle figure corresponds to the same conditions, but for the WA
mechanism. The evolution of the number of robots follows a similar trend with
the HS mechanism. It also converges more strongly on the path linked to the
best replenishment rate source. In previous results, when sources were painted
on the ground in Section 4.2.3, the number of exploring robots was strictly
decreasing over time. Here, this is not the case anymore. After the number of
robots on the longer path reaches its peak, the number of exploring robots starts
rising again. It happens closely at the average time at which the source with
lower replenishment rate gets depleted, inclining the robots committed to this
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Figure 4.17: Evolution
of the robots’ repartition
with two sources of varying
distance (5 m and 8 m)
and rate (0.1 item/s and
1.0 item/s). Bold lines
indicate the mean over 250
repetitions, and the shaded
areas indicate the standard
deviation. These three
figures present the three
archetypical convergence
patterns with sources of
finite replenishment rate.

Top: HS, LL sources
with different rate.
Middle: WA, LL sources
with different rate.
Bottom: WA, SL sources,
the further source having
the best rate.

source’s path to go explore. Such exploring robots are then integrated in the
better path.

Finally, the bottom figure presents a competition between a higher replenish-
ment rate and a closer source while using the WA mechanism. We observe that
if at first robots converge on the closest source, the latter quickly gets depleted.
Then, the robots previously on the shortest path go back to explore and finally
join the further but substantial source.

Efficiency We saw that the decision process is not only influenced by the
distance of the sources from home, but also by the sources’ replenishment rate.
Fig. 4.18 displays the variation in overall efficiency over all mechanism and
experimental setup when two sources defined as a spread of items are present.

When both sources’ replenishment rate are equal, the boxplots describing
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the efficiency of the swarm are similar to those found in section 4.3.3. The main
difference is an overall lower efficiency (a slower swarm), due to the physical
interaction with the sources’ items. When sources bear different rates, they
are on average doing worse than when they have the same rate. This can be
explained by the fact that the overall rate is higher when the two sources have
the same rate. Another reason is that a setup with same rate will incline the
swarm to split among two paths, which makes the swarm more efficient as we
proved in section 4.3.3.

Last, in the SL_D condition, the swarm is less efficient than in the SL_E
condition. The reason for that is that the closest (but with low rate) source is
regularly rediscovered and depleted, distracting the robots from the high-quality
source. This creates a cycle in which the closest source is regularly depleted
and abandoned until it grows back enough for exploring robots to discover it
again. These robots then come back home with information in which they are
very confident, and hence recruit even more robots. This cycle is even more
pronounced for the HS mechanism when just one single robot can spread its
information to many others as long as its confidence is better.
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Figure 4.18: Efficiency of the swarm for two sources, for all mechanisms and
conditions. Each box represents the inter-quartile range, whiskers extend to 1.5
times the corresponding quartiles, and the dots represent outliers. S: short, L:
long, E: equal rate, D: different rate.
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4.4 Conclusions
In this chapter, we presented an extensive analysis of three parameter-free
information processing mechanisms for social odometry with abstract source
locations and with sources made up of a distribution of physical items. We
studied the impact of these mechanisms on both the navigation and exploitation
efficiency and on the dynamics of the swarm. In particular, we observed how
the information processing mechanism can either lead to a convergence on the
exploitation of a single path, or to a split over multiple comparable options.
These results are meant to give future designers a guideline of which mechanism
they should choose depending on the situation and objectives considered.

For instance, if the cohesion of the swarm is important, then the WA mecha-
nism should be selected as it favors a group that does not split over multiple
sources. As for the navigation efficiency, we observed that it highly depends
on the congestion of the selected paths. As a consequence, HS and RS lead
to the exploitation of multiple paths whenever congestion results in inefficient
navigation. When physical objects are present, the sources’ rate of replenishment
influence strongly both the efficiency of the swarm and its dynamics. We ob-
served that variations in this rate has an even stronger impact on the efficiency
than the distance alone.

These results show similar trends among both kinds of experimental setups,
with more realistic interactions in the case of sources defined through items.
In all setups, the swarm displays a behaviour in which it balances the robots’
load over the possible paths (splitting when necessary), implementing a sort of
load-balancing mechanism. In Chapter 5, we will investigate this issue further
in order to provide an optimal load-balancing behaviour, which can maximize
the exploitation of different paths to relevant areas/sources. In this context,
the swarm favors the best distribution of robots among the available paths and
reacts in real time to changes in its environment.

A number of possible extensions to the presented mechanisms can be envis-
aged. The first straightforward extension is to provide for our social odometry
mechanisms a way to deal with more complex paths, for instance in the presence
of obstacles. Robots may also be given the ability to memorize multiple source
locations, implying that the competition among paths would not be only at the
swarm level but also at the individual robots level.



70 CHAPTER 4. INFORMATION AGGREGATION MECHANISMS



Chapter 5

Balancing exploitation of
renewable sources

This chapter further contributes to the overall goal of the thesis by digging into
the interplay between foraging dynamics and communication. We propose an
adaptive strategy to balance exploitation of renewable sources by a robot swarm,
inspired by the nest site selection behaviour (NSS) of honeybees. Unlike the
communication protocols studied in the previous chapter (which are unflexible
with respect to changes in the environmental conditions), the NSS behaviour
enables sustainable foraging in a multiple resource context and is flexible to
varying contingencies, thanks to a richer communication protocol. Indeed, while
in Chapter 4 communication was limited to sharing the position of a source
where other robots could navigate to—hence fulfilling a recruitment function—,
with NSS communication also serves to inhibit teammates from choosing a given
source (e.g., because it could become depleted). This chapter demonstrates that,
by enriching the communication system, it is possible to also observe richer
foraging dynamics.

Individual limitations, such as the inability of robots to be aware of each
available source and of its profitability, as well as the fact that the behaviour
may be constrained to following simple reactive rules, entail that achieving a
correct balance is not trivial. In such conditions, a balanced exploitation should
result from a collective self-organising process in which information about the
availability of sources is shared among the robots to achieve a correct allocation,
preventing source depletion and maximising the flow of goods. Despite being
conceived for collective decision making, NSS indicates how the swarm dynamics
can switch between convergence toward the exploitation of a single source (when
its quality is good enough to sustain a large swarm) and balancing between the
available sources (when no source has sufficient quality to sustain the whole
swarm). We start from a source exploitation problem whereby items have to be
collected from multiple sources, which can replenish at a fixed, unknown rate.
We borrow and adapt the collective decision-making algorithm from Reina et al.
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(2015b), and we improve on it by studying for the first time how this algorithm
adapts to dynamic environmental conditions that result from continuous source
replenishment after foraging. Indeed, the variation of the number of items
within a single source corresponds to a variation of its perceived quality, which
has an impact on the macroscopic dynamics of the proposed algorithm that
has never been studied to date. To this end, we isolate the different processes
determining the collective dynamics and study their impact. This contributes to
the identification of a parameterisation that can lead to a balanced exploitation
not only with respect to the regeneration rate of the sources—hence avoiding
source depletion—but also with respect to their distance from the central place
where foraged items need to be retrieved. Integrating all these aspects proves
particularly challenging, and we present here a large-scale study on the most
important parameters determining the system behaviour.

5.1 Experimental setup
The experimental setup is similar to the one presented in Sec. 4.3. Robots have
to search for items scattered in an open environment and retrieve them to a
home location (hereafter referred to as “nest”, in analogy to foraging by social
insects). Differently from the previous experiment, in this case the arena has
no boundaries, introducing a central place foraging problem in a open space.
The nest is a circular area (radius: 0.8m) at the center of the robot arena
represented by a black disk painted over an otherwise white floor (see Figure 5.1).
Retrievable items are cylinder-shaped objects (radius: 0.05m) clustered together
to form a “source”. In this chapter, we focus on a simplified exploitation prob-
lem in which only two sources are present—labbelled A and B—although the
proposed solution can be easily generalised to larger numbers of sources. Each
source i ∈ {A,B} contains at most Mi = 30 items positioned according to a
2D Gaussian distribution around the source centre (σR = 0.35 m), keeping a
minimum distance dmin = 0.14 m between items. Sources are characterised by
quality and position. The source quality ri is defined by the rate of creation
of new items (ri ∈ {0.01, 0.03, 0.05, 0.1} items/second). The source position is
defined by the distance from the nest (di ∈ {4, 6, 8, 10}m). The relative angle
αAB between sources is chosen at random with a minimum angle of

π

3
between

different sources to ensure separation. When the number of items within source
i is lower than Mi, new items are generated with the given regeneration rate ri,
practically implementing a Bernoulli model for source regeneration as described
by Liemhetcharat et al. (2015).

5.1.1 Individual and Collective Behaviour

The overall goal of the robot swarm is to maximise the retrieval rate, that
is, the number of items per unit time that are successfully transported to the
nest. We assume that robots have no a priori knowledge about the position and
profitability of sources, neither they have any map of the environment to support
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Figure 5.1: The source exploitation problem requires robots to bring cylindrical
items back to the nest. The experimental setup defines two sources—labelled as
source A and B—positioned at distance dA and dB from the nest, and separated
by the angle αAB >

π

3
. Each source i contains at most Mi items, scattered

around the source center according to a 2D Gaussian distribution, keeping a
minimum distance dmin between items. The nest is a circular area (radius: 0.8m)
painted in black to be recognised through the robots infrared ground sensors.

navigation. Hence, exploration is required to gather information on the available
sources. We also assume that robots can track—e.g., through odometry—the
position of the nest and of at most one source at the time, which is the one most
recently visited. In this way, we ensure that robots have up-to-date information
about the state of the sources they have found, avoiding to memorize the location
of sources that may be unprofitable or completely depleted. Finally, we assume
that robots can carry only one item at a time, hence multiple robots can forage
from the same source at the same time to maximise the exploitation rate.

The desired swarm behaviour requires a recruitment process, so that robots
can spend less time in exploration, focus on the available sources and exploit them
in parallel. When multiple sources are available, exploitation can be focused on
one of them if its quality is high enough to sustain the whole swarm. Otherwise,
a balanced exploitation of the two available sources is preferred. This collective
behaviour has properties similar to value-sensitive decision-making studied in
house-hunting honeybees (Pais et al., 2013; Reina et al., 2017). Indeed, when
engaged in a collective decision, a honeybee swarm may arrive at consensus when
the quality of the option is sufficiently high, otherwise remain in a “undecided”
state when the quality is low, in the hope that a better alternative is discovered
later. As a matter of fact, such undecided state corresponds to the swarm being
split in sub-populations committed to the low-quality alternatives that they
could find. This “undecided” state can be seen as a load-balancing state, because
the house-hunting swarm is split among potential nest-sites, much as the foraging
swarm is split among the available sources. This highlights the usefulness of
framing the load balancing problem studied here in terms of a value-sensitive
collective decision problem.

