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Abstract In this paper, we assess the sensitivity of reac-
tive tabu search to its meta-parameters. Based on a thorough
experimental analysis of reactive tabu search applications to
the quadratic assignment and the maximum clique problem,
we show that its performance is relatively insensitive to its
meta-parameters. This is particularly evident when compared
to the sensitivity of tabu search to its parameters: tabu search
is rather penalized if used with sub-optimal parameter set-
tings. Reactive tabu search does not strongly pay its high
parameter robustness in terms of performance, although it
does not improve the peak performance of tabu search.
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1 Introduction

Tabu search (TS) is a metaheuristic that exploits the search
history to direct an underlying local search. The essential
idea behind TS is to forbid revisiting previously seen solu-
tions. In practice, TS rather forbids components of the past
T local search moves. In TS, T is a parameter called tabu
list length or tabu tenure, and it is known to have a strong
impact on performance. Reactive tabu search (RTS) is a tech-
nique that adapts the value of T at run-time. The adaptation
of the parameter T is managed by a mechanism that sits on
top of the underlying tabu search and whose behavior in turn
depends on the values of other parameters to which we refer
as “meta-parameters”. In a sense, RTS eliminates some para-
meters of TS but it introduces new meta-parameters, thus,
possibly increasing the number of parameters of the under-
lying tabu search algorithm. This is done with the hope that
it becomes easier to set the meta-parameters and that the
algorithm achieves high performance regardless of the char-
acteristics of the instances to be tackled. Battiti and Tecchiolli
(1994) proposed RTS, and since then several authors applied
it with success to a wide variety of combinatorial optimiza-
tion problems (Arntzen et al. 2006; Battiti and Bertossi 1999;
Battiti et al. 2008; Battiti and Mascia 2010; Battiti and Pro-
tasi 1999; Chiang and Russell 1997; Datta et al. 2010; Fink
and Voß 2003; Nanry and Barnes 2000; Osman and Wassan
2002; Russell et al. 2008).

A natural question is how the meta-parameters impact
on the performance of the algorithm. Often, it is tacitly
assumed that parameter adaptation methods help and that
their meta-parameters have a negligible impact on perfor-
mance. In fact, only few articles investigate the impact of
meta-parameters on performance. For what concerns RTS,
the first paper proposing this method (Battiti and Tecchiolli
1994) devoted some experiments to the study of the impact
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of the meta-parameter settings on performance. The authors
concluded that a 10 % variation of these settings does not
have any relevant effect on the results. In the research on
RTS, the meta-parameter settings recommended by Battiti
and Tecchiolli (1994) are considered in several follow-up
papers. For example, Battiti (1996) uses these settings in a
comparison between two TS variants and RTS, without fur-
ther investigating the impact meta-parameters might have.
Battiti and Brunato (2005) adopt in their discussion of the
design and implementation of RTS again the same meta-
parameter settings. Although this paper focuses on the design
and implementation of RTS, the authors do not mention
the need for choosing appropriate meta-parameter settings.
Some recent work has been devoted to study the impact of
meta-parameters in parameter adaptation methods applied
to evolutionary algorithms.1 DaCosta et al. (2008) report
the results of a sensitivity analysis of an adaptation method
named dynamic multi-armed bandits to its meta-parameter
settings, and compare it to the sensitivity of the underlying
evolutionary algorithm to its parameter settings. Fialho et al.
(2010) propose a sensitivity analysis of different adaptation
methods, and they remark that these methods may actually
be somehow sensitive to their meta-parameter settings, which
they select through a tuning procedure named F-Race (Birat-
tari et al. 2002). Recently, Maturana et al. (2012) explicitly
state that the parameter adaptation methods are supposed
to be rather insensitive to their meta-parameter settings, but
for guaranteeing the efficacy of the methods, they should be
off-line tuned through a tool for automatic algorithm config-
uration (Hoos 2012). Stützle et al. (2012) discuss parame-
ter adaptation techniques for ant colony optimization (ACO)
algorithms and show the usefulness of pre-scheduled para-
meter variations. Pellegrini et al. (2012) study the impact of
online parameter adaptation versus off-line tuning on ACO
algorithm performance and conclude that, in the context they
studied, off-line tuning was more beneficial than having an
online parameter adaptation. However, parameter adapta-
tion methods for evolutionary algorithms or ACO differ very
strongly from the mechanism used in RTS. Hence, it is not
possible to generalize the conclusions drawn in the literature
to RTS.

In this paper, we try to answer two research questions.
The first is to understand how sensitive is RTS to its meta-
parameters. The second is to compare the sensitivity of the
meta-parameters of RTS to the original parameters of the
underlying TS algorithm. Starting from the RTS algorithms
proposed in the literature for tackling the quadratic assign-
ment and the maximum clique problem, we eliminate the
modules related to parameter adaptation, fix the relevant

1 For a general discussion of parameter adaptation methods in evo-
lutionary computation, we refer the interested reader to Eiben et al.
(2007).

parameters, and, thus, obtain the TS algorithms for tackling
the two problems. By doing so, differences in the behavior
of RTS and TS are due to whether the parameter adaptation
method is used or not. We show that the performance of RTS
is rather insensitive to the meta-parameters. The opposite
holds for TS: in some cases, TS suffers a major performance
degradation if inappropriate yet plausible parameter settings
are used. Moreover, the instance-based optimal parameter
settings of TS vary strongly as a function of the characteris-
tics of the instance tackled, and the adoption of sub-optimal
parameter settings worsens performance significantly.

As a further contribution, the analysis of our results allows
the observation of the relationship between the performance
of RTS and TS when both are run with their optimal set-
tings. In particular, RTS with optimal meta-parameter set-
tings does not outperform TS with optimal instance-specific
parameter settings. However, if the optimal parameter and
meta-parameter settings are unknown, RTS is a safe choice
for achieving high performance.

