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Abstract. In practical applications, one can take advantage of meta-
heuristics in different ways: To simplify, we can say that metaheuristics
can be either used out-of-the-box or a custom version can be developed.
The former way requires a rather low effort, and in general allows to
obtain fairly good results. The latter implies a larger investment in the
design, implementation, and fine-tuning, and can often produce state-of-
the-art results.

Unfortunately, most of the research works proposing an empirical
analysis of metaheuristics do not even try to quantify the development
effort devoted to the algorithms under consideration. In other words,
they do not make clear whether they considered out-of-the-box or cus-
tom implementations of the metaheuristics under analysis. The lack of
this information seriously undermines the generality and utility of these
works.

The aim of the paper is to stress that results obtained with out-of-
the-box implementations cannot be always generalized to custom ones,
and vice versa. As a case study, we focus on the vehicle routing prob-
lem with stochastic demand and on five among the most successful
metaheuristics—namely, tabu search, simulated annealing, genetic algo-
rithm, iterated local search, and ant colony optimization. We show that
the relative performance of these algorithms strongly varies whether one
considers out-of-the-box implementations or custom ones, in which the
parameters are accurately fine-tuned.

1 Introduction

The term metaheuristics [1] recently became widely adopted for designating a
class of approaches used for tackling optimization problems.

A metaheuristic is a set of algorithmic concepts that can be used to define
heuristic methods applicable to a wide set of different problems.

[2, p. 25]

The generality of metaheuristics and the ease with which they can be applied to
the most diverse combinatorial optimization problems is definitely the main rea-
son for their success. A basic implementation of metaheuristic can be obtained
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with quite a low effort. Typically, with such an implementation, it is possible
to achieve fairly good results. Nonetheless, it has been shown in the literature
that metaheuristics can obtain state-of-the-art results with some larger imple-
mentation effort. To simplify, we can say that metaheuristics can be either used
out-of-the-box or a custom version can be developed.

This flexibility of metaheuristics is definitely a positive feature: One can start
with an out-of-the-box version of a metaheuristic for quickly having some pre-
liminary results and for gaining a deeper understanding of the problem at hand.
One can then move to a custom version for obtaining better performance without
having to switch to a completely different technology.

Nonetheless, this flexibility has a downside:The fact thatmetaheuristics achieve
different results according to the development effort can be reason of misunder-
standing. In particular, it could well happen that, as we show in the case study
proposed in this paper, a metaheuristic M1 performs better than a metaheuristic
M2 on a given problem when out-of-the-box versions of M1 and M2 are consid-
ered; whereas M2 performs better that M1 on the very same problem when cus-
tom versions are concerned. In this sense, results obtained with out-of-the-box
implementations do not always generalize to custom ones, and vice versa.

In the literature, this fact is often neglected and the development effort de-
voted to algorithms is rarely quantified. This can be partially justified by the
fact that measuring development effort is not a simple and well-defined task.
Nonetheless, without this piece of information, the usefulness of an empirical
study is somehow impaired.

With this paper we wish to stress that two experimental studies, one per-
formed in the out-of-the-box context, and the other in the custom one, may
lead to different conclusions. To this aim, we consider as a case study the ve-
hicle routing problem with stochastic demand, and five of the most successful
metaheuristics—namely, tabu search, simulated annealing, genetic algorithm, it-
erated local search, and ant colony optimization. Our goal is to show that the
relative performance of the above metaheuristics depends on the implementa-
tions considered.

In order to attenuate the problem concerning the different ability of a single
designer in implementing various approaches, we consider the implementations
of the five metaheuristics produced within the Metaheuristics Network,1 a EU
funded research project started in 2000 and accomplished in 2004. In the Meta-
heuristics Network, five academic groups and two companies, each specialized
in the development and application of one or more of the above metaheuris-
tics, joined their research efforts with the aim of gathering a deeper insight
into the theory and practice of metaheuristics. For a detailed description of the
metaheuristics developed by the Metaheuristics Network for the vehicle routing
problem with stochastic demand, we refer the reader to [3].