Starting from this observation, we decided to synthesise the individual robot
behaviour taking inspiration from a design pattern derived from the honeybee
nest-site selection behaviour (Reina et al., 2015b). The design pattern provides
guidelines to implement the individual behaviour as a probabilistic finite state
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machine (PFSM), where any robot can be in two macro states: committed to
exploit a known source, or uncommitted and exploring. Additionally, upon
robot-robot encounters, local information exchange can lead to changes in the
commitment state. Overall, four concurrent processes need to be implemented
in the individual behaviour: (i) spontaneous discovery of any source i with
probability PD,i; (ii) spontaneous abandonment of commitment to source i with
probability PL,i; (iii) recruitment of uncommitted agents following interaction
with a robot committed to source i with probability PR,i; (iv) inhibition of
commitment, whereby an agent committed to source i becomes uncommitted
after interaction with a robot committed to source j 6= i, with probability
PI,j (cross-inhibition). These probabilities are either completely defined by
the problem itself (e.g., PD,i for discovery of source i, see Section 5.2) or are
parameters defined at design time in order to tune the collective behaviour and
to achieve the desired exploitation of the available sources. Cross-inhibition is
particularly relevant, as it can determine the switch from the parallel exploitation
of multiple sources to full convergence towards a single source. This mechanism
has been observed in house-hunting honeybees (Seeley et al., 2012b), and is used
to adaptively select nest sites of high quality, quickly abandoning those of low
value (Reina et al., 2017). Indeed, through cross-inhibition, agents committed to a
source can return uncommitted, explore for other—possibly better—alternatives,
or get recruited by other agents.

In this work, we have implemented the individual behaviour as the PFSM
represented in Fig. 5.2, which is executed every ∆t = 0.1 s. Here, boxes represent
macro states corresponding to the commitment state of a robot, while circles
represent micro states corresponding to basic behaviours executed until some
(probabilistic) transition is triggered. The robot is considered to be committed to
a source when it knows its location, otherwise it is considered uncommitted. The
actual movements of the robot are governed by the following basic behaviours:

• Explore: in this state, the robot explores the arena performing a correlated
random walk (Dimidov et al., 2016). Whenever sufficient information
becomes available (e.g., location of nest and sources), either through
exploration or following interactions with other robots, a different behaviour
may be triggered.

• To source: the robot moves toward the location of a known source to
search for more items to retrieve.

• Pick up: when some item is in close range, the robot navigates toward it
and picks it up. Should the grasping procedure fail, the robot tries again
or chooses another item to pick up, if available.

• To nest: the robot navigates back to the nest, possibly bringing back an
item to deposit.

• In nest: when in the nest, the robot deposits the item it is carrying—if
any—and then performs a random walk until it moves out of the nest.
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Figure 5.2: Probabilistic finite state machine (PFSM) representing the individual
robot behaviour. The two boxes represent macro states for the committed and
uncommitted robot. Circles inside the macro states represent PFSM states in
which a robot executes a basic behaviour. The “Explore” behaviour is executed in
different conditions depending on the commitment state, hence states are named
differently to avoid confusion. Arrows represent transitions between states, and
are triggered when a certain Boolean expression is verified (AND: ‘&’; OR: ‘|’;
NOT: ‘ !’; see legend at the bottom). When o̊bot is uncommitted (left box), it
has no knowledge of any source and searches for it, periodically returning to
the nest. When committed (right box), the robot knows where a source is and
tries to retrieve items from it. The red dashed arrows represent probabilistic
transitions.

Robots start from the nest at the beginning of each experiment and keep track
of their positions through individual and social odometry (see Gutiérrez et al.,
2010, more details below).

When a robot is uncommitted, it explores the environment to gather infor-
mation about the location of the nest (if unavailable) and of the sources (see
left box in Fig. 5.2). With a fixed probability PG, a robot stops exploring and
returns to the nest, where it has a high probability of interacting with other
robots. With this mechanism, exploration is constrained around the nest and
robots do not wander away for too long.

When a robot is committed, it moves back and forth between the nest and a
known source to retrieve some item (see right box in Fig. 5.2). If it loses track
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of the nest, it explores the neighbourhood until either it finds the nest or it
receives its location by other robots in its neighbourhood. When in the nest,
it deposits the carried item and starts another exploitation trip to the known
source. At any time—and from any state in the committed macro state—a robot
can abandon commitment for source i with probability PL,i. This corresponds
to erasing the information about the source and returning back to the nest, from
where to retrieve exploration.

Robots interact locally through infrared communication, broadcasting at
regular intervals their knowledge about the position of the nest and of the
known source, if available. Such information is used for two purposes. On the
one hand, it is used by neighbours to update their own knowledge about the
same locations, following the social odometry paradigm with weighted average
aggregation mechanism (see Chapter 4 and Gutiérrez et al., 2010; Miletitch
et al., 2013b, for details). This assures that the swarm maintains through time a
good overall knowledge of the nest and source positions. When robots are located
in the nest, the same message can lead to recruitment and cross-inhibition of
uncommitted and committed robots, respectively. The uncommitted robot can
get recruited with a probability PR,i by another robot committed to source i
upon reception of a message. Similarly, a robot committed to source i can get
inhibited with probability PI,j—and turns uncommitted—upon reception of a
message from a robot committed to source j 6= i (see Fig. 5.2).

In this chapter, the probability of discovering a source results from the
random exploration that robots perform, and is dependent on the distance di
of source i from the nest: the closer the source, the higher the probability of
discovering it. On the other hand, the other probabilities introduced are control
parameters that determine the overall macroscopic behaviour of the robots. Here,
we use fixed probabilities independent of the source quality, hence PL,i = PL,
PR,i = PR and PI,i = PI , and we perform a thorough analysis to uncover the
effects of the control parameters on the emergent swarm behaviour.

As mentioned above, our goal is to study the macroscopic behaviour resulting
from the rules defined in Sect. 5.1.1 for different values of the control parameters
we identified. We want to obtain different types of macroscopic behaviour, from
exploitation of a single good source to a load balancing between two different
sources. Additionally, we want to maximise the exploitation efficiency of the robot
swarm by optimising the rate of retrieved items, either from one or from multiple
sources. To understand the effects of the different processes determining the
collective dynamics, we performed a set of experiments to isolate the contribution
of each component of the developed behaviour. In Sect. 5.2, we analyse the
exploration efficiency when robots are uncommitted, while in Sect. 5.3 we focus
on the exploitation efficiency when robots are committed to a given source. We
analyse the effects of recruitment in determining the tradeoff between exploration
and exploitation in Sect. 5.4. Then, we report on the effects of cross-inhibition
on the ability of a swarm to converge to the exploitation of a single source or
split among multiple ones, and we assess the exploitation efficiency of the swarm
when dealing with multiple sources (see Sect. 5.5).
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5.2 Baseline exploration efficiency

Resource exploration is the activity that agents perform when uncommitted.
As mentioned above, robots perform a correlated random walk (Dimidov et al.,
2016) until they find an item to be picked up. Random walk continues either
until a source is found, or until the robot is triggered (with probability PG) to
return home. When in the nest, a robot can share information about the source
found, or interact with other robots.

To evaluate the exploration efficiency of the swarm, we run a series of
experiments to measure (i) the average rate of discovery of a source with respect
to the distance, and (ii) the average percentage of robots that are found in the
nest. The former gives us an idea of the probability of discovery PD as a function
of the distance of a source from the nest: the higher this probability, the sooner
the swarm can start exploiting a source. The latter gives us an idea of the ability
of robots to interact with each other when uncommitted, and has a bearing on
the ability to be recruited by other robots to a known source. Both metrics
depend on the probability PG and on the distance di of source i from the nest.

Experimental Setup In this set of experiments, we use N = 40 robots that
are constrained to remain in the uncommitted state: whenever a source is
found, a robot goes back to the nest, but does not store the source location.
In this way, when in the nest a robot starts again an exploration trip. We
provide only one source to be found with high regeneration rate r = 0.1 items/s,
so that it remains close to the maximum number of items (i.e., 30 items).
This source is placed at a fixed distance d ∈ {4, 6, 8, 10}m from the nest.
Additionally, we vary the probability to spontaneously go back to the nest
PG ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01}. These values have been chosen to
provide a sufficient exploration time before returning to the nest. Considering
that the probabilistic choice is taken 10 times per second, the average exploration
time corresponds to (10PG)−1 s. We simulate the exploration for T = 2000 s,
and we measure the rate of discovery and the percentage of robots found in the
nest, in average.

Results Figure 5.3 summarises the average results from 100 runs performed
in each condition, varying source distance and probability to go back to the nest.
It is possible to note an expected pattern for which, the higher the distance of
the source, the smaller is the discovery rate (see the color shades of the different
points). Similarly, the lower the probability PG, the smaller the percentage of
robots in the nest. The distance of the source also has an impact, although
relatively small, on the percentage of robots found in the nest, because robots
take less time to travel from the source to the nest once the source is found.
Indeed, such a shift in the percentage of robots within the nest is visible especially
for higher discovery rates.

Overall, we note that sources that are 10m away from the nest are difficult to
discover, and only small enough values for PG ensure a non-null rate. However,
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Figure 5.3: Exploration efficiency: We highlight the tradeoff between the average
rate of discovery of a source and the average percentage of robots found within
the nest. Lighter points correspond to larger distances, varying between 4m and
10m. Different point types correspond to different values of PG.

PG should not be too small, in order to grant a sufficient percentage of robots
within the nest. A suitable tradeoff is given by PG = 0.001, and we choose this
value for the following experiments. With this value, the rate of discovery is
non-null also for large distances, and at the same time the percentage of robots
within the nest remains reasonably high, allowing for sufficient robot-robot
interactions.

5.3 Baseline efficiency in source exploitation

Once the exploration efficiency of uncommitted robots has been determined,
we can evaluate the exploitation efficiency of committed robots. This way,
we study separately both sub-behaviors (committed and uncommitted) of the
implementation. Generally speaking, we can define the exploitation efficiency of
a swarm as the overall rate of retrieval of items, that is, the number of items
retrieved by all robots per second independently of the source from which the
items were collected. The retrieval rate will depend on the quality of the source,
the distance from the nest, and the number of robots committed to the source
and actively collecting items from it. Clearly, the way in which the individual
behaviour is implemented could lead to interferences and congestion that have an
impact on the overall retrieval rate. In order to evaluate the maximum efficiency
of a swarm given the implemented behaviour (i.e., navigate back and forth from
sources and pick up and deposit collected items, see Sect. 5.1.1), we perform
a series of experiments largely varying the experimental conditions. We then
introduce a model of exploitation of multiple sources which provides a baseline
to evaluate the overall efficiency of the swarm when decision making and load
balancing will be introduced.
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Experimental Setup We consider the case in which a fixed number N ∈
[1, 40] of robots exploit a single non-depletable source (i.e., a source with the
maximum regeneration rate r = 0.1 items/s containing at most 30 items), placed
at a fixed distance from the nest (d ∈ {6, 8}m). We measure the retrieval rate
of a group of robots that continuously exploit the source. To this end, we force
robots to stay committed to the given source and we provide them with perfect
information about the source location (i.e., robots never lose track of the source
and can always navigate back and forth between source and nest). Under these
conditions, we measure the overall rate of returned items per second once its
evolution reaches a plateau.
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Figure 5.4: Exploitation rate R(d, n), computed as the number of items per
second retrieved from a non-depletable source at varying distance d and with
varying group size N .

Results Figure 5.4 and Figure 5.5 summarise the average results obtained from
100 independent runs in each experimental condition, varying N and di. Each
run lasts T = 2000 s during which robots continuously exploit the known source.
In Fig. 5.4, the retrieval rate R(d,N) is shown, indicating a linear dependency
between group size N and rate of retrieval. This implies that, for the group
sizes and distances considered, there is no negative impact from interferences
or congestion, which would instead result in a sub-linear growth. We also note,
as expected, that the efficiency is higher for closer sources, due to the fact that
robots need to travel shorter distances. This will have an impact on the collective
behaviour when multiple sources are presented at the same time. Indeed, the
swarm may have to face the choice between exploiting a close-but-poor source,
or a farther-but-rich one. The correct balance between the two must emerge
from the different expected efficiencies in the exploitation.