We base these conclusions on an experimental analysis on
the quadratic assignment problem (QAP) for which RTS was
originally proposed (Battiti and Tecchiolli 1994). We tackle
multiple instances with different sizes and characteristics,
and we give the results of a full factorial analysis that tests
several parameter and meta-parameter settings for TS and
RTS, respectively. In addition, we study the main effects of
meta-parameters and parameters through an ANOVA analy-
sis. This analysis shows that, even if some interactions exist
among RTS meta-parameters, they do not strongly impact
on our conclusions. In TS, instead, the main effect of para-
meters strongly varies as a function of the instances being
tackled. We replicate these analyses on the maximum clique
problem (MCP), for which RTS is currently a state-of-the-art
algorithm (Battiti and Mascia 2010). The results on the MCP
support the conclusions we draw on the QAP.

The rest of the paper is organized as follows. Section 2
shortly describes the algorithms we consider as well as their
parameters and meta-parameters. Sections 3 and 4 report the
setup and the results of the experimental analyses on the
QAP and the MCP, respectively. Section 5 summarizes our
conclusions from these analyses.

2 TS and RTS

The main goal of RTS is to adapt the tabu list length dur-
ing the search process by exploiting the feedback provided
by the search process itself. In particular, if the search revis-
its already seen solutions, this is taken as an indication of
an insufficient diversification, and the tabu list length is
increased. If for a large number of local search steps no solu-
tions are revisited, this is taken as an indication of the need of
a greater intensification, and the tabu list length is reduced.
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If the number of visits to a same solution exceeds a prede-
fined threshold, the algorithm is recognized to stagnate. In
this case, RTS escapes the basin of attraction of the current
local optimum by focusing the search on another region of
the search space, either through a perturbation or through
a restart. Perturbation means introducing a large, random
modification to the current solution, as done by in the RTS
algorithm for the QAP (Battiti and Tecchiolli 1994). Restart
means randomly selecting a new initial solution for the local
search, as done in the RTS algorithm for the MCP (Battiti
and Mascia 2010).

The TS and RTS algorithms that we use in this paper differ
only in the management of the parameters. As mentioned in
Sect. 1, the parameters that are adapted in the RTS algorithms
are clamped to some fixed values in the TS algorithms.

2.1 RTS_QAP and TS_QAP

Reactive tabu search has been first proposed applying it to
the QAP. The QAP consists in finding the minimum-cost
assignment of n facilities to n locations. Each pair of locations
(i, j) is separated by a distance di j . A flow fkl exists between
each pair of facilities (k, l). Let πi be the facility assigned to
location i , then the cost of an allocation is given by

n∑

i=1

n∑

j=1

fπ(i)π( j)di j .

The RTS_QAP algorithm that we consider in this paper is
the one proposed by Battiti and Tecchiolli (1994). It relies on
2-opt moves, where a move exchanges the facilities assigned
to two locations. The tabu status is associated to the assign-
ment of facilities to locations: a move is tabu if, after the
exchange, both facilities involved occupy locations that they
had already occupied in the last T steps. All non-tabu moves
are allowed. On the other hand, tabu moves are forbidden,
unless an aspiration criterion is met: if the solution obtained
by applying a tabu move has a better objective function value
than the best found so far, then the move is allowed despite its
tabu status. At each step, RTS_QAP selects the best allowed
or aspired move and applies it. The setting of T changes as
a function of the visits of already seen solutions during the
search: RTS_QAP increases T by a factor Tincr, Tincr > 1,
when it visits an already seen solution; RTS_QAP decreases
T by a factor Tdecr, 0 < Tdecr < 1, if no already seen solu-
tion is visited for a fixed number of moves. As a further means
for escaping from local optima, RTS_QAP uses perturba-
tions. A perturbation occurs as soon as the number of visits
of already seen solutions is greater than a meta-parameter
chaos. A perturbation is a sequence of randomly selected 2-
opt moves, whose number is a function of the number MA of
steps that are made between successive visits of already seen
solutions: the larger MA, the larger the number of random

2-opt moves, that is, the perturbation size. Hence, the pertur-
bation size varies as a function of the evolution of the search,
and, thus, it is a further parameter adapted by RTS_QAP.
Together with Tincr, Tdecr and chaos, RTS_QAP introduces
four additional meta-parameters that are used, for example,
for setting the perturbation size as a function of MA. In the
analysis presented in this paper, we focus on the two meta-
parameters that we consider the most important ones due to
their immediate influence on the adaptation of T (Tincr and
Tdecr). In addition, we study meta-parameter chaos due to
the strong impact of the perturbations on the performance. In
summary, the parameters adapted by RTS_QAP are the tabu
list length (T ) and the perturbation size (p_size).

We obtain from RTS_QAP the TS_QAP algorithm by
imposing static values to T and p_size. Moreover, by elimi-
nating all the modules related to the adaptation, we eliminate
also the trigger that decides when to perform a perturba-
tion. TS_QAP performs a perturbation after each sequence
of n_imp consecutive non-improving moves.

2.2 RTS_MCP and TS_MCP

Reactive tabu search is currently one of the best performing
algorithms available for tackling the MCP. The MCP consists
in finding a clique of maximum cardinality in a given graph.
Let G = (V, E) be a graph, with V being the set of nodes
and E being the set of edges. Let G(S) = (S, E ∩ S × S)

be the subgraph induced by S ⊆ V . A clique is a set S such
that G(S) is complete, that is, all nodes in S are pairwise
adjacent.