In our analysis, these implementations are considered as black-box metaheuris-
tics: By modifying their parameters, we obtain the out-of-the-box and the custom
versions. The first ones are obtained by randomly drawing the parameters from

1 http://www.metaheuristics.net/
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a defined range. The second ones are obtained by fine-tuning the parameters
through an automatic procedure based on the F-Race algorithm [4,5].

Selecting the best values for the parameters, given the class of instances that
are to be tackled, is definitely a sort of customization. By using this element
as the only difference between custom and out-of-the-box implementations, we
are neglecting the customization of most of the components of metaheuristics.
Nonetheless, the goal of the paper is to show that an analysis based on custom
implementations might produce radically different results from one based on
out-of-the-box implementations. If we succeed to show this fact when even one
single element characterizing custom implementations is considered, namely the
fine-tuning of parameters, we have nevertheless reached our goal.

It is interesting to note here that Bartz-Beielstein [6] has already addressed
some of the issues discussed in the paper. In particular, he warns against perform-
ing a comparative analysis of algorithms that have not been properly fine-tuned.
The results we present in the paper confirm the concerns raised in [6]. Nonethe-
less, our standpoint is somehow different from the one taken in [6]. Indeed, we
think that analyzing the performance of out-of-the-box versions of metaheuris-
tics can be in itself relevant since in some practical contexts the development
of custom versions of a metaheuristic is not possible due to time and/or budget
constraints.

The rest of the paper is organized as follows. In Section 2, we present a
panoramic view of the literature concerning the vehicle routing problem with
stochastic demand, the metaheuristics considered, and the tuning problem. In
Section 3, we describe the specific characteristics of these elements as they appear
in our analysis. In Section 4, the experimental study is reported. Finally, in
Section 5, we make some conclusions.

2 Literature Overview

The three main topics of interest of our analysis are introduced in this section.
We first focus on the vehicle routing problem with stochastic demand. Then
we sketch the five metaheuristics considered, and the problem of fine-tuning
metaheuristics.

The vehicle routing problem with stochastic demand (VRPSD) can be de-
scribed as follows: Given a fleet of vehicles with finite capacity, a set of customers
has to be served at minimum cost. The demand of each customer is a priori un-
known and only its probability distribution is available. The actual demand is
revealed only when the customer is reached. The objective of the VRPSD is the
minimization of the total expected traveling cost.

Optimal methods, heuristics, and metaheuristics have been proposed in the
literature for tackling this problem. In particular, the problem is first addressed
by [7] in 1969. [8], [9] and [10] use techniques from stochastic programming
to solve optimally small instances. [11] and [12] propose different heuristics for
solving the VRPSD. They consider the construction of an a priori TSP-wise
tour. This tour is then split according to precise rules. [13] propose a strategy
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for splitting the a priori tour allowing the restocking before a stockout, when
this is profitable. Secomandi [14,15] analyzes different possibilities for applying
dynamic programming to this problem. [16] and [17] tackle the VRPSD using
metaheuristic approaches. In particular, [16] adopt simulated annealing while
[17] use tabu search. Finally, an extended analysis on the behavior of different
metaheuristics is proposed by [3]. Two classical local search algorithms have
been used for the VRPSD: the Or-opt [13] and the 3-opt [3] procedures.

Following [3], we focus on five of the most popular metaheuristics: tabu search
(TS), simulated annealing (SA), genetic algorithm (GA), iterated local search
(ILS), and ant colony optimization (ACO).

Tabu search consists in the exploration of the solution space via a local search
procedure. Non-improving moves are accepted, and a short term memory is
used. The latter expedient is introduced in order to avoid sequences of moves
that constantly repeat themselves [18].
Simulated annealing takes inspiration from the annealing process in crystals
[19]. The search space is explored via a local search procedure. Simulated anneal-
ing escapes from local minima by allowing moves to worsening solutions with a
probability that decreases in time.
Genetic algorithms are inspired by natural selection. In this metaheuristic,
candidate solutions are represented as individuals of a populations that evolve in
time under the effect of a number of operators including crossover and mutation,
which mimic the effects of their natural counterparts [20].
Iterated local search is one of the simplest metaheuristics. It is based on the
reiteration of a local search procedure: It explores the neighborhoods of different
solutions obtained via successive perturbations [21].
Ant colony optimization is inspired by the foraging behavior of ants [2].
Solutions are sampled based on a pheromone model and are used to modify the
model itself biasing the search toward high quality solutions [22].