To evaluate the efficiency in presence of two sources with different quality
and distance, we provide a compact visualisation built on top of the maximum
efficiency computed for single sources and fixed groups. We consider here a total
group size of N = 40 robots, and we compute the expected efficiency for all
possible allocations of robots to sources A and B, under the assumption that
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Figure 5.5: Combined efficiency in the exploitation of two sources with different
quality and distance. In this example, we consider the case for dA = 6, dB =
8, rA = 0.03, rB = 0.05. The normalised exploitation efficiency R̂ is represented
in red for source A and in green for source B. The combination of both —as
indicated by the inset— represents the total efficiency: dark zones imply low
overall efficiency and bright ones imply high efficiency. Yellow zones (as a mix
of green and red) imply that both zones are exploited in parallel.

N = NA +NB +NU , where NU is the number of uncommitted robots, which
therefore do not contribute to the exploitation. Given the maximum retrieval
rate R(d,N), experimentally obtained for non-depletable sources at different
distance shown in Fig. 5.4, we compute the normalised exploitation efficiency of
a source of quality r as follows:

R̂(d,N, r) = 1−
∣∣∣∣R(d,N)− r
R(d,N) + r

∣∣∣∣ (5.1)

which has its maximum when R(d,N) = r, corresponding to a source that
can completely support exploitation from N robots without being depleted.
The normalised exploitation efficiency slightly decreases when R(d,N) > r,
corresponding to the over-exploitation of the source, leading to complete depletion.
We use this simple model to visualise the combined efficiency in foraging from
two sources in parallel. We show the combined efficiency as an heatmap on a
ternary plot (Fig. 5.5). Here, each point 〈NU , NA, NB〉 corresponds to a given
allocation of robots to the two available sources A and B. We color-code the
normalised retrieval rate R̂A in shades of red (see the horizontal axis for NB = 0),
while R̂B is visualised in shades of green (see the vertical axis for NA = 0). The
combined efficiency is rendered as the sum of the two colours, hence bright yellow
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for the optimal values given the sources’ quality and distance (see Fig. 5.5). This
visualisation allows to indicate if a certain allocation of robots corresponds to
the balanced exploitation of both sources, and will be used to evaluate the actual
efficiency of the swarm when two sources are present, as discussed in Sect. 5.5.

5.4 Exploration vs. exploitation of a single
source

The tradeoff between exploiting a given source and exploring in search of other
possibilities is the result of a delicate balance of multiple forces, and needs to be
carefully studied. With the implemented behaviour, robots commit to a source
either upon discovery through random search, or upon recruitment from an
already committed robot. While individual discoveries are always occurring with
a constant probability, as shown in Sect. 5.2, the probability of a robot to be
recruited grows with the size of the recruiting population. This creates a positive
feedback loop for which, the more a swarm exploits a specific source, the more it
recruits to it. On the other hand, source depletion following excessive foraging
provides a negative feedback that works in the opposite direction and tends to
stabilise the system, because those robots that do not find an item when they
reach a depleted source turn uncommitted and stop recruiting once back to the
nest. To evaluate the coupled effects from recruitment and over-exploitation,
we analyse the dynamics of a swarm presented with a single source of varying
quality.

Experimental Setup We consider the case of a single source of quality
r ∈ {0.01, 0.03, 0.05, 0.1} items/s, placed at distance d = 8 m from the nest. Here,
the number of items within a source can decrease so that sources can get depleted
upon high exploitation. Robots execute the complete behaviour discussed in
Sect. 5.1.1, although cross-inhibition is not present as there is only a single source.
We consider a constant probability to go back to the nest PG = 0.001 as resulting
from the experiments discussed above. Coherently, we fix the probability of
abandonment to PL = 0.001 to have a similar rate of abandonment in both
exploration and exploitation. When in the nest, robots can only recruit each
other with a probability PR ∈ {0.01, 0.02, 0.03}. Also in this case, every run is
executed for T = 2000 s using N = 40 robots, and we perform 100 experimental
runs for each experimental condition.

Results To appreciate the macroscopic dynamics resulting from different
parameterisations, we show the average percentage of robots committed to the
source, the fraction of robots that switch commitment state per second, and
the fraction of items left in the source (see Figure 5.6). When the quality is
high (r = 0.1), nearly all robots get committed to the source and exploit it,
and the number of items remaining in the source stays very high (> 80%).
Small recruitment probabilities correspond to a slow increase of the committed
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Figure 5.6: Dynamics of exploitation vs exploration with varying source quality
and recruitment probability. Each graph shows the variation through time of
the percentage of (i) committed robots (solid red lines), (ii) robots switching
commitment state (dashed blue lines) and (iii) items left in the source (dot-
dashed purple lines). Each graph represents a different setup with a distance
of d = 8 m, recruitment probability PR ∈ {0.01, 0.02, 0.03} and source quality
r ∈ {0.01, 0.03, 0.05, 0.1}

population, until a plateau is reached. The larger values we tested lead to a
much quicker increase of the committed population, which stabilises earlier (see
the top row in Fig. 5.6). Lower qualities of the source (r ≤ 0.05) lead to a
balance between positive and negative feedbacks that stabilises the committed
population to a value that strongly depends on the source quality r, and to a
much lesser extent also on the recruitment probability PR. Interestingly, we
also observe a higher rate of change in the commitment state in correspondence
of higher values of PR, which suggests that the macroscopic dynamics oscillate
around the average values displayed in Fig. 5.6. Overall, the main impact of
PR is on the speed of growth of the committed population. Fast growth is
useful for high-quality sources, but not so much for low quality ones, as the
risk to quickly over-exploit the source may lead to fast depletion of the source
and strong instabilities and oscillations due to massive abandonment. Hence,
we consider a value of PR = 0.02 as suitable for balancing quick growth with
stability of exploitation.
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5.5 Balancing source exploitation

Whenever two or more sources are present, robots need to choose which source to
exploit, and a competition between the sub-populations committed to the one or
the other source is observable due to committed robots recruiting uncommitted
ones and cross-inhibiting each other. To evaluate the extent to which such
competition leads to a balanced exploitation, we run a set of experiments to
understand what is the average allocation of robots among committed populations
as a function of varying sources’ quality and distance, and for different values of
the cross-inhibition probability PI .

Experimental Setup In this experiment, we consider two available sources
which can be at varying distance di ∈ {6, 8}m and varying quality r ∈
{0.01, 0.03, 0.05, 0.1} items/s. Robots execute the complete behaviour presented
in Sect. 5.1.1, with PG = PL = 0.001 and PR = 0.02, in accordance to the
experiments presented above. Here, robots committed to different sources can
cross-inhibit each other with probability PI ∈ {0.01, 0.02, 0.03}. We perform
100 runs that last each T = 2000 s, and we look at the final allocation of robots
committed to the different sources, or uncommitted. Additionally, we discuss
the overall efficiency of the exploitation of the two sources in parallel, following
the empirical model introduced in Sect. 5.3.

Results Overall, cross-inhibition defines how tolerant the swarm is of having a
segmented population: the smaller the cross-inhibition probability, the lower the
negative interaction between committed populations, the higher the probability
that sub-populations committed to different source can coexist (see also similar
results from the macroscopic models by Pais et al., 2013; Reina et al., 2017). The
resulting dynamics can lead to convergence to a single source or balancing among
many. This can be understood by looking at the distribution of the commitment
state of the robots at the end of each run. The histogram in Fig. 5.7 represent
such distributions, specifically for the percentage of robots committed to any

source (that is,
NA +NB

N
) and for the percentage of committed robots that

chose source A (that is,
NA

NA +NB
). The former informs us about the ability

of robots to successfully exploit sources, in average, given the experimental
conditions. The latter informs us about the tendency of committed robots to
choose source A (and conversely to not choose source B), hence revealing the
collective choice or load balancing achieved by the swarm. In our experiments,
we observe the full range of macroscopic dynamics for varying experimental
conditions, which we discuss in the following (see Fig. 5.7).

Symmetric case, high-quality sources (dA = dB = 6 m, rA = rB =
0.1 items/s, first row in Fig. 5.7). In this condition, both sources could
support the whole swarm, hence a collective decision in which the swarm
achieves convergence on the exploitation of a single source may lead to the
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Figure 5.7: Allocation of robots to different sources. Each histogram represents
the distribution of observables across N = 100 independent runs. Light green
bars represent the percentage of committed robots (NA +NB)/N . Dark violet
bars represent the percentage of committed robots that have chosen source A:
NA/(NA + NB). Each plot represents a different setup, defined by the value
of PI and the quality and distance of the two sources. The value of PI is
reported on top of each column. For additional results in different experimental
conditions, see the figures in the supplementary material. The experimental setup
characterising each row is detailed as follow, from top to bottom: Symmetric
case, high-quality sources (dA = dB = 6 m, rA = rB = 0.1 items/s); Symmetric
case, low-quality sources (dA = dB = 6 m, rA = rB = 0.03 items/s); Difference
in quality (dA = dB = 6 m, rA = 0.1 items/s, rB = 0.03 items/s); Difference in
distance (dA = 6 m, dB = 8 m, rA = rB = 0.03 items/s); Opposite pressures]
(dA = 6 m, dB = 8 m, rA = 0.03 items/s, rB = 0.1 items/s.

best results, as in this condition there are practically no robots uncom-
mitted (i.e., light green bars are shifted to high percentages). We observe
that low values of PI do not grant convergence, resulting in a uniform
repartition of robots over the two sources in the different runs (see the dark
violet histograms). Higher values of PI ≥ 0.02 result instead in a collective
decision, as observable from the bi-modal distribution of NA/(NA +NB),
indicating full commitment for either A or B.
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Symmetric case, low-quality sources (dA = dB = 6 m, rA = rB =
0.03 items/s, second row in Fig. 5.7). In this condition, no source can
sustain the whole population, and we therefore observe a somewhat equal
allocation of the committed robots among the two sources, especially for
low cross-inhibition values (PI ≤ 0.02) where a unimodal distribution is
present (see dark violet bars). Stronger cross-inhibition leads to a large
competition and the appearance of a bi-modal distribution, although less
pronounced than in the previous case. The number of uncommitted robots
is in general high due to the low quality of the sources (corresponding to
light green bars centred around low percentages of committed robots), and
increases for larger values of PI .

Difference in quality (dA = dB = 6 m, rA = 0.1 items/s, rB = 0.03 items/s,
third row in Fig. 5.7). In this condition, sources differ only in the rate of
replenishment, leading to a bias towards the choice of the most profitable
one (A in this case, see the dark violet bars shifted towards high percent-
ages). The higher the cross-inhibition probability, the stronger the shift of
the distribution toward the high-quality source.

Difference in distance (dA = 6 m, dB = 8 m, rA = rB = 0.03 items/s, fourth
row in Fig. 5.7). In this case, sources are both of somewhat low quality,
but one is farther away than the other, leading to an exploitation balancing
biased towards the closer source. We can observe here the high number
of uncommitted robots, due to the low quality and the large distance of
one source (see the distribution of committed robots centered around low
percentages). The effects of the cross-inhibition probability are largely
similar to the symmetric case with low-quality sources (second row), but
the distribution is biased toward the closer source (A) especially for larger
values of PI .