The RTS_MCP algorithm that we use for the MCP is
described in Battiti and Mascia (2010). It relies on a local
search, in which a basic move corresponds to either the addi-
tion or the removal of one node from the current clique. The
tabu status is associated to nodes: a node that has been either
inserted in or removed from one of the last T cliques can
be neither inserted in nor removed from the current one. At
each step, the algorithm evaluates all solutions in the neigh-
borhood of the current clique, and it moves to the best non-
tabu one. No aspiration criterion is applied. Furthermore,
the algorithm escapes from local optima through restarts.
The number of steps made before a restart is a parameter
of the algorithm. This parameter is expressed as a constant,
restart, multiplied by the size of the maximum clique found.
RTS_MCP adapts the parameter T as a function of the num-
ber of visits of already seen solutions during the search. When
an already seen solution is visited, RTS_MCP rises T to
max{T · Tincr, T + 1}. As RTS_QAP, RTS_MCP decreases
T by a factor Tdecr if no already seen solution is visited for a
fixed number of steps. Differently from RTS_QAP, the para-
meter restart is not adapted by RTS_MCP, thus, it remains
constant.
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We obtain the TS_MCP algorithm by suppressing the
adaptation of T and by eliminating the hash-table used for
recording already seen solutions.

3 Analysis on the QAP

As a first step, we analyze the sensitivity of RTS_QAP to its
meta-parameters. We use multiple sets of instances to assess
the impact of both the characteristics and the heterogeneity
of the set of instances. We tackle instances of three sizes,
n ∈ {60, 80, 100}, and of two types, structured and unstruc-
tured. We created 100 instances of each size and type using
the generator and the parameters described in Pellegrini et
al. (2012) and Hussin and Stützle (2010). In unstructured
instances, the entries of both distance and flow matrices are
random numbers uniformly distributed in the interval [0, 99].
In structured instances, the entries of the distance matrix are
the Euclidean distances of points positioned in a 100 × 100
square according to a uniform distribution, rounded to the
nearest integer. The entries of the flow matrix are assigned so
that the resulting values follow the characteristics of real-life
instances, that is, the flow matrix entries have an asymmet-
ric distribution, a significant fraction of the entries are zero
(0.22) and for the non-zero entries there is a high frequency
of low values and a low frequency of high values. As a result,
we obtain twelve sets of instances that are shown in Table 1.

We test multiple parameter and meta-parameter settings
for TS_QAP and RTS_QAP, respectively, which are reported
in Table 2. The range of values we chose for TS_QAP’s para-
meter settings include the values of the analogous parameter
used in RTS_QAP when run with the default meta-parameter
settings. While the frequency with which RTS_QAP uses
each parameter setting varies from instance to instance, the
range of the values adopted for the parameters T and p_size
during a run of RTS_QAP is rather similar. The range of
RTS_QAP’s meta-parameter settings is naturally bounded

Table 1 Sets of QAP instances tackled

Set Size Type

qap1 60 Structured

qap2 60 Unstructured

qap3 60 Structured and unstructured

qap4 80 Structured

qap5 80 Unstructured

qap6 80 Structured and unstructured

qap7 100 Structured

qap8 100 Unstructured

qap9 100 Structured and unstructured

qap10 60, 80 and 100 Structured

qap11 60, 80 and 100 Unstructured

qap12 60, 80 and 100 Structured and unstructured

Table 2 Parameter and meta-parameter settings tested for the QAP

Parameter settings: TS_QAP
T 1, 3, 5, 7, . . . , 79

p_size 1, 5, 10, 15, 20, 25, 30, 40, 50

n_imp 1, 5, 10, 20, 40, 80

Meta-parameter settings: RTS_QAP

Tincr 1.1, 1.2, 1.3, . . . , 2.5

Tdecr 0.1, 0.2, 0.3, . . . , 0.9

chaos 1, 2, 3, 4, 5, 6

for what concerns Tdecr: since it is a multiplicative factor
used for decreasing T , it must be positive and smaller than
one. Conversely, Tincr must be greater than one. For Tincr,
it is not possible to identify a natural upper bound and we
fixed as the upper bound 2.5. The interval of values for Tincr
we consider is large enough to contain all the values that we
expect to be the best ones for RTS_QAP. Our expectation is
based on the results reported by Battiti and Tecchiolli (1994)
and on our own previous experience; furthermore, the interval
we consider also includes the default value of 1.1 suggested
by Battiti and Tecchiolli (1994). Moreover, we consider the
granularity of 0.1 as fine enough to highlight differences in
the performance of RTS_QAP that are due to the settings of
meta-parameters Tincr and Tdecr. This granularity is also
the same used by Battiti and Tecchiolli (1994) in the exper-
imental analysis that led them to the default settings of 1.1
and 0.9. For setting the upper bound of meta-parameter chaos
we made a similar reasoning: its default value is three (Battiti
and Tecchiolli 1994) and its upper bound here is set to six.

We run the algorithms on Xeon E5410 quad core 2.33 GHz
processors with 2 × 6 MB L2-Cache and 8 GB RAM, under
the Linux cluster Rocks distribution CentOS version 5.3.
We use as a stopping criterion a computation time of 7 s
for instances of size 60, 15 s for instances of size 80 and
30 s for instances of size 100. This allows RTS with the
default meta-parameter settings (Tincr = 1.1, Tdecr = 0.9,
chaos = 3 Battiti and Tecchiolli 1994) to perform about
1,300 n iterations, where n is the size of the instance. We
evaluate the results of RTS_QAP and TS_QAP in terms of
the relative error with respect to the best-known solution on a
single run per instance (Birattari 2004). Moreover, we verify
whether the conclusions drawn on the mean results on mul-
tiple instances are equivalent to the ones drawn on a single
instance basis. For studying the results on single instances,
we perform 100 runs on two randomly drawn instances from
each set.