Each metaheuristic can be seen as a modular structure coming with a set of
components, each typically provided with a set of free parameters. The tuning
problem is the problem of properly instantiating this algorithmic template by
choosing the best among the set of possible components and by assigning specific
values to all free parameters [5]. Only in recent years this problem has been the
object of extensive studies [5,23,24,25,26], although it is generally recognized
to be very important when dealing with metaheuristics. Some authors adopt a
methodology based on factorial design, which is characteristic of a descriptive
analysis. For example, [27] try to identify the relative contribution of five different
components of a tabu-search. Furthermore, the authors consider different values
of the parameters of the most effective components and select the best one. [28]
and [29] use a similar approach. [30] describe a more general technique, which
is nonetheless based on factorial analysis. Another approach to tuning that has
been adopted for example by [26] and by [23] is based on the method that in the
statistical literature is known as response surface methodology. [25] propose a
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method to determine relevant parameter settings. Some procedures for tackling
the tuning problem have been proposed by [5].

3 Main Elements of the Analysis

The three main elements of the case study considered in the paper are presented
in this section.

3.1 The Problem

The VRPSD is addressed by considering only one vehicle [3,11,12,13]. An a
priori TSP-wise tour is constructed and is then split according to the specific
realizations of the demand of the customers. The objective is finding the a priori
tour with minimum expected cost. The computation of the expected cost of
solutions is based on a dynamic programming recursion that moves backward
from the last node of the sequence. At each node, the decision of restocking or
proceeding is based on the expected cost-to-go in the two cases [13,3].

Two local search procedures are considered: Or-opt and 3-opt [13,3]. Five
methods are used for computing the cost of a move in the local search: Or-
opt(TSP-cost), Or-opt(VRPSD-cost), Or-opt(EXACT-cost), 3-opt(TSP-cost),
3-opt(EXACT-cost). For a detailed description of these techniques we refer the
reader to [3].

A rather large set of instances is needed in order to reach some significant
conclusion with our empirical analysis. The set of instances considered in [3] is
too small for the aim of our research. To the best of our knowledge, these are
the only benchmark instances available for the vehicle routing problem with sto-
chastic demand. For our experiments, we use instances created with the instance
generator described in [31]. We consider instances with either 50 or 60 nodes.

Following [3], we consider instances in which the demand of each customer
is uniformly distributed. The average and the spread of these distributions are
selected randomly extracted from a uniform distribution in the following ranges:
{(20, 30), (20, 35)} for the average, and {(5, 10), (5, 15)} for the spread. The ca-
pacity of the vehicle is 80.

3.2 Metaheuristics

The implementation of the metaheuristics we consider is based on the code
written for [3], which is available at http://iridia.ulb.ac.be/vrpsd.ppsn8.
In the following, we give a short description of the main element characteriz-
ing each algorithm. More details can be found in [32]. The parameters of the
algorithms are briefly explained. As a reference algorithm, following [3], we con-
sidered a random restart local search (RR). It uses the randomized furthest
insertion heuristic plus local search. It restarts every time a local optimum is
found, until the stopping criterion is met—in our case, the elapsing of a fixed
computational time.
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In tabu search, the tabu-list stores partial solutions. An aspiration criterion
allows forbidden moves if the new solution is the new best one. The tabu tenure,
that is, the length of the tabu list, is variable [3]: At each step it assumes a
random value between t(m − 1) and m − 1, where 0 ≤ t ≤ 1 is a parameter
of the algorithm. When 3-opt is used, m is equal to the number of customers.
When Or-opt is used, m is equal to the number of customers minus the length of
the string to move. During the exploration of the neighborhood, solutions that
include forbidden components are evaluated with probability pf and the others
with probability pa. The difference between the EXACT-cost, the VRPSD-cost,
and the TSP-cost implementations concerns only the local search procedure.