Opposite pressures (dA = 6 m, dB = 8 m, rA = 0.03 items/s, rB =
0.1 items/s, last row in Fig. 5.7). This condition represents the most
difficult case for the algorithm as the asymmetries in distance and quality
oppose and may compensate each other. Indeed, the distribution of the
committed robots (dark violet bars) is very wide, indicating that both
sources are selected from time to time as they present advantages and
disadvantages. For PI = 0.01, source quality seems to matter, as the
distribution is shifted towards the exploitation of source B. Higer values of
the cross-inhibition probability lead to a larger number of runs ending with
a balanced exploitation of both sources, with 50% to 75% of the committed
agents exploiting source A and the remaining ones exploiting source B.
Nevertheless, some runs end up with full commitment for the high quality
source (B).

Overall, these results confirm that the implemented strategy for exploration
and balanced exploitation results in expected distributions of robots among the
available sources, giving preference to the most profitable one by allocating more
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Figure 5.8: Efficiency in the exploitation of two sources, placed at differ-
ent distances (dA = 6 m, dB = 8 m) and for all combination of qualities
(rA, rB ∈ {0.01, 0.03, 0.05, 0.1} items/s). Each panel shows a ternary plot where
the underlying heatmap represents the theoretical efficiency in exploitation fol-
lowing the model introduced in Sect. 5.3, while the scatter plot represents the
results of 100 experiments, each point indicating the final allocation of robots to
different sources and the observed efficiency in exploitation, represented with
the same colour-coding of the heatmap (see Sect. 5.3 for details).

robots on it. To evaluate the efficiency of the system, we compare the achieved
allocation and retrieval rate with the model empirically obtained in Sect. 5.3.
Figure 5.8 shows the heatmaps representing the ideal efficiency for the case of
two sources with different distances (dA = 6 m, dB = 8 m), and for all possible
combination of source qualities (rA, rB ∈ {0.01, 0.03, 0.05, 0.1} items/s). On top
of the heatmaps, we show a scatter plot corresponding to the results from 100
experimental runs obtained with PI = 0.02. Each point corresponds to the
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final allocation of robots to committed or uncommitted populations, and the
color corresponds to the experimentally observed efficiency, using the same color
coding as for the heatmap. It is possible to note that the scatter plot generally
matches the areas where efficiency is high or maximal, especially when the closer
source is not the one with the highest quality (rA 6= 0.1 items/s). Indeed, when
A is also a high-quality source, the distribution is strongly biased towards its
exploitation, because the source is discovered earlier and can sustain a large
number of robots. Allocating other robots to the second source is therefore
less probable. When B is the most profitable source, the distribution is biased
towards its exploitation and is more balanced. Also note that the efficiency in
the exploitation is matched between model and experiments, as the colors of
the points in the scatter plot closely correspond to the underlying heatmap,
hence confirming the suitability of the model we have introduced to evaluate the
system efficiency.

5.6 Discussion and conclusions

In this chapter, we have implemented a strategy for exploration and balanced
exploitation of renewable sources inspired by the honeybee value-sensitive decision
making abilities. We have performed a large-scale simulation analysis to identify
the effects of the different parameters governing the individual behaviour on
the macroscopic, swarm-level dynamics. The results obtained confirm that our
approach is suitable to provide the ability to adaptively balance exploitation
of sources at the collective level, without requiring individuals to compare the
profitability of different sources, and without a central planner with global
knowledge of the environmental conditions.

The decentralised approach we adopt naturally leads to generalisations in the
number of sources to be considered and different kinds of exploitation dynamics
(as also studied in Reina et al., 2017; Miletitch et al., 2013b). Knowledge from
modelling studies could be integrated in order to provide parameterisations
suitable to deal with more complex working conditions, for instance dealing with
a large number of sources in parallel (Reina et al., 2017). However, macroscopic
models that consider at the same time the dynamics of the swarm and of the
renewable sources are not available to date and require an important analytical
effort. Work in this direction can provide means to obtain a precise micro-
macro link between the robotics implementation and the modelling predictions,
as obtained elsewhere for collective decision-making problems (Reina et al.,
2015a,b). The study presented in this chapter can be considered a step towards
the definition of a decentralised algorithm capable of optimally dealing with
complex and dynamic environmental conditions. Thanks to a wide-ranging
analysis of the parameter space, we have demonstrated that the macroscopic
dynamics correspond to the expectations, opening up the possibility to develop
swarm robotics solutions that appropriately balance the exploitation of sources.

A possible amelioration would be the further development of the proposed
behaviour to obtain a more robust implementation. For instance, we found that
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fine tuning the probability PG of returning to the nest is complex if one wants
to deal with a large range of distances, as PG strongly influences the average
distance from the nest covered by robots while searching. To deal with a large
range in the expected distances of sources, the exploration ability of robots should
be changed, possibly exploiting recent results on the usage of Lévy walks, which
are more suitable for searching in open environments in which the encounter
of sources is an episodic event (Dimidov et al., 2016; Schroeder et al., 2017).
Advancements in the exploration and exploitation abilities can be obtained also
by allowing robots to share information widely while they move, instead of
limiting interactions within the nest (Gutiérrez et al., 2010). To this end, it
is necessary to understand how the mobility pattern of robots influences their
network of interactions, and what is the bearing of an heterogeneous interaction
network on the macroscopic dynamics. Additionally, it is worth considering the
ability of agents to provide a motion bias to neighbours, thereby including in the
study reinforced random walks (Perna and Latty, 2014; Schroeder et al., 2017).
The characterisation of the interaction network resulting from the given mobility
pattern can be done in terms of degree distribution and other properties relevant
from a network theory point of view (Holme and Saramäki, 2012), while the
macroscopic analysis of the effects of the interaction topology on the collective
outcome needs to take into account heterogeneous mean field approximations
(Moretti et al., 2013).

The way in which different sources are taken into account within the swarm is
also worth further investigation. In this work, we limited robots to store only one
source location at the time, therefore constraining the space of possible actions.
Different experimental and modelling studies include additional mechanisms that
better exploit individual knowledge, such as keeping memory of multiple sources
and revisiting previously depleted ones (Dornhaus et al., 2006; Bailis et al., 2010;
Granovskiy et al., 2012). Thanks to these mechanisms, higher adaptability is
possible against variable environmental conditions.

Another direction to explore would be the study of the possibility of preserving
information of known sources even when robots are uncommitted, also linking this
aspect with the possibility to develop an emergent language used by the robots
to refer to each different option. This is useful especially in case the number and
position of sources is not known a priori, so that arriving at consensus on a single
label for each source could be useful to let the robot balance exploitation by
interacting in terms of labels and associated features (e.g., estimated regeneration
rate or profitability). An especially interesting aspect, then, is to study is the
potential interactions between exploitation dynamics and language dynamics
(Steels and Belpaeme, 2005; Loreto et al., 2011), which can lead to synergies
between the two processes if these are designed in the correct way (e.g., assign a
different label only to the most profitable source, and the same label to those
sources that should not be considered by the swarm). This topic is approached in
the next chapter, in which we add a language game on top of the NSS algorithm
studied in this chapter, aiming for the robots to evolve a language grounded on
their experience (Spranger, 2013).



Chapter 6

Emergent naming
conventions in a foraging
robot swarm

In this chapter, we relax the assumption of a simple communication system that
informed the two previous chapters, and link the foraging task to an emergent
language, with the goal of describing the environment in which foraging takes
place. Hence, this chapter provides a further demonstration of the interrelation
between communication and behaviour, this time by taking the perspective
of how language can evolve to represent features relevant for the behaviour
execution. Specifically, our aim here is to demonstrate how language games can
be grounded onto the execution of a task useful for the swarm. In particular, we
introduce two language games, namely the Minimal Language Game and the
Category Game (Miletitch et al., 2022), performed by the robots on top of the
NSS algorithm introduced in the previous chapter. We present how varying and
evolving topologies influence the way language games are played, and how this
affects the convergence of the vocabulary within the swarm and its subgroups.
Additionally, we study how language games can be used to provide a correct and
complete description of the swarm’s environment.

In Section 6.1, we discuss how language games can be meaningfully played
by a robot swarm engaged in a source exploitation task. In Section 6.2 we
present the experimental setup. In Section 6.3, we show how the dynamics of the
interaction network can lead to emergent linguistic conventions that correlate
with the actual task execution, but only if the language game is played by robots
actually exploiting a source. Then, in Section 6.4, we analyse the properties of
the interaction network, suggesting that it meaningfully supports the evolution
of useful linguistic conventions. Finally, in Section 6.5 we exploit the gained
understanding to define a category game tailored to better represent the different
sources distributed in space, as long as these are relevant to the foraging task. We
discuss the relevance of this study in Section 6.6, which concludes the chapter.

89
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6.1 Language games in a foraging robot swarm

A popular approach to the study of language dynamics is represented by language
games played by a population of agents/robots, with the purpose of mimick-
ing real-world linguistic interactions leading to the emergence of a structured
language. Various kinds of language games have been proposed to date, from
imitation games (Billard and Hayes, 1997) to guessing games (Steels, 2001) and
category games (Puglisi et al., 2008; Baronchelli et al., 2010). One game in
particular has received a lot of attention: the naming game (Steels, 1995, 2003).
In this game, two or more robots interact to assign a unique name to a set of
objects. At each interaction, one robot is chosen as a speaker and another as a
listener. The speaker chooses a referring object and an associated word from
its vocabulary—or invents one when no word is available—and then transmits
it to the listener. If the listener knows the word, then the game is a success,
and both agents remove all other words associated to the chosen object from
their vocabulary, keeping only the shared word. If instead the listener does not
know the received word, then the game fails, and the listener adds this new
word to its vocabulary. We use in our study a specific version of this game:
the minimal naming game (MNG, see Baronchelli et al., 2006b). Here, focus
is given only to reaching consensus on a single world within a population of
communicating agents. Specifically, we consider an implementation in which the
speaker broadcasts its word to all agents in his neighbourhood, while the listener
is the only agent that updates the vocabulary upon success or failure of a game
(Baronchelli, 2011).

As naming games are based on interactions between pairs of speaker and
listener agents, the time to achieve consensus and the underlying dynamics are
directly linked to the topology of the interaction network. In non-embodied
implementations, the link between topology and language dynamics have been ex-
tensively studied (e.g., fully-connected regular, small-world or random geometric
networks, see Baronchelli et al., 2007; Lu et al., 2008). Embodied implementa-
tions can be divided in two cases. On the one hand, a population of virtual agents
can use a small number of robots (sometimes reduced to two, as in Spranger,
2013) to play the naming game, so that at each iteration, agents are selected and
assigned to robots in order to record physical interactions among them. On the
other hand, the naming game can be played among a population of embodied
mobile agents (Baronchelli and Díaz-Guilera, 2012; Trianni et al., 2016b) that
interact locally with each other according to a topology of interactions that is
the direct result of the mobility pattern of the agents. This may lead to a strong
heterogeneity among agents’ neighbourhoods—and therefore different influences
on the language game outcomes—which is crucially determined by the tasks that
the agents/robots are engaged in.