For each instance, we obtain the best-known solution by
selecting the best result among the ones achieved in the fol-
lowing experiments: first, we perform ten runs of RTS_QAP
with the default meta-parameter settings, considering runs
40 times as long as the previously mentioned times. Sec-
ond, we perform ten runs of the same duration using an ILS
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algorithm (Stützle 2006) with the default parameter setting.
Note that ILS (Stützle 2006) typically performs better than
RTS_QAP on structured QAP instances. Third, we consider
all the shorter runs we performed for evaluating the algo-
rithms. All the instances used in the experimental analysis
are available from Pellegrini et al. (2011), together with their
best-known solution value.

In this paper, we report only the results obtained on the
set of all structured and unstructured instances. The conclu-
sions that can be drawn from these results are confirmed
by the results of the whole experimental analysis, where we
consider different levels of aggregation of the twelve sets.
The full experimental results are available in Pellegrini et al.
(2011).

3.1 Sensitivity to parameters and meta-parameters on the
QAP

As a first step, we conducted a landscape analysis of the
meta-parameter and the parameter space. In particular, for
RTS_QAP and TS_QAP, respectively, we plot for each
combination of meta-parameter and parameter settings the
response as measured by the mean relative error across a
given set of instances w.r.t. to the best-known solutions. In
particular, Figs. 1 and 2 give the mean relative error obtained
by RTS_QAP and TS_QAP on unstructured (Fig. 1) and
structured (Fig. 2) instances of all sizes (sets qap10 and
qap11 in Table 1) for each combination of RTS_QAP meta-
parameter or TS_QAP parameter settings. We show here
only the results achieved with chaos = 3 for RTS_QAP, and
n_imp = 20 for TS_QAP. The trends shown are confirmed
by the analysis of all results (Pellegrini et al. 2011).

The performance of RTS_QAP appears almost insen-
sitive to the meta-parameter settings: the meta-parameter
landscape is relatively flat for both structured and unstruc-
tured instances (upper plots of Figs. 1 and 2). Only the set-
ting Tincr = 1.1 leads to a noticeable worsening of the
results: if Tincr = 1.1 and Tdecr < 0.8, the performance
is clearly worse than the one achieved using meta-parameter
settings with a higher value of Tincr. The default combina-
tion Tincr = 1.1, Tdecr = 0.9 is not much worse than the
best settings, even if never as good as them. The behavior
of RTS_QAP remains the same independently of the type of
instances (size, structure) being tackled (see also Pellegrini
et al. 2011).

The sensitivity of TS_QAP to its parameter settings is
higher: the parameter landscape (bottom plots of Figs. 1 and
2) is less flat than that of RTS_QAP. TS_QAP has very dif-
ferent behavior for unstructured and structured instances. As
an example, note that the adoption of a low value of p_size
leads to high performance in unstructured instances, and to
low performance in structured ones. Instead, the shape of the
meta-parameter landscape of RTS_QAP is almost indiffer-

RTS_QAP: All unstructured instances,   chaos=3
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Fig. 1 Mean relative error of RTS_QAP (top plot) and TS_QAP (bot-
tom plot) for unstructured QAP instances

ent to the type of instances tackled. These observations are
confirmed by the ANOVA analysis of the results, which we
present in Sect. 3.2.

Figure 3 illustrates the higher sensitivity of TS_QAP. This
figure shows the cumulative cost distribution of the differ-
ent meta-parameter and parameter configurations extracted
from the results presented in Figs. 1 and 2, considering all
the settings tested for RTS_QAP and TS_QAP. The cost of a
configuration is measured as the average relative error on the
instance set under consideration. In particular, the plots report
on the x-axis the relative error, and on the y-axis the ratio of
RTS_QAP and TS_QAP settings that achieve a relative error
that is smaller than or equal to the corresponding value on the
x-axis. The distribution of this ratio for RTS_QAP is similar
for structured and unstructured instances. Instead, the distrib-
ution of this ratio for TS_QAP varies quite strongly in the two
cases. In structured instances, the distribution is almost equal
to the one of RTS_QAP, being slightly better for small rela-
tive errors. In unstructured instances, TS_QAP obtains very
good results only with a small fraction of parameter settings.

The extent to which RTS_QAP pays its low sensitivity
to meta-parameter settings in terms of performance is repre-
sented in Tables 3 and 4. These tables report the mean relative
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RTS_QAP: All structured instances,   chaos=3
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Fig. 2 Mean relative error of RTS_QAP (top plot) and TS_QAP (bot-
tom plot) for structured QAP instances

error made by RTS_QAP and TS_QAP with the best meta-
parameter and parameter settings, respectively: we selected
the best settings based on the results of the analysis, and we
evaluated their performance on an additional run for each
instance, or on 100 additional runs when considering a sin-
gle instance. In the same tables, we report the best meta-
parameter or parameter settings for each set of instances and
for each considered single instance. When multiple instances
are tackled by using the best set-specific settings, RTS_QAP
performs consistently better than TS_QAP as far as unstruc-
tured instances are present: this holds for both sets including
only unstructured instances, and sets including both struc-
tured and unstructured ones. When only structured instances
are to be tackled, TS_QAP is the best algorithm. In case
of multiple runs on a single instance, when using instance-
based optimal settings, the two algorithms reach comparable
results on the unstructured instances, and TS_QAP achieves
better results than RTS_QAP in the structured ones. Both
the best parameter and the best meta-parameter settings vary
strongly as a function of the instance set tackled. No partic-
ular trend exists for the best meta-parameters; this probably
depends on the fact that many meta-parameter settings reach
similar performance, and, hence, any minor difference can
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Fig. 3 Cumulative cost distribution of parameter and meta-parameter
configurations for the QAP: all settings tested for RTS_QAP and
TS_QAP

have a strong impact on our identification of the best one. For
the parameters, instead, some trend exists for T and p_size:
the best value for T is low for the sets of all and the set of
unstructured instances (between 5 and 7), while it is high for
the sets of structured instances (>33); p_size is low for the
sets of all and the set of structured instances (=1), while it is
higher for the sets of unstructured instances (between 10 and
15). The same trends exist for the single instances shown in
Table 4, even if they are slightly less marked. The size of the
instances does not have a noticeable impact, neither on the
results, nor on the optimal parameter settings.