Concerning simulated annealing, the probabilistic acceptance criterion
consists in accepting a solution s′ either if it has a lower cost than the current
solution s or, independently of its cost, with probability p(s′|Tk, s) =
exp (Cost(s) − Cost(s′)/Tk) . The relevant parameters of the algorithm are re-
lated to the initial level of the temperature and to its evolution. The starting
value T0 is determined by considering one hundred solutions randomly chosen
in the neighborhood of the first one, by computing the variation of the cost in
this set, and by multiplying this result for the parameter f . At every iteration
k, the temperature is decreased according to the formula Tk = αTk−1, where
the parameter α, usually called cooling rate, is such that 0 < α < 1. If after
n · q · r iterations the quality of the best solution is not improved, the process
known as re-heating [33] is applied: the temperature is increased by adding T0 to
the current temperature. Besides the local search procedure used, the difference
between the EXACT-cost, the VRPSD-cost and the TSP-cost implementations
consists in the way Cost(s′) and Cost(s) are computed. In the TSP-cost, only
the length of the a priori tour is considered.

In the implementation of genetic algorithm, edge recombination [34] con-
sists in generating a tour starting from two solutions by using edges present
in both of them, whenever possible. Mutation swaps adjacent customers with
probability pm. If mutation is adaptive, pm is equal to the product of the pa-
rameter mr (mutation-rate) and a similarity factor. The latter depends on the
number of times the n-th element of the first parent is equal to the n-th element
of the second one. If the mutation is not adaptive, pm is simply equal to mr.
The difference between the EXACT-cost, the VRPSD-cost and the TSP-cost
implementations concerns only the local search procedure adopted.

Iterated local search is characterized by a function that performs a pertur-
bation on solutions. It returns a new solution obtained after a loop of n random
moves (with n number of nodes of the graph) of a 2-exchange neighborhood.
They consist in subtour inversions between two randomly chosen nodes. The
loop is broken if a solution with quality comparable to the current one is found.
We say that the quality of a solution is comparable to the quality of the cur-
rent one if its objective function value is not greater than the objective function
value of the current solution plus a certain value ε. The difference between the
EXACT-cost, the VRPSD-cost and the TSP-cost implementations concerns only
the local search procedure adopted.
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Fig. 1. Graphical representation of computation performed by the racing approach.
As the evaluation proceeds, the racing algorithm focuses more and more on the most
promising candidates, discarding a configuration, as soon as sufficient evidence is gath-
ered that it is suboptimal [5].

In this implementation of ant colony optimization, the pheromone trail is
initialized to τ0 = 0.5 on every arc. The first population of solutions is generated
and refined via the local search. Then, a global pheromone update is performed r
times. At each following iteration, p new solutions are constructed by p artificial
ants on the basis of the information stored in the pheromone matrix. After
each step, the local pheromone update is performed on the arc just included in
the route. Finally, the local search is applied to the p solutions and the global
pheromone update is executed.

Local pheromone update: the pheromone trail on the arc (i, j) is modified
according to τij = (1 − ψ)τij + ψτ0, with ψ parameter such that 0 < ψ < 1.

Global pheromone update: the pheromone trail on each arc (i, j) is modified
according to τij = (1 − ρ)τ + ρΔτ bs

ij where Δτbs
ij = Q/Cost Solution bs if arc

(i, j) belongs to Solution bs, and Δτbs
ij = 0 otherwise. ρ is a parameter such that

0 < ρ < 1 and Solution bs is the best solution found so far.

3.3 The Tuning Process

The parameters of all algorithms considered in the paper are tuned through the
F-Race procedure [5,4]. F-Race is a racing algorithm for choosing a candidate
configuration, that is, a combination of values of the parameters, out of prede-
fined ranges. A racing algorithm consists in generating a sequence of nested sets
of candidate configurations to be considered at each step (Figure 1). The set
considered at a specific step h is obtained by possibly discarding from the set
considered at step h − 1, some configurations that appear to be suboptimal on
the basis of the available information. This cumulated knowledge is represented
by the behavior of the algorithm for which the tuning is performed, when using
different candidates configurations. For each instance (each representing one step
of the race) the ranking of the results obtained using the different configurations
is computed and a statistical test is performed for deciding whether to discard
some candidates from the following experiments (in case they appear subopti-
mal) or not. F-Race is based on the Friedman two-way analysis of variance by
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ranks [35]. An important advantage offered by this statistical test is connected
with the nonparametric nature of a test based on ranking, which does not require
to formulate hypothesis on the distribution of the observations.