In this study, the MNG is played on top of a self-organised foraging task.
When foraging, a swarm needs to explore the environment, identify and evaluate
the available sources and make decisions on which source to exploit, going through
different transitory states before reaching an equilibrium (e.g., convergence on
one single source to exploit or split/load-balance among many, as in Miletitch
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et al., 2018). Similar behaviours provide a complex and time varying interaction
network among robots, which can be exploited to support linguistic interactions
among agents. Our main goal is to study whether the dynamics of the interaction
network are sufficient to determine language dynamics that represent features of
the task execution (e.g., choice of one or the other source), of the environment
(e.g., the presence of more than one sources, each associated to a different word),
or both. To this end, we run experiments with two versions of the MNG. Beside
the classic MNG, we play a version where the creation of words is linked with
the discovery of sources by exploring robots. In this setup, we study how well
the robots manage to have an accurate description of their surroundings, that is
both complete (a word for each source) and correct (no misnomer) for as long
as each source is relevant to the swarm, where relevance is measured as the
number of robots actively foraging from the source (see Section 6.2). Our goal
is to understand how the swarm interaction topology influences the language
dynamics, and how the creation of words is correlated with the robots foraging
from a source.

6.2 Experimental setup
In this chapter, we study a foraging task similar to the one presented in Chapter 4.
Instead of being defined as a spread of physical items, the sources are now
represented as circular colored areas on the floor. This allows us to focus on the
language dynamics without interference from the need to identify and grasp an
object to retrieve, hence simulating infinite quality sources. We also simulate
a swarm 50 e-puck robots instead of marXbots, as grasping of objects is not
required, allowing us to exploit a previously developed foraging and decision-
making behaviour (Reina et al., 2015a). Here, the goal is to play a MNG while
identifying and exploiting either of two sources (referred to as source A and
source B) placed at the opposite side of a home area (referred to as nest, see
Figure 6.1). The environment is a 2D infinite plane without obstacles, and both
nest and sources have circular shape with radius R = 0.3 m. Each source is
located at the same distance d = 2.5 m from the nest.

Source A   Source BNest

R

d d

Robot

V

dI

Figure 6.1: Graphical representation of the environment. sources A and B are
each located at the same distance d = 2.5 m from the nest. All the three areas
have radius R = 0.3 m. Robots move at constant speed v = 0.1 ms−1 and can
communicate with neighbours within a range dI = 0.2 m.

At the beginning of the experiment, robots are uniformly distributed within
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a 0.8m side square centered on the nest. During the first 200 s, robots perform
a blind random walk during which they do not communicate or search for
sources. This allows us to neglect the initial transitory phase in which robots
are too densely distributed around the nest, allowing us to study the system
dynamics after the robots spread out in the environment according to their
search pattern. This assures that—whatever the experimental condition—the
initial distribution of robots does not severely impact the final outcome. In
the following experiments, unless mentioned otherwise, we perform 100 runs for
each experimental setup. These runs last until language convergence, which,
depending on internal parameters, can take up to 12000 s.

6.2.1 Individual and collective behaviour

Source exploitation

The desired swarm behaviour (localization and exploitation of sources) takes inspi-
ration from the decision-making process displayed by house-hunting honeybees—
also know as nest-site selection (NSS, see Pais et al., 2013; Seeley et al., 2012a;
Reina et al., 2017). The spatial dynamics during foraging resulting from the NSS
process have been studied by Reina et al. (2015a) and Miletitch et al. (2018).
Here, we make use of the individual robot behaviour from the former (Reina
et al., 2015a), which was designed for the e-puck robots following a design pattern
based on the NSS process (Reina et al., 2015b). According to this design pattern,
a robot is considered to be committed to a source when it knows its location,
and hence moves back and forth between the source and the nest. Otherwise, a
robot is considered uncommitted and explores the arena searching for a source.
Robots committed to source A (B) are considered to belong to the population
PA (PB), while uncommitted robots belong to the population PU , all summing
up to N robots: |PA|+ |PB |+ |PU | = N .

Similarly to the behaviour discussed in Chapter 5, four concurrent processes
determine the individual behaviour, two for transitions between uncommitted
and committed states, and two for the opposite. An uncommitted robot turns
committed either through discovery or through recruitment. The former
takes place when the robot enters the area of a source. The latter takes place
with probability Pρ when a robot receives the information about a source known
by a committed neighbour. Conversely, a committed robot turns uncommitted
either through abandonment or through cross-inhibition. The former takes
place anytime with a fixed probability Pα per time-step. The latter takes place
with probability Pσ upon iteraction with a neighbouring robot committed to a
different source. Cross-inhibition introduces a negative feedback loop that helps
the system break the symmetry and leads to a choice between two identical
sources (see Reina et al., 2015a,b, for more details). In our study, recruitment and
cross-inhibition happen only upon communication with other robots when located
into the nest. Differently from Reina et al. (2015a), we set the probability of
abandonment Pα to zero, so that the only way for robots to become uncommitted
is through cross-inhibition. This favours the attainment of a consensus state in
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Figure 6.2: Distribution of robots in a swarm as a percentage of robots committed
to source A (y axis) and B (x axis) for 100 independent runs. Each column
displays the distribution at different time steps. The insets show the histogram
of the frequencies of runs with respect to the percentage of robots committed to
A. Top row: strong cross-inhibition with Pρ = 0.7 and Pσ = 0.7, robots can
change commitment and eventually the swarm converges toward either source
A or B. Bottom row: weak cross-inhibition with Pρ = 0.7 and Pσ = 0.1, the
dynamic is much slower. Over the duration of our experiments, each run ends
up with a different distribution of robots among sources, with points close to
the diagonal representing low number of uncommitted robots.

which all robots within the swarm are committed to the one or the other source
(Reina et al., 2015b).

The actual movements of the robot are governed by the following basic
behaviours. When uncommitted, the robots explore the arena, performing a
correlated random walk (Dimidov et al., 2016), and have a fixed and small
probability at every control step to return to the nest. When committed, the
robots enter an exploitation loop where they move back and forth between the
known source and the nest (see Reina et al., 2015a, for a detailed description).

Depending on the value of Pρ and Pσ, the swarm displays different dynamics
and different final distributions of robots among the populations PU , PA and
PB . In this study, we focus on two specific cases: strong cross-inhibition and
weak cross-inhibition. In the strong case (Pσ = 0.7, Figure 6.2 top row) the
swarm rapidly converges to a consensus for the one or the other source, whereas
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the weak case (Pσ = 0.1, see Figure 6.2 bottom row) leads to slower dynamics
(Reina et al., 2016). Given enough time the swarm would end up converging to
a consensus for a single source. However, over the duration of our experiments,
the swarm did not break the symmetry but splits between the two sources (see
Figure 6.2, bottom row). At any time, with or without consensus, we define the
source with the highest number of committed robots (relative majority) as the
“selected” source. We define O ∈ {A,B} as the selected source and X ∈ {A,B}
as the non-selected source, and PO and PX as the respective populations, with
PO ≥ PX .

Minimal naming game

The language game played by the robots in our study is an implementation of the
minimal naming game (MNG) for mobile agents/robots (Baronchelli et al., 2006b;
Baronchelli and Díaz-Guilera, 2012; Trianni et al., 2016b). Each robot starts with
an empty inventory. At each time step (of length τc = 100 ms), each robot has a
probability Ps of becoming a speaker (here, Ps ∈ {0.0003, 0.0006, 0.001, 0.002}).
These values of Ps were selected so that foraging dynamics and language dynamics
would share comparable time scales. The language game is played as follows:
the speaker robot selects a word from its inventory and broadcasts it to its
neighbours. At each time step, if a robot receives at least one message, it
becomes a hearer robot. The hearer selects one (and only one) word at random
among those received and checks it against its own inventory. If the hearer
finds the selected word in its inventory, the hearer keeps only that word in the
inventory while deleting all the others. If instead the hearer does not find the
selected word in its inventory, it updates its inventory by adding the word (see
Trianni et al., 2016a, for more details).

In this study, we consider two variants of the MNG, which differ in the way
in which words are generated. In one case (referred to as classic game), the
robots create a new word when becoming speaker with an empty vocabulary. In
the other (referred to as spatial game), the robots create a new word when
encountering a source with an empty vocabulary. In both cases, we associate
each word with the closest source to the robot at the time of the word creation,
and we define WA (WB) the set of words associated with source A (B). Note
that, by construction, WA ∩WB = ∅. Robots having in their inventory any
word w ∈WA (WB) constitute population PWA

(PWB
). Robots with no words

constitute population PWO
. In Figure 6.3, we depict a possible partition of

robots among different populations, both with respect to the commitment state
and to their vocabulary. Since a robot can have at a given time an inventory
with words originating in both source A and B, the propriety PWA

∩PWB
= ∅ is

not always verified. Similarly, through exchanges of words and robots between
the different populations, at a given time the inventory of robots committed to
one source might contain a word associated with the other source (resulting in
PA 6= PWA

). At any time, we can look at the population of robots that know
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words associated with the source they are committed to, that is:

PM = (PWA
∩ PA) ∪ (PWB

∩ PB). (6.1)

Conversely, we can define the population of committed robots that know words
from a non-matching source:

PS = (PA ∩ PWB
) ∪ (PB ∩ PWA

). (6.2)

Corresponding to the collectively selected source O (see definition above), we
define the set of matching words WO and non-matching words WX as follows:

WO = {w|(w ∈WA ∧ PA > PB) ∨ (w ∈WB ∧ PB > PA)} (6.3)
WX = {w|(w ∈WA ∧ PB > PA) ∨ (w ∈WB ∧ PA > PB)} (6.4)

We define:

• polarisation, the condition in which committed robots know only words
associated with the source they are committed to, that is, when PS = ∅;

• vocabulary matching, the condition in which only words associated
with the selected source are retained within the swarm vocabulary, that is
WX = ∅ and WO 6= ∅;

• vocabulary completeness, the condition in which exactly one word
associated with each source is retained within the swarm vocabulary, that
is |WO| = 1 and |WX | = 1.

Given a sufficiently connected swarm, the MNG dynamics ensure that the
swarm will eventually converge to a final single-word vocabulary, albeit after a
very long time (Baronchelli et al., 2006b; Baronchelli and Díaz-Guilera, 2012;
Trianni et al., 2016a). According to the previous definitions, the final vocabulary
can be matching or not the selected source.

6.3 Correctness and completeness of the swarm
vocabulary

In this section, we focus on the evolution of the swarm’s vocabulary, looking in
particular to the provenance of the last words and their relation to the selected
source. As already discussed (see Figure 6.2), the foraging dynamics lead to
either the quick selection of a single source, or to the swarm being split between
the two sources, possibly for a long time. This means that, apart for a few cases
and random fluctuations, there will always be a source that is selected—albeit
temporarily—by the swarm. In certain settings, the swarm may forage from
both sources for a long time, hence vocabulary completeness may be observed.
In other cases, the swarm will quickly converge to exploit a single source, and
vocabulary matching is expected. In any case, interactions between different
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Exchange of words & robots

Exchange of words

Figure 6.3: Diagram representing how the swarm can be split in different
sub-populations with respect to the robots’ commitment state and the word
distribution. The circles represents the three populations with respect to the
commitment state: (PU , PA and PB). The fill patterns represent populations
with respect to the robots’ inventory (PWO

, PWA
and PWB

). Note that, in
general, PWA

∩ PWB
6= ∅. Depending on the experimental setup, populations

can exchange robots and words among themselves.

populations of robots are frequent, ensuring that the language dynamics always
converge to a single-word vocabulary.