3.2 ANOVA analysis on the QAP

The results reported in Sect. 3.1 show that the type of
instances tackled has a strong impact on the response of
RTS_QAP and TS_QAP to meta-parameters and parame-
ters, respectively. Instead, the size of the instances does not
appear to be very relevant here. In this section, we assess
through a two-way analysis of variance (ANOVA analysis)
the main effect of RTS_QAP meta-parameters and TS_QAP
parameters in unstructured and structured instances. Through
this analysis, we study the effect of the meta-parameter and
parameter settings on the performance of the algorithms.
In particular, the ANOVA analysis highlights the impact of
each meta-parameter and parameter on the performance of
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Table 3 Mean relative error across instances of the best parameter and
meta-parameter settings for the QAP

We report in bold font the best mean for each set of instances. Below
each result, we report in parenthesis the meta-parameter and parameter
settings adopted. For RTS_QAP, the three values correspond to the
setting of Tincr, Tdecr, and chaos, respectively. For TS_QAP, the three
values correspond to the setting of T , p_size, and n_imp, respectively.
A star following the mean relative error indicates that the difference
between the two algorithms is statistically significant according to the
Wilcoxon rank-sum test with 95 % confidence level

RTS_QAP and TS_QAP, respectively, as well as the existing
interactions.

The residuals in the original data have fat tails and depart
somehow from the normal distribution. The normality of the
residuals is strongly improved by an ad-hoc data transforma-
tion for each set of results. For ease of visualization, we report
here the results obtained on the transformed data, after apply-
ing the reverse transformation. For example, we first applied
a square root transformation to the results of RTS_QAP on
structured instances, for satisfying the hypotheses necessary

for the ANOVA analysis. Then, we applied the reverse trans-
formation (i.e., the square transformation) to the results of
the analysis for plotting the main effects identified. In this
way, we can easily observe whether the impact of meta-
parameter and parameter settings in terms of relative error
made by RTS_QAP and TS_QAP, respectively, matches the
intuition. At the same time, we can ensure the validity of the
results since the transformed data verify the assumptions for
an ANOVA analysis. The plots obtained for the transformed
data are available in Pellegrini et al. (2011).

Figures 4 and 5 report the plots of the main effects on
the sets of all unstructured and structured instances, respec-
tively. The plots report the mean relative error obtained with
each setting. The variability of the results of this analysis
is extremely low. In principle, the plots report also the con-
fidence intervals corresponding to the mean relative error,
according to the Student t-test with confidence level 0.95.
Yet, the variability here is so small that they are not even
visible in the plot.

The top plots of Figs. 4 and 5 show that different trends
appear, especially for Tdecr, for RTS_QAP meta-parameters
when tackling unstructured and structured instances. Yet, on
both unstructured and structured instances the differences
in the performance achieved with different meta-parameter
settings are very small. Moreover, in both unstructured and
structured instances, the curves shown in the top plots of
Figs. 4 and 5 are rather smooth, and confirm the low sen-
sitivity to meta-parameters. Some interactions among meta-
parameters exist (Pellegrini et al. 2011); hence, the best set-
tings reported in Tables 3 and 4 cannot be identified by look-
ing only at the main effect plots reported here. However, it
is quite easily remarkable that the ANOVA analysis supports
the conclusion that the default meta-parameter settings of
RTS_QAP proposed by Battiti and Tecchiolli (1994) are not
the best possible ones, even if they do not lead to a strong
worsening of the solution quality.

As it emerged from Figs. 1 and 2, the results of the
ANOVA analysis show that the relationship between parame-
ter settings of TS_QAP and performance depends strongly
on the characteristics of the instances tackled (bottom plots of
Figs. 4 and 5). In particular, in unstructured instances (bot-
tom plot of Fig. 4), T must be set to a rather low value,
with a small perturbation size and a large value of n_imp.
Thus, TS_QAP in unstructured instances performs better
when few perturbations are made, and when these pertur-
bations are small. In structured instances (bottom plot of
Fig. 5), instead, the performance is quite insensitive to the
setting of T , provided that T is large enough. This is coun-
terintuitive, since the typical expectation is that the tabu list
length is the most important parameter of TS_QAP, and that
the results are strongly related to its settings. This observa-
tion on the reduced impact of the tabu list length on struc-
tured instances may also explain the relatively worse perfor-
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Table 4 Mean relative error across runs of the best parameter and meta-parameter settings for the QAP

Randomly selected individual instances

Unstructured Structured

RTS_QAP TS_QAP RTS_QAP TS_QAP

60.a 0.0068 (2.4,0.5,3) 0.0064 (5,1,40) 0.0024 (2.4,0.1,1) 0.0009∗ (21,5,1)

60.b 0.0074 (2.3,0.5,4) 0.0051 (5,1,20) 0.0031 (1.8,0.2,1) 0.0018∗ (23,10,40)

80.a 0.0053∗ (2.0,0.5,6) 0.0064 (5,1,40) 0.0036 (1.3,0.5,2) 0.0024∗ (23,20,40)

80.b 0.0060 (2.4,0.6,5) 0.0054∗ (7,1,40) 0.0059 (1.8,0.5,2) 0.0043∗ (37,10,40)

100.a 0.0040∗ (2.1,0.6,5) 0.0054 (7,1,40) 0.0029 (1.4,0.5,1) 0.0018∗ (51,5,5)

100.b 0.0049 (2.4,0.5,4) 0.0051 (5,1,20) 0.0036 (1.3,0.5,2) 0.0022∗ (51,15,20)

We report in bold font the best mean for each instance. Below each result, we report in parenthesis the meta-parameter and parameter settings
adopted. For RTS_QAP, the three values correspond to the setting of Tincr, Tdecr, and chaos, respectively. For TS_QAP, the three values correspond
to the setting of T , p_size, and n_imp, respectively. A star following the mean relative error indicates that the difference between the two algorithms
is statistically significant according to the Wilcoxon rank-sum test with 95 % confidence level

mance of RTS_QAP on these instances: RTS_QAP focuses
on adapting a parameter whose value for this instance class
has not a strong impact. In structured instances, the best per-
formance is achieved by setting both p_size and n_imp to
non-extreme values. This is very much in contrast with the
behavior observed on unstructured instances, where, in gen-
eral, perturbations are disadvantageous. This observation is
confirmed by the interaction plots (Pellegrini et al. 2011).