4 Experimental Analysis

With the computational experiments proposed in this section we wish to show
that a remarkable difference exists between the results obtained by out-of-the-box
and custom versions of metaheuristics.

As mentioned in the introduction, the two versions of the metaheuristics are
obtained by applying different procedures for setting the values of the para-
meters. The values of the parameters represent only one of the elements that
may be customized when implementing a metaheuristic. In this sense, here the
difference between out-of-the-box and custom implementations may be under-
estimated. Then, our goal is reached by showing that the results achieved with
out-of-the-box implementations cannot be generalized to custom ones even when
the difference between the two simply consists in this element: Any other ele-
ment that can be fine-tuned and customized would simply further reduce the
possibility of generalizing results observed in one context to the other.

In the custom versions, the parameters are accurately fine-tuned with the
F-Race automatic procedure. In the out-of-the-box versions, the values of the
parameters are randomly drawn from the same set of candidate values that is
considered by F-Race for custom versions. Equal probability has been associated
to each configuration and, for each instance considered in the analysis, a random
selection has been performed.

For each of the metaheuristics, besides the methods used for setting the pa-
rameters, the implementations considered in the out-of-the-box and custom ver-
sions are identical.

All experiments are run on a cluster of AMD OpteronTM 244, and 1000 in-
stances are considered. A computation time of 30 seconds is used as a stopping
criterion for all the algorithms.

In order to obtain the custom versions of the metaheuristics through F-Race,
a number of different configurations ranging from 1200 to about 1600 were con-
sidered for each of them. Table 1 reports, for each metaheuristic, the parameters
that have been considered for optimization, the range of values allowed, and
the values that have been selected. A set of 500 instances of the vehicle routing
problem with stochastic demand was available for the tuning. These instances
have the same characteristics of the ones used for the experimental analysis, but
the two sets of instances are disjoint [36]. While tuning a metaheuristic, the F-
Race procedure was allowed to run the metaheuristic under consideration for a
maximum number of times equal to 15 times the number of configurations con-
sidered for that metaheuristic. Also for the random restart local search, a custom
version has been considered. It has been obtained by selecting, through the F-
Race procedure, the best performing local search. In other words, the parameter
that has been optimized in this case is the underlying local search.
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Table 1. Range of values considered for the parameters of the metaheuristics. The
values reported in bold are the ones selected by F-Race for the custom versions.

Tabu search – total number of candidates = 1460
parameter range
pf 0.1, 0.2, 0.25, 0.3, 0.35, 0.4
pa 0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9
t 0.3, 0.4, 0.5, 0.7, 0.8, 0.9, 1
local search Or-opt(TSP-cost), Or-opt(VRPSD-cost), Or-opt(EXACT-cost),

3-opt(TSP-cost), 3-opt(EXACT-cost)
Simulated annealing – total number of candidates = 1200

parameter range
α 0.3, 0.5, 0.7, 0.9, 0.98
q 1, 5, 10
r 10, 20, 30, 40
f 0.01, 0.03, 0.05, 0.07
local search Or-opt(TSP-cost), Or-opt(VRPSD-cost), Or-opt(EXACT-cost),

3-opt(TSP-cost), 3-opt(EXACT-cost)
Genetic algorithm – total number of candidates = 1360

parameter range
pop. size 10, 12, 14, 16, 18, 20, 22, 24
mr 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65,0.7, 0.75,

0.8, 0.85, 0.9
adaptive Yes, No
local search Or-opt(TSP-cost), Or-opt(VRPSD-cost), Or-opt(EXACT-cost),