The complex interplay between foraging and language dynamics makes it
difficult to observe a clear emergence of vocabulary matching or completeness
during a run. It is possible that matching or completeness is achieved at
some point, but the frequent interactions among sub-populations through the
exchange of robots and words (as depicted in Figure 6.3) make the analysis of
the transitory phases complex. Hence, we first focus on the patterns observed
when the vocabulary converges to one or two words, to determine if matching
and completeness are achieved. First, we analyse the provenance of the final
word wf to determine if it matches the selected source or not (i.e., wf ∈WO).
As the distribution of robots among sub-populations may sometimes change even
after convergence to a single-word dictionary (e.g., if the language dynamics are
much faster than the source selection dynamics), the final selected source may
also change. Hence, we consider the source selected at the time of convergence to
the final word wf , no matter what happens later to the population distribution.
Similarly, we consider also the second-last word we, to determine whether it was
also matching the selected source or not at the time in which only two words
remained within the whole swarm. Given such definitions, every run can end up
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Figure 6.4: Empirical distribution over 100 runs of the occurrences of the last
two words in the vocabulary within the four identified classes (OO, OX, XO and
XX) representing words matching or not the selected source. The graph refers to
the case with Ps = 0.001. All other tested values of Ps produce similar results.
Top row: classic game. Bottom row: spatial game.

in one of the following four possibilities:

OO : wf ∈WO ∧ we ∈WO (6.5)
OX : wf ∈WO ∧ we ∈WX (6.6)
XO : wf ∈WX ∧ we ∈WO (6.7)
XX : wf ∈WX ∧ we ∈WX (6.8)

In case OO or OX is observed, the swarm has identified a final word that
matches the currently-selected source, although in the OX case the second-last
word was associated with the non-selected source. The XO case represents a
missed opportunity of matching, as a matching word was still existing in the
vocabulary and could have been chosen. The XX case instead suggests that the
association of words to source does not reflect the current state of the source
selection. Both middle cases (OX and XO) indicate a complete vocabulary up
until convergence on one word.

Given these definitions, we study the influence of the language game and the
foraging dynamics over the provenance of the last two words of the vocabulary.
Figure 6.4 shows the frequency of each case out of the 100 runs performed for
each different experimental condition. When playing the classic game (top row
in Figure 6.4), the swarm shows no tendency to favor a specific provenance for
the final two words, and a distribution close to uniform across the four possible
cases is observed. On the other hand, when playing the spatial game (bottom
row in Figure 6.4), the swarm favours words that match the selected source,
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both for the last and second-last word. In particular, the OO state is strongly
favoured for both weak and strong cross-inhibition, and the XX state is especially
disfavoured when the weak cross-inhibition leads to slower decision dynamics.
In conclusion, we clearly find that the spatial game, by making the creation of
words conditional to the discovery of sources, determines a strong tendency to
converge towards words that represent the source that is ultimately selected.
The naming process is “correct” as it best represents the source that is the most
relevant for the swarm. In about 40% of the cases (OX + XO), the naming
is “complete” as the last two words represent “names” for both the available
sources. This remains valid for different values of the probability of speaking Ps,
suggesting that the spatial game is resilient to variations in the timescale of the
language game.

To better understand the relationship between source selection and naming
dynamics, in Figure 6.5 we show how the distribution of agents between sources
relates with the provenance of the last two words in the swarm vocabulary.
Indeed, there is a large difference between a swarm that forages from a single
source and one that instead is evenly split between the two sources. In the
former, we expect vocabulary matching, that is, only words from the selected
source are retained (hence, case OO and to some extent OX). In the latter, we
instead expect vocabulary completeness, that is, words coming from both sources
are present (hence, cases OX and XO) because both sources are still exploited
by the swarm and the selected source can change over time. Indeed, the swarm
does not clearly favor the exploitation of any source, to the point of possibly
changing its selected source overtime, and multiple times.1

When the classic game is played, the distribution of robots across sources has
little to no impact on the provenance of the last two words (top row of Figure 6.5).
For the spatial game, instead, vocabulary matching is observed when the swarm
has clearly selected one of the sources. Conversely, vocabulary completeness is
more often observed with swarms that are still exploiting two sources. This is
evident in case of weak cross-inhibition that entails slower dynamics in the source
selection process. With strong cross-inhibition, the swarm quickly converges
to exploiting a single source, and the cases in which the swarm is exploiting
both sources at the time of convergence are very rare. Only when the language
dynamics are particularly fast we can observe cases of vocabulary completion
for strong cross-inhibition.

From this analysis we can conclude that the spatial game leads to language
dynamics that correctly represent the sources relevant to the swarm, that is,
those from which the swarm is currently foraging. This is obtained solely by the
creation of words, which is strongly correlated with the source discovery. The
interplay between language and foraging dynamics preserves such correlation

1Recall that the distribution of robots can change over time, and always converges to the
selection of one source, although after a very long time as discussed in Section 6.2.1. Here,
we consider the distribution at the time of convergence of the naming dynamics, which is
determined by the probability of speaking Ps. Hence, an even distribution of robots among the
sources is observable not only with weak cross-inhibition (Pρ = 0.1, see Figure 6.2), but also
for strong cross-inhibition when high values of Ps cause a quick convergence of the vocabulary.
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Figure 6.5: Empirical distribution over 100 runs of the occurrence of the last
two words in the vocabulary (see Figure 6.4) detailed for different distribution of
the foraging swarm across the two sources, computed at the time of vocabulary
convergence with Ps = 0.001. Each stacked histogram corresponds to a specific

distribution of robots over the non-selected source (
PX

PO + PX
). Bars are colour-

coded as in Figure 6.4. Over each histogram, the number of runs that resulted
in the specified range is displayed. All tested values of Ps present similar results,
shown in Figure S2. In the rare case of an equally split swarm (PO = PX), there
is no notion of matching an non-matching words. In that case, we redistribute
AA and BB equally between OO and XX (one half each). Similarly, AB and BA
are redistributed equally to OX and XO. Top row: classic game. Bottom row:
spatial game.

despite the high number of interactions between robots from different populations
and with different vocabularies. In the next section, we study how this is possible
by looking at the interaction patterns between robots.

6.4 A study of the swarm’s spatial characteris-
tics

There are two extremes for the swarm to reach convergence on a final word.
Either the swarm converges as a whole—homogeneously—on this final word,
or sub-populations foraging from different sources first converge toward a word
representing their source, and then a competition between these two words
determines the final outcome. The explanations of how a swarm’s vocabulary
converges, and to what states it converges, lay in the spatial characteristics of
the swarm, a direct consequence of the exploitation task. In particular, we look
at how robots create and share their words, and how they exchange words within
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Figure 6.6: Evolution over time of the origin of each robot’s first word (weak
cross-inhibition). The value of the y axis correspond to the ratio of robots having
a word in their vocabulary. This word can be either created independently by a
robot (Cr) or received from another robot (Re); and either while the robot is
uncommitted (Un) or committed (Co). Similar dynamics are displayed in the
case of strong cross-inhibition. Top row: classic game. Bottom row: spatial
game.

and across foraging sub-populations.

6.4.1 Impact of spatial word creation

First of all, we look at the initial phases of the naming game, when robots create
and share new words. Indeed, the difference between the classic and the spatial
game is solely related to this phase. Besides word creation, robots can fill their
vocabulary with words shared by others. To better understand how robots obtain
their first word, we plot in Figure 6.6 the cumulative number of robots with at
least one word in their vocabulary for the case of weak cross-inhibition.2 We
highlight whether the first word was created by the robot itself or received from
other robots upon playing the naming game. Finally, we distinguish between
robots being uncommitted and exploring, or robots committed and exploiting one
source. Uncommitted robots are particularly relevant, as they can get committed
to any source, despite having a word associated with one or the other: they do
carry a naming information that may not correspond to the source they will
become committed to.

For the classic game (top row in Figure 6.6), we note that the word creation
dynamics is rather fast and solely depends on the probability of speaking Ps.
Additionally, uncommitted robots represent the large majority, meaning that
word creation is strongly uncorrelated from source selection: even if a word is
created closer to a source, it is generally associated to an uncommitted robot that

2Results for strong cross-inhibition are very similar and are displayed in Figure S3.
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may eventually get committed to any source, due to recruitment or discovery.3

In the spatial game instead (see bottom row in Figure 6.6), the dynamics
of word creation is independent of Ps because it is determined by robots en-
countering a source. Specifically, Ps does not impact the number of robots that
create a word when uncommitted, as these robots individually discover a source
following the foraging dynamics. However, Ps determines the share of robots
that create a word when committed or that receive a word when uncommitted.
The former is higher when Ps is small, as the foraging dynamics are faster than
the language game dynamics, meaning that several robots get recruited first
and encounter a source while still having an empty vocabulary. These robots
have a naming information that is strongly correlated with the source they are
exploiting. Conversely, with high Ps the number of uncommitted robots that
receive a word from other robots grows. These robots potentially have a naming
information that differs from the source they will exploit, leading to lower spatial
correlation. As a matter of fact, matching and completeness are slightly worse
for this case.

6.4.2 Communication topology and interactions within
the swarm

Once words have been generated, the MNG imposes a selection process until a
single one is selected. This process takes place through speaker-hearer interac-
tions, and can be strongly influenced by the communication topology (Baronchelli
et al., 2006a; Moretti et al., 2013). The latter is determined by the distribution
of robots in space, which is a result of the foraging task the robots carry out.
To understand how the different sub-populations of the swarm interact, we
performed an experiment with locked-size populations, forcing all robots in a
pre-defined committed state. We measure the size of the neighbourhood N with
which robots can potentially interact anytime, and we further distinguish between
neighbours belonging to the same or to a different population. In Figure 6.7,
the probability of observing a neighbourhood of a given size is displayed for
each possible partition Ps between sub-populations, where Ps = p indicates that
PA = p and PB = N − p (in these tests, PU = 0). Additionally, we also consider
the case in which for PU = N , where robots are forced in the random exploration
state.

For small values of Ps, one of the sub-populations is large and interactions
within sub-population dominate (see Figure 6.7, left panels). The neighbourhood
size can take large values (e.g., more than 5 robots), even larger than the case
of randomly exploring robots (see Figure 6.7, bottom-left panel). Contrarily,
interactions between sub-populations are practically absent, the typical neigh-
bourhood size being |N | = 0 (see Figure 6.7, top-right panel). The more the
partition among sub-populations is even, the more frequent the interactions

3Recall that robots periodically return to the home location, where they can get recruited
by any other robot, or they can start a new exploration trip in a totally different direction
from the previous one. Hence, an uncommitted robot that creates a word near one source may
get recruited to the other source or discover it in the following exploration trip.
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Figure 6.7: Top row: the heatmaps represent the probability distribution PΣ

of each robot’s neighbourhood’s size (|N |, y axis) for each possible partition
in sub-populations (|Ps|, x axis), limited to interactions occurring within a
sub-population (top left) or between sub-populations (top right). Vertical
lines indicate the cross-sections displayed in the bottom panels. Bottom row:
probability of occurrence of each robot’s neighbourhood’s size for |Ps| = 3
(bottom left) and |Ps| = 22 (bottom right). The plots represent the probability
PΣ of observing a neighbourhood size considering interactions within the whole
swarm (blue), within sub-populations (purple), and between sub-populations
(green). The dotted-blue line represents the case of the whole swarm forced to
remain in the exploring state (sub-population PU ).

among sub-populations become. Still, robots more likely interact within the
same population, and only few cross-population interactions are recorded (see
Figure 6.7, bottom-right panel). This confirms that, if the swarm leans towards
selecting a single source, the language dynamics are played mostly within the
same population, reinforcing the correlation between words and sources in favour
of matching. At the same time, the small number of interactions between
sub-populations also favour completeness, with each sub-population having the
chance to converge on its own word.