4 Analysis on the MCP

We verify the validity of the conclusions drawn for the QAP
by applying the same analysis to the MCP, a problem for
which RTS_MCP is a state-of-the-art algorithm (Battiti and
Mascia 2010).

We ran the experiments on the same hardware as the exper-
iments for the QAP. In this analysis, we tackle a subset of
the instances used in the DIMACS implementation challenge
(Johnson and Trick 1993). This subset includes the instances
used by Battiti and Mascia (2010) that can be solved under a
memory limitation of 500 MB RAM. The instances tack-
led are listed in Table 6. We perform 100 runs for each
instance, imposing two alternative stopping criteria: the algo-
rithm stops when either it has reached a specific bound on
the solution quality value (here corresponding to the known
optimal value or the best known solution value if optima are
not available), or it has performed 108 steps. The optimal or
best-known solution value of each instance is publicly avail-
able (DIMACS Center 2011).

We compare the performance of each setting of TS_MCP
and RTS_MCP in terms of the number of steps necessary
to reach the solution quality bound. Besides analyzing the
results for each instance, we consider the set of all instances.
In this case, we evaluate the performance in terms of the
total number of steps needed for performing one run for each
instance: first, we compute the mean number of steps needed

to find the solution quality bound; second, we sum these
values for obtaining the mean number of steps necessary for
solving all instances once.

Table 5 reports the parameter and meta-parameter settings
tested for TS_MCP and RTS_MCP, respectively. The set-
tings tested for the meta-parameters of RTS_MCP are the
same used for the QAP. The values of T are a superset of
the best static values for each instance (Mascia et al. 2013).
Both, for RTS_MCP and for TS_MCP, we use the default
setting of parameter restart, which is 100 (Battiti and Mas-
cia 2010). As remarked in Sect. 2.2, the only parameter that
RTS_MCP adapts is T . Thus, it is also the only parameter
that we consider in the study of TS_MCP.

4.1 Sensitivity to parameters and meta-parameters on the
MCP

In Figs. 6, 7 and 8, we report the meta-parameter and parame-
ter landscape analysis for RTS_MCP and TS_MCP on the set
of all instances (Fig. 6), and on instances DSJC1000.5 and
gen400_p0.9_75 (Figs. 7, 8, respectively). The results for all
the other instances are available in Pellegrini et al. (2011);
they lead to the same conclusions as those based on the results
reported here.

The conclusions of the analysis on the QAP are confirmed
by these results: the sensitivity of TS_MCP to parameter set-
tings is much higher than the one of RTS_MCP to meta-
parameter settings. The extremely flat landscapes on the top
plots of Figs. 6, 7 and 8 indicate that RTS_MCP is insen-
sitive to specific settings of meta-parameters. For TS_MCP,
the performance is strongly worsened by inappropriate para-
meter settings, as shown in the bottom plots of Figs. 6, 7 and
8. The bottom plots of Figs. 7 and 8 show that the relationship
between parameter settings and performance in TS_MCP
depends on the instance tackled, analogous to what was found
in the analysis on the QAP.
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Fig. 4 Main effects on unstructured instances for RTS_QAP (top) and
TS_QAP (bottom). Note that all plots use the same scale on the y-axis

In Fig. 9, we report the cumulative cost distribution of the
RTS_MCP meta-parameter and TS_MCP parameter settings
for instance DSJC1000.5 and instance gen40_p0.9_75. The
plots show the frequency with which the algorithms reach
the solution quality bound in dependence of the number of
steps. This frequency represents the ratio of parameter and
meta-parameter settings that can solve the specific instance in
dependence of the average number of steps to reach the solu-
tion quality bound (given in the x-axis). It is computed con-

Fig. 5 Main effects on structured instances for RTS_QAP (top) and
TS_QAP (bottom). Note that all plots use the same scale on the y-axis

sidering all parameter settings tested, analogously to Fig. 3:
the cost of a parameter configuration is here given by the
average number of steps to reach the solution quality bound
on the instance under consideration.

Figure 9 shows that, even if the performance of RTS_MCP
depends on the particular instance being tackled, RTS_MCP
quickly finds the target bounds on the clique size with
a very high frequency. This is not the case of TS_MCP:
although the best parameter settings yield high performance,
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Table 5 Parameter and meta-parameter settings tested for the MCP

Parameter settings: TS_MCP
T 1, 3, 5, 7, . . . , 49

Meta-parameter settings: RTS_MCP

Tincr 1.1, 1.2, 1.3, . . . , 2.5

Tdecr 0.1, 0.2, 0.3, . . . , 0.9

RTS_MCP: All
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Fig. 6 Mean number of steps to reach the solution quality bound by
RTS_MCP (top) and TS_MCP (bottom) on all MCP instances

TS_MCP is more sensitive with respect to parameter set-
tings than RTS_MCP. On instance DSJC1000.5, the ratio of
RTS_MCP meta-parameter settings is always higher than the
ratio of TS_MCP parameter settings: whatever the number
of steps, the empirical frequency of having meta-parameter
configurations of RTS_MCP that reach the solution qual-
ity bound is higher than the one of TS_MCP. On instance
gen400_p0.9_75, the frequency of parameter settings of
TS_MCP is slightly higher than the one corresponding to
RTS_MCP up to approximately 2,500 steps to reach the solu-
tion quality bound. The two algorithms need this number of
steps to reach the solution quality bound in about 60 % of
the observations. In the remaining 40 %, the frequency with
which RTS_MCP needs the given number of steps to reach
the solution quality bound is higher than the one of TS_MCP
parameters. The difference between the two algorithms is
quite large up to about 160,000 steps, when both algorithms
manage to reach the solution quality bound with a frequency
of 1.