It is worth recalling that, besides communications between sub-populations,
a mismatching word can enter a sub-population also when it is physically
carried by a robot changing from one to the other population. In order to
understand how relevant the movements of robots between sub-populations are
for the spreading of words, we measured the rate at which these movements
take place, and compared it with the rates of interactions within and between
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Figure 6.8: Evolution over time of the rate of communications within and
between sub-populations exploiting different sources, and of the rate of robot
movements between sub-populations. Each graph has been plotted for the spatial
game. Similar dynamics are displayed by the classic game. Top row: strong
cross-inhibition. Bottom row: weak cross-inhibition.

populations during a standard experiment (see Figure 6.8). The results indicate
that movements between sub-populations are not as frequent as the interactions
via message exchange, especially when the probability of speaking Ps is high
(see also Figure S4). Indeed, the rate at which messages are exchanged within
and between populations increases with Ps, and is generally larger for intra-
population interactions, confirming our previous analysis. Conversely, the rate
at which robots move from one population to the other does not depend on Ps,
and is higher when cross-inhibition is strong. We infer that the movements of
robots between sub-populations do not have a relevant impact on the language
dynamics in this specific experimental setup.
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In the light of the presented results, we can conclude that the pattern of
interactions between robots favours the segregation between sub-populations.
This means that different words are likely selected within each sub-population,
resulting in the vocabulary completeness. At the same time, vocabulary matching
is possible thanks to the strong correlation between word creation and source
exploitation by committed robots, as discussed above. While the vocabularies
well represent the environmental features and their relevance for the swarm,
we note that completeness is a transient property. Indeed, the MNG dynamics
determine the convergence towards a single word shared by the swarm, loosing
information about previously exploited sources. To avoid this, we present in the
next section a proof of concept of a language game to preserve matching and
complete vocabularies.

6.5 Emergence of spatial categories for foraging
swarms

With both the classic and spatial game, the swarm vocabulary always converges
toward a single word, losing the completeness of information as one source is
never represented. Keeping a complete description of the environment with all
its sources requires the ability to distinguish between different regions in space,
leading to the construction of spatial categories. We consider a spatial category
as a set of possible words, associated to an area representing the region covered
by the category (here, a circle defined by its radius and its center, the latter
determining the prototype location of the spatial category). Speaking in general
terms, any location in space can belong to one category, to multiple ones (in case
of overlapping categories) or to none (in the case of a non exhaustive partition
of the space). The same robot can potentially hold multiple words (synonyms)
referring to a given category. As a consequence, the set of the categories known
to a robot—and, by extension, to the swarm—results in a kind of thesaurus. In
this section, we propose a language game based on word-location pairs with the
goal of representing the landscape of available sources. The language game is
now first played on categories and then on words, making it more similar to a
category game (Baronchelli et al., 2010).This revised language game unfolds in
two distinct phases. Initially, the game focuses on categories, determining the
relevant spatial area under consideration. Subsequently, within the identified
category, a minimal language game is played, making the overall process more
similar to a category game (Baronchelli et al., 2010). This approach facilitates
spatial segregation of the resulting vocabularies, with the aim of maintaining
distinct naming conventions for different spatial areas.

6.5.1 Experimental SetupImplementation of the Category
Game

Similarly to the spatial game discussed above, categories are spontaneously
created when a robot encounters a source at a location that is not represented
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by any available category. Even if a category exists for the same source, a robot
may enter from a location that is not covered by the current category description.
This leads to an initial proliferation of categories, which are subsequently pruned
by a merging mechanism (see below).

Speaker

Failure Success

Hearer Speaker Hearer

Figure 6.9: Graphical representation of a played category game. On the left, the
speaker is sharing a category that is not know by the hearer, resulting in a failed
game. On the right, the speaker is sharing a category that is in the range of one
of the hearer categories, resulting in a successful game.

With probability Ps, a robot knowing at least one category takes the speaker
role: it first selects one of its known categories, followed by a word belonging
to this category’s inventory. The speaker will share with the neighbours the
selected word paired with the category prototype’s location. In order to maintain
a correspondence between the foraging behaviour and the language game, the
selection of the category is determined by the commitment status: the speaker
always selects the category corresponding to the sources it is foraging from.
For uncommitted robots, the category is selected randomly. On the hearer
side, first a match of the received word-location pair must be found with the
known categories. If the location does not belong to any known category (left
of Figure 6.9), the hearer creates a category centered on that location, with
a default starting radius of r0 ∈ {0.2, 0.3, 0.4}, and add the received word to
this category. If the location belongs to only one category (right of Figure 6.9),
the MNG is played as previously described (see Section 6.2.1) with respect to
the matching category’s inventory. If the word is fitting multiple categories,
these are merged into one (see Figure 6.10), and then the MNG is played with
respect to the resulting category’s inventory. Categories are merged two by two,
with the resulting category being the smallest possible circle containing each
original category’s circle. The merged vocabulary is the union of each category’s
vocabulary.

To evaluate the ability of the swarm to generate shared spatial categories
that correctly represent the available source landscape, we performed a series of
experiments varying both the probability of speaking Ps and the value of the
initial category radius r0. We introduce no change in the physical layout of the
arena (see Figure 6.1). Experiments are run for longer times, and are stopped
once convergence is reached on both categories and number of words in each
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Speaker

Merging

Hearer Speaker Hearer

Figure 6.10: Graphical representation of the merging of categories. On the left,
the hearer receive a word from the speaker that is fitting multiple categories. As a
result, the hearer merges them into an updated category whose area encompasses
all categories that were at play in this game.

category. The additional complexity introduced by categories entails a slower
language dynamics with respect to the simple naming game described before. To
study the ability of the foraging swarm to correctly represent both sources, we
prevent the selection of a single one by forcing Pσ = 0. In this way, the robots
will find and exploit both sources (possibly with an uneven distribution across
the two), and no robot will ever change source. As we observed in Section 6.4,
the effects on the language dynamics of robots physically moving from one to
the other source are anyway negligible.

6.5.2 Results

The evolution over time of the number of words and of categories is shown
in Figure 6.11 for Ps = 0.001 (see Figure S6 for other values). Both words
and categories follow a similar pattern, with an initial fast proliferation and
a following convergence toward the minimum number of elements: one single
category for each source, and one single word per category. The radius r0

determines the likelihood that a new category is created: when the radius is large
enough, the initial category easily covers the whole source, and creation of new
categories for the same source is unlikely. As a consequence, also the number
of words generated is lower, because different words are generated for different
categories, and the vocabularies are preserved by the category merging. In any
case, the system tends to converge to the minimum number of words/categories
for each value of r0. We note that the actual convergence on two categories (and
hence two words) is not always permanent, as new categories can emerge. These
rare events are unlikely to have long lasting impact as the swarm can recover
quickly. Under these conditions, we define as time of convergence (over two
categories or two words) the first time the whole swarm reaches the minimum
number of words/categories.

Both category and word convergence times depends heavily on r0, but also
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Figure 6.11: Average number of different words (solid lines) and different cate-
gories (dotted lines) present within the swarm. The dynamics over time are plot-
ted for different values of r0, and for a fixed probability of speaking Ps = 0.001.

on the probability of speaking Ps (see the top-left panel in Figure 6.12). When
r0 is intermediate-small, the large proliferation of categories requires several
merging operations, and having more variability in each category does not give
an advantage. On the other hand, for large r0 few categories are formed, and a
high Ps helps in quickly converging. These dynamics are confirmed also by the
time of convergence to a single word per category (Figure 6.12 top right), which
always decreases when Ps increases, with a larger effect for larger r0.

Apart from the speed of convergence, another relevant aspect concerns the
accuracy with which the emerging categories describe the sources to which
they are associated. To measure this, we consider the position error as the
distance between the center of the category and the center of the source (see
Figure 6.12 bottom left) and the average radius of the final category (Figure 6.12
bottom right). When the initial radius is smaller, the error in the position of the
prototype is very small, as it results from the average of many categories defined
all around the source. With larger r0, the position error increases because fewer
categories are generated. Large values of the probability of speaking Ps result
in even fewer generated categories: as robots receive their initial category from
other robots, larger errors are made. For what concerns the final radius of the
emergent categories, smaller values are observed for small r0. However, the
relative increase of the final radius with respect the initial r0 is much larger for
small r0 than for large r0 because many different categories are merged together.

6.6 Conclusion
In this chapter, we studied how the language game dynamics are influenced by
the evolving topology of a swarm engaged in a decision-making and foraging
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of speaking Ps. Top left: categories’ convergence time. Top right: words’
convergence time. Bottom left: average error of the final category prototype
with respect to the center of the associated source. Bottom right: average final
radius of each category compared with the initial value of r0 (dotted line).

task. In particular, we studied how well the swarm could maintain a description
of its whole environment that is at the same time correct and complete, with
the vocabulary containing only words that are relevant to the swarm, that is,
those associated to sources under exploitation. We focus on such a compelling
research question, without questioning properties commonly studied in swarm
robotics such as robustness or scalability. Such properties have been largely
studied for foraging, language dynamics and decision-making in previous studies
and in conditions very close to the ones discussed here (Trianni and Campo,
2015; Reina et al., 2015a). Hence, they are no further debated, allowing us to
focus on the interplay between language and decision dynamics.

We began by comparing two variations of the MNG. One that binds the
creation of words with the sources available in the environment (spatial game),
the other without such spatial correlation (classic game, where words are used
as simple tokens). The differences in word creation between these two language
games resulted in a large difference in the final outcome, despite also in the
classic game words were created at locations that are always closer to one of
the sources. The stronger correlation between creation of words and source
location granted by the spatial game is not the only reason for the better
matching and completeness. We observed that a major difference is given by the
role of uncommitted, exploring robots into the creation and sharing of words.
These robots can end up choosing any source, bringing words created near one
source to the population exploiting the other. Additionally, we observed that
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the topology of the robot’s interaction network—determined by the robot’s
movements during the foraging activity—consists of two almost segregated sub-
populations, with sporadic interactions constrained to the central nest area.
Such segregation creates the conditions for the maintenance of one word for each
source, supporting completeness of the evolving vocabulary. In order for the
swarm to maintain a complete description of the environment even when sources
are not relevant any more, we proposed as a proof of concept a simple version of
a category game embedded in space. In this setup, the swarm creates different
categories for each source, and ends up retaining an exhaustive description that
can also be sufficiently precise to potentially support the foraging activities.

One potential drawback of language evolution as observed in our experiments
is related to the time required for emergent conventions to settle, which can
be very large if interactions are sporadic, as well as the possibility that new
conventions enter the population and destabilize the language dynamics. In
this respect, it is important to note that linguistic conventions do not have an
intrinsic value, but are more valuable when they are largely shared within a
population, favouring coordination and avoiding misunderstandings. Hence, it is
possible to speed up convergence toward a shared convention within a population
by means of positive feedback mechanisms that favour the conventions more
commonly found within the population. For instance, the simple rules of the
naming game could be enhanced with estimates of the frequency of words in
the population, allowing to favour the selection of more frequent words when
speaking, hence speeding up convergence. Additionally, decentralised quorum
sensing approaches can be exploited to determine a final convention, avoiding
that noise is added by new alternatives when a largely shared one is already
present. These and similar mechanisms can reduce the number of interactions
required to achieve language convergence within a population, making language
games practicable in realistic settings beyond the abstract scenario studied in
this chapter.