Table 6 reports the mean number of steps to reach the solu-
tion quality bound for the best RTS_MCP meta-parameter

RTS_MCP: DSJC1000.5

 1.2 1.6 2 2.4
Tincr

 0.2
 0.4

 0.6
 0.8Tdecr

 0
 900000

 1.8e+06
 2.7e+06
 3.6e+06

st
ep

s

 0

 900000

 1.8e+06

 2.7e+06

 3.6e+06

 10  20  30  40  50

st
ep

s

T

TS_MCP: DSJC1000.5

Fig. 7 Mean number of steps to reach the solution quality bound by
RTS_MCP (top) and TS_MCP (bottom) on instance DSJC1000.5

RTS_MCP: gen400_p0.9_75
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Fig. 8 Mean number of steps to reach the solution quality bound by
RTS_MCP (top) and TS_MCP (bottom) on instance gen400_p0.9_75

and the best TS_MCP parameter settings, together with the
best settings adopted. As we did for the QAP, we selected the
best settings based on the results reported in Figs. 6, 7 and
8, and we re-ran the experiments using these settings. When
the appropriate settings are selected, TS_MCP outperforms
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Fig. 9 Cumulative cost distribution of parameter and meta-parameter
configurations for the MCP: all settings tested for RTS_MCP and
TS_MCP

RTS_MCP in 21 of 27 instances. The mean relative increase
of the number of steps to reach the solution quality bound
when passing from TS_MCP to RTS_MCP is 0.37, with a
maximum relative increase of 3.56 in instance keller4, and a
maximum relative decrease of 0.15 in instance C125.9. Let
us remark here that the computation time needed for per-
forming one step is for these instances hardly measurable.
In instance keller4, for example, the increase of the mean
number of steps to reach the solution quality bound of more
than a factor of three corresponds to an increase of the mean
solution time from 0.0001 to 0.0002 CPU seconds.

Differently, RTS_MCP is the best algorithm on the set
of all instances, that is, if instance-wise optimal parameter
settings are not known. This result is not surprising given
that (1) the best parameter and meta-parameter settings are
quite different across instances, and (2) for RTS_MCP the
meta-parameter settings have relatively little impact on per-
formance. In the set of all instances, the best meta-parameter
setting is close to the default settings (Battiti and Mascia
2010). In this case, the median difference in the number of
steps to reach the solution quality bound when using the
default and the best meta-parameter setting (Tincr = 1.1 and
Tdecr = 0.8) is very small: according to the Wilcoxon rank-
sum test with confidence level 0.95, the confidence interval
is (−4,943, 2,150).

4.2 ANOVA analysis on the MCP

We performed an ANOVA analysis for RTS_MCP and TS-
MCP on instance DSJC1000.5 and instance gen40_p0.9_75.

Table 6 Mean number of steps to reach the solution quality bound for
the best instance-wise settings of RTS_MCP and TS_MCP

Instance RTS_MCP TS_MCP

All 996,578 (1.1, 0.8) 1,119,774 (9)

C125.9 125 (1.1, 0.1) 147 (17)

C2000.5 37,817 (1.1, 0.1) 36,556 (3)

C250.9 1,365 (1.1, 0.8) 1,115 (17)

C500.9 78,059 (1.1, 0.7) 41,951 (13)

DSJC1000.5 41,700 (1.3, 0.3) 31,949 (3)

DSJC500.5 2,007 (1.1, 0.7) 1,489 (5)

MANN_a27 104,910 (1.9, 0.7) 107,614 (47)

brock200_2 101,054 (2.1, 0.4) 76,410 (11)

brock200_4 348,108 (1.9, 0.9) 173,025 (13)

gen200_p0.9_44 2,109 (1.1, 0.7) 1,693 (21)

gen200_p0.9_55 681 (2.2, 0.7) 422 (31)

gen400_p0.9_55 35,218 (1.4, 0.5) 27,479 (19)

gen400_p0.9_65 1,459 (1.9, 0.7) 1,129 (25)

gen400_p0.9_75 1,297 (2.3, 0.5) 901 (31)

p_hat1500-1 178,264 (1.2, 0.4) 142,196 (5)

p_hat1500-2 844 (1.4, 0.5) 848 (21)

p_hat1500-3 1,672 (1.1, 0.7) 1,133 (27)

p_hat300-1 135 (1.1, 0.5) 125 (3)

p_hat300-2 46 (2.3, 0.1) 35 (5)

p_hat300-3 787 (1.1, 0.6) 577 (15)

p_hat700-1 1,359 (1.1, 0.6) 1,556 (3)

p_hat700-2 137 (1.1, 0.1) 107 (11)

p_hat700-3 319 (1.2, 0.3) 402 (9)

hamming10-4 968 (1.4, 0.6) 799 (11)

hamming8-4 16 (1.1, 0.1) 16 (1)

keller4 164 (1.3, 0.1) 36 (11)

keller5 3,116 (1.1, 0.6) 3,113 (13)

The difference between the results obtained by the best meta-parameters
and the best parameters are statistically significant according to the
Wilcoxon rank-sum test with 95 % confidence level, except for instance
hamming 8-4. We report in bold font the lowest mean number of steps for
each instance and for the set of all instances. After each result, we report
in parenthesis the meta-parameter and parameter settings adopted. For
RTS_MCP, the two values correspond to the setting of Tincr and Tdecr,
respectively. For TS_MCP, the value corresponds to the setting of T

As we did for the QAP, we applied an ad-hoc transforma-
tion to each set of results, and we report here the main effects
after the application of the reverse transformation. Figures 10
and 11 depict the mean of the number of steps to reach the
solution quality bound, for RTS_MCP and TS_MCP, respec-
tively. The plots report also the confidence intervals accord-
ing to the Student t-test with confidence level 0.95. When the
confidence intervals are not visible, it means that the variabil-
ity of the results is extremely low.

Figure 10 shows that different meta-parameter settings
have no remarkable impact on the performance (remark the
extremely small scale used in the y-axis of the plots). For
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Fig. 10 Main effect in
RTS_MCP. Instances
DSJC1000.5 (top) and
gen400_p0.9_75 (bottom). Note
that all plots use different scale
on the y-axis from the ones in
Fig. 11, due to the extremely
different variability of the results
of RTS_MCP and TS_MCP
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TS_MCP (Fig. 11), the appropriate settings are quite dif-
ferent on the two instances, as reported in Table 6. For
TS_MCP, being T the only parameter considered, there are
no interactions to account for, and the indications of the
ANOVA results correspond to those of the analysis reported
in Sect. 4.1. As for the QAP, an inappropriate TS_MCP para-
meter setting has a great impact on performance: selecting
an inappropriate setting may imply an increase in the mean
number of steps to reach the solution quality bound of a
factor of 0.95 for instance DSJC1000.5 and of 130.12 for
instance gen400_p0.9_75. Selecting an inappropriate meta-
parameter setting for RTS_MCP may imply the increase of
the mean number of steps to reach the solution quality bound
of a factor of 0.66 for instance DSJC1000.5 and 0.45 for
instance gen400_p0.9_75. Some interactions exist between
RTS_MCP meta-parameters (Pellegrini et al. 2011), but they
do not impact the conclusions on the appropriate settings.

5 Conclusion

In this paper, we have compared the sensitivity of RTS to its
meta-parameters with the sensitivity of TS to its parameters.
We made this comparison on two combinatorial optimization
problems, namely the QAP and the MCP, using instances
with different characteristics. We also performed an ANOVA
analysis for studying the main effect of the parameters of TS
and the meta-parameters of RTS, as well as their interactions
(Pellegrini et al. 2011).

This study is motivated by the observation that RTS has
been adopted in a number of researches. The usage of RTS is
mostly due to the hope that RTS is little sensitive to its meta-
parameters: when using RTS rather than TS, one implicitly
exploits the intuition that, while for TS the parameter settings
must be chosen specifically for each class of instances, this
is not really necessary for RTS. However, this intuition has
never been supported by strong experimental evidence.

In our experimental analysis, we obtain strong results sup-
porting this intuition. In particular, the results of the analyses
on the two problems lead to the same conclusion:

1. RTS is little sensitive to its meta-parameter setting;
2. RTS is much less sensitive than TS to the setting of its

parameters.

Moreover, there are no significant interactions between meta-
parameters according to the ANOVA analysis.

We measured the sensitivity by observing the difference
in the performance achieved by the algorithms with differ-
ent meta-parameter (RTS) or parameter (TS) settings. If we
consider only the best settings for TS and RTS, in the QAP,
TS performs better than RTS when only structured instances
are tackled, and the opposite holds when also unstructured
instances are involved in the computation. In the MCP, TS
typically performs better than RTS when the best settings
are selected on an instance basis, and the opposite holds
when the best setting is selected across multiple instances. If
non-optimal parameter settings are fixed for TS, the perfor-
mance can strongly worsen both on single and across mul-
tiple instances. This is not the case if non-optimal meta-
parameter settings are fixed for RTS. Moreover, the best
parameter setting for TS is strongly dependent on the char-
acteristics of the instances tackled. Instead, in RTS, many
meta-parameter settings perform similarly good on all the
instances tested.

As for the best meta-parameter settings for the QAP and
the MCP, our results underline that the ones given in the
literature are not necessarily appropriate in different experi-
mental setups. In particular, in the analysis for the QAP, we
get to conclusions that are rather different from those drawn
by Battiti and Tecchiolli (1994): from our results we would
suggest to take a value larger than the originally suggested
value of 1.1 for Tincr, and a value smaller than the originally
suggested one of 0.9 for Tdecr. In particular, Tincr = 2.0 and
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Fig. 11 Main effect in TS_MCP. Instances DSJC1000.5 (top) and
gen400_p0.9_75 (bottom). Note that all plots use different scale on
the y-axis from the ones in Fig. 10, due to the extremely different
variability of the results of RTS_MCP and TS_MCP

Tdecr = 0.5 are good settings across all the sets of instances
considered. It is not possible to identify a best overall set-
ting for chaos, where the default value is a good compro-
mise. In the analysis for the MCP, instead, the default values
proposed by Battiti and Mascia (2010) (Tincr = 1.1 and
Tdecr = 0.9) turned out to be very good on the set of all
instances.

In summary, the paper shows that RTS is a very good
option, if one aims at generally good results, or if it is not
clear what are the characteristics of the instances that need to
be considered for determining appropriate parameter settings
for TS. In such a situation, RTS can be used even without tun-
ing its meta-parameters: despite the default meta-parameter
settings are typically not the best ones, their use does not have
a strong negative impact on the performance of the algorithm.
However, our results also show that an alternative to using
RTS is to use parameter selection strategies where, depend-
ing on instance characteristics, instance-specific parameter
values are chosen. This is an option we will explore further
in follow-up research.
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