In future studies, besides describing the relevant features of the environment,
linguistic conventions can be exploited also to agree on the best course of action
for the swarm. For instance, robots would share short term plans described as
a sequence of linguistic elements, creating and merging them following shared
compositional strategies. In this sense, the possibilities offered by language
evolution are vast, allowing robot swarms to autonomously find sentence-like
solutions to complex tasks made of several spatially-distributed and temporally-
dependent sub-tasks.

Overall, we believe that merging language dynamics with the self-organising
behaviour of robot swarms can be extremely useful, as the behaviour can exploit
the emergent descriptions of the environment in a way that is dependent on
the features relevant for the swarm behaviour. The link between language and
behaviour was relegated here to the creation of words/categories. However,
stronger links can be built if behavioural decisions can be determined by the
evolving language, leading to the emergence of behaviours that vary as the
relevant descriptions of the environment gets more precise and shared within the
swarm. This also allows to adapt the language to the environmental contingencies



110 CHAPTER 6. EMERGENT NAMING CONVENTIONS

encountered, possibly enabling more flexibility in the swarm behaviour with
respect to changing environmental conditions (Cambier et al., 2021).



Chapter 7

Conclusions

This thesis studies the interaction between foraging and communication dy-
namics in swarm robotics, progressively introducing more complex layers of
communication, culminating with the implementation of a version of language
games linked with the task at hand.

We initially engaged in an in-depth study of the communication protocol
to sustain social odometry, which enabled an effective navigation and foraging
activity by the swarm when confronted with both abstract goal locations and
tangible resources. The study revealed the profound effects that the proposed
information processing mechanisms have on navigation and exploitation efficiency,
as well as the global dynamics of the swarm. Specifically, we observed the
potential for these mechanisms to either induce convergence on a singular path
exploitation or initiate a distribution over several comparably efficient paths.
These insights serve as a valuable guide for future designers, helping them to
select the most suitable information aggregation mechanism depending on the
task and goals of the swarm they design. This initial study, presented in Chapter
4, contributed to the understanding of the basic building blocks necessary for an
effective foraging behaviour, which became the basis of the research presented in
the following chapters. In particular, we aimed to better understand how the
topology of the swarm is affected by the foraging task, and hence its role with
respect to communication among robots.

Subsequently, in Chapter 5, we developed a more complex strategy for
exploration and balanced exploitation of renewable sources inspired by the
honeybee value-sensitive decision making abilities. A large-scale simulation
analysis was conducted to identify the effects of the different parameters governing
the individual behaviour on the macroscopic, swarm-level dynamics. The results
showed the effectiveness of our approach in enabling adaptive exploitation of
sources at the collective level, without the need for individual profitability
comparisons or a centralized planner with global environmental knowledge. This
approach and its subsequent validation served as a significant step towards the
overarching goal of the thesis: to better understand the interplay between the task
dynamics, and the social dynamics of a swarm. The balance between exploration
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and source exploitation sets a foundation for the complex communication systems
that we next introduced.

Lastly, in Chapter 6, we studied the interplay between language dynamics
and the evolving topology of a swarm engaged in decision-making and forag-
ing. Notably, we demonstrated the ability of a swarm to sustain an accurate
and comprehensive environmental description, with a vocabulary restricted to
relevant terms, specifically those associated with sources being exploited. This
investigation into the interconnected dynamics of language games and swarm be-
haviors marks a significant achievement of the thesis’ main objective: to advance
swarm robotics through the integration of task related linguistically-inspired
communication mechanisms, and the study of the links between both tasks and
language. Demonstrating the swarm’s capacity to maintain an accurate and
useful linguistic representation of its environment underscores the potential of
this approach to enhance the swarm’s foraging adaptability. This confirms the
foundational belief driving this thesis: that the synergy between swarm robotics
and language games can produce a new level of operational sophistication. In-
deed, the transition towards a richer language-based communication follows
a belief that the compatibility between language games and swarm robotics
can yield great results, both in enhancing the efficiency and adaptivity of the
communication between the robots in the swarm and in providing new means to
study the evolution of language. We further discuss these aspects in the following
sections, also highlighting possible directions for future work.

7.1 A perspective for language evolution in
swarm robotics

A key ingredient for both swarm robotics and language evolution is self-
organisation in a population of agents resulting from local interactions. This
is a dynamic process that comes about within the population in response to
the contingencies experienced by the agents while displaying their behaviour,
resulting in a dynamic process that can react to changes in the environment,
with new behaviours and/or concepts/words arising when needed.

Indeed, it has been shown that natural languages are the result of a self-
organising process. Natural languages arose (at least partly) from the need to
purposely share information (Noble and Davidson, 1991). As a matter of fact,
the rise of a complex communication system is linked to specific tasks to be
accomplished, and ultimately, to survival of the population. Language games and
swarm robotics would find value being combined as both have decentralisation
and self-organisation at their roots, allowing to produce communication systems
that evolve online, that are exploited to represent a dynamic and uncertain
environment and that can be used to improve performance in task execution.
Self-organising languages should therefore enable robots to describe and tackle
new challenges as they come. They are useful to build truly adaptive robot
swarms.
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In addition to their focus on self-organisation, language games address several
challenges related to the development of complex artificial systems. First is
the symbol grounding problem, i.e., how to associate a word to experiences of
the real world (Harnad, 1990). Most studies on language games rely on linking
perceptions of the environment to names. Indeed, as robots have different bodies,
they can experience the environment with different modalities and from different
points of view, so that the sensory data they associate with a shared word is
usually not exactly the same. This association mechanism only requires simple
feature extraction algorithms and a bidirectional memory (mapping between
words and meanings, as in Steels and Loetzsch, 2012). The consensus dynamics
of language games ensures the symbol grounding at the population level, although
each robot has its own internal representation of each word’s meaning. This can
cause issues in communication early on, but can result in a very efficient system
once a robust association between concepts and experiences has been established.
This favours especially “uneducated” robots that join the swarm later on, as they
can quickly acquire new concepts from few interactions with their peers.

Alternative combinations where swarms of robots learn to link actions to
verbs—hence, to actions—are possible and could provide interesting new abili-
ties. Some work has already been performed in that direction using language
games (Steels, 2008), and additional efforts on symbol grounding could also take
advantage from developmental language acquisition models (Rasheed and Amin,
2016). Such models use neural networks to incrementally teach agents (in a
teacher/learner scenario) new meanings, starting from observable objects before
moving onto more abstract concepts or actions.

Relevant studies in the evolution of language have shown that a simple
grammar can be generated exploiting the plasticity of the learned language
(Spranger et al., 2010). The emergence of a simple compositionality in the
language can lead to more complex expressions, paving the way to full sentences.
This is of great relevance for swarm robotics studies in order to address complex
tasks that require multiple actions to be scheduled and coordinated among
robots. An efficient scheduling and coordination plan can emerge from local
knowledge to be shared among robots, without any pre-defined structure or plan.
By exploiting the compositionality of language, a sequence of tasks can be defined
and eventually executed, leading to the emergence of swarm behaviours that are
far more complex than the current state of the art. Through the development
of fluid construction grammars (Steels and De Beule, 2006), language games
can evolve grammatical structures as well as lexicons (Beuls and Steels, 2013).
The dynamics of such games have, however, not been as thoroughly studied as,
e.g., the naming game, and are not ready for implementation in swarm robotics
contexts. The robotics community should therefore attempt to facilitate the
development of such language games in order to be able to benefit from them.
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7.2 Future work

Swarm robotics is heavily influenced by the social insects metaphor, embodying
certain characteristics often observed in such systems such as simple behavior,
simple and often memory-less agents, and homogeneous swarms. On the other
hand, mammals, particularly primates, have developed more complex commu-
nication skills than insects, which in some cases bear a closer resemblance to
human communication. Consequently, it may be beneficial to transition from an
approach solely inspired by insects’ biological characteristics to one that also
incorporates more complex forms of (social) cognition inspired by mammals and
primates.

In this perspective, swarm robotics can serve as an ideal platform also
to deepen our understanding of the drives and constrains underlying social
structure and behavior in mammals and humans. For instance, current research
activities are focused on applying swarm robotics to model the human self-
domestication hypothesis, thanks to a multidisciplinary research group that
includes both swarm roboticists and linguistics researchers. This hypothesis
states that the evolution of present-day languages might have resulted in part
from the self-domestication of the human species (see Thomas and Kirby, 2018).
This evolutionary process, which is similar to animal domestication (Hare,
2017), would result in less aggressive individuals, more prone to interact with
one another (and particularly, with their kin), promoting more social contacts
within a community, and supporting the emergence of more sophisticated forms
of language. To conduct this research, it was necessary to incorporate two
concepts that are typically not associated with swarm robotics: differentiation
and prosociality. In this context, differentiation refers to the capability of robots
to identify one another and display distinct behaviors in interaction with various
peers. This differentiation can affect two key aspects: the way in which robots
collaborate on tasks, and the manner they share information with one another.
On the other hand, prosociality is a trait that favors behavior characterized
by actions intended to benefit others. In this study, it is represented as a
factor influencing the likelihood of communication between robots. When the
prosociality level between robots is high, they tend to interact more frequently.
Robots that start with a high base level of prosociality are considered to be
more sociable because they are more open to interactions. Both differentiation
and prosociality are examples of elements that contribute to the formation
of distinctive interactions among agents. When agents possess the capacity
to recognize specific teammates and exhibit differential behavior with them,
the emergence of tight social groups becomes possible. This not only fosters
the emergence of cultural in-groups within the swarm but also leads to the
observation of more intricate language dynamics (Cambier et al., 2022).

Future research endeavors could explore the utilization of other existing
language games beyond the naming game or propose new and more sophisticated
language games coming for the more complex social layer introduced above.
Furthermore, the work presented in this thesis very much assumes some de
facto protocols agreed upon in advance, innate to the robot. Future work could
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aim to allow these frames to evolve organically during preliminary experiments
conducted in controlled environments. For instance, Cambier et al. (2023) propose
an emergent naming system for robotic swarms to facilitate collective navigation
and decision-making in unstructured environments. The robots collectively name
landmarks they discover, using them as beacons for navigation and scoring
them based on relevance to the task. Comparisons with non-communicating
swarms and swarms with prior knowledge show that the naming-based approach
performs similarly to the latter, enabling robots to find a topological path without
individually mapping the environment. We plan to engage in a similar path,
in which the language game is exploited to identify sequences of actions to be
executed (e.g., the sequence of decisions to be taken to explore and exit from a
maze with the shortest path). This can leverage language by evolving references
to places (names) and actions (verbs), hence going beyond the evolution of a
shared vocabulary that informs much of the research on language games. We plan
to move in this way towards the emergence of a grammar structure and simple
compositionality in language, as mentioned above. This is of profound relevance
for swarm robotics studies aiming to tackle complex tasks requiring coordinated
and scheduled actions among robots. By capitalizing on the compositionality of
language, a sequence of tasks can be defined, planned, shared, and eventually
executed, leading to the emergence of swarm behaviors far more complex than
the current state of the art.

In conclusion, this thesis underscores the promising potential inherent in the
fusion of swarm robotics and language games. We have barely scratched the
surface of this new field, with numerous directions awaiting exploration. The
breadth and depth of possibilities that lie ahead are vast, spanning from more
sophisticated language games to nuanced behavioral dynamics. As this work
propels us forward, it is our hope that the momentum will continue, prompting
further inquiry and driving the field to new heights. The field of swarm robotics
is evolving rapidly and this is an encouraging time for the development of new
concepts and methods. It is with a sense of optimism that we look forward to
seeing how future research will further shape and enhance this domain.
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