3-opt(TSP-cost), 3-opt(EXACT-cost)
Iterated local search – total number of candidates = 1520

parameter range
ε n/x, x ∈ {0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 1.5, 2.0, all multiples of 0.5 up

to 150.0}
local search Or-opt(TSP-cost), Or-opt(VRPSD-cost), Or-opt(EXACT-cost),

3-opt(TSP-cost), 3-opt(EXACT-cost)
Ant colony optimization – total number of candidates = 1620

parameter range
p 5,10, 20
ρ 0.1, 0.5, 0.7
r 100, 150, 200
Q 105, 106, 107, 108, 109

local search Or-opt(TSP-cost), Or-opt(VRPSD-cost), Or-opt(EXACT-cost),
3-opt(TSP-cost), 3-opt(EXACT-cost)

Random restart – total number of candidates = 5
parameter range
local search Or-opt(TSP-cost), Or-opt(VRPSD-cost), Or-opt(EXACT-cost),

3-opt(TSP-cost), 3-opt(EXACT-cost)

First of all, let us compare the results achieved by the metaheuristics in the two
contexts in terms of cost of the best solution returned. The whole distribution of
the difference of the results is reported in Figure 2 for each metaheuristic. The
detail of the region around 0 is presented in Figure 2(b). The cost of the solutions
found by each custom version minus the one of its out-of-the-box counterpart is
considered for each instance. Even if the tails of the distributions are sometimes
very long, it can be observed that almost 75% of the observations fall below the
zero line for all metaheuristics: the difference is in favor of the custom version
in the strong majority of the cases. Moreover, it can be noted that, as it can
be expected, the various metaheuristics are sensitive in different measure to the
value of their parameters. Therefore, they may benefit in different measure from
an accurate fine-tuning. Observing these results, it is immediately clear that, as
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Fig. 2. Difference between the costs of the solutions obtained by the custom and the
out-of-the-box versions of the metaheuristics under analysis. In Figure 2(a), the entire
distribution is shown for each metaheuristic. Since the distributions are characterized
by long tails, in Figure 2(b) the detail of the more interesting central area is given. For
all metaheuristics, the median of the distribution is below the zero, which means that
the results obtained by the custom versions are in general better than those obtained
by their out-of-the-box counterpart.

expected, the performance achieved by algorithms depend strongly on the values
chosen for the parameters, and then on the contexts considered.

Some further observations can be made considering the distribution of the
ranking achieved by each algorithm. Figures 3(a) and 3(b) report the results
achieved by the custom and out-of-the-box versions, respectively. On the left of
each graph, the names of the algorithms are given. The order in which they
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Fig. 3. Results over 1000 instances of the metaheuristics in the two variants considered

appear reflects the average ranking: The lower the average ranking, the better
the general behavior, and the higher the metaheuristic appears in the list. On
the right, the boxplots represent the distributions of the ranks over the 1000
instances. Between the names and the boxplots, vertical lines indicate if the
difference in the behavior of the metaheuristics is significant according to the
Friedman test: If two metaheuristics are not comprised by the same vertical line,
their behavior is significantly different according to the statistical test considered,
with a confidence of 95%.

As it can be observed, the ranking of algorithms varies in the two contexts: The
two main differences concern RR and ACO. The former performs the worst in
the custom context, while this is not the case in the out-of-the-box context. The
case of a metaheuristic performing worse than the random restart local search is
to be considered as a major failure for the metaheuristic itself. We consider this
point as a remarkable difference between the two contexts: In the out-of-the-box
context, three out of five metaheuristics perform significantly worse than the
random restart local search; in the custom context, all metaheuristics achieve
better results than the random restart local search.
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As far as ACO is concerned, we can draw a conclusion that was suggested by
the representation proposed in Figure 2 and 2(b). In fact, it can observe that
the relative performance is visibly different in the two contexts. The out-of-the-
box version behaves significantly worse than RR, and is among the worst in
the set. On the contrary, the custom version achieves the best average ranking.
This difference shows that this metaheuristic is more sensitive than the others
to variations of the parameters, possibly due to the large number of parameters
of the algorithm. This might be seen as a drawback of ACO. Anyway, we think
that this fact should be read in a different way: If one is interested in an out-
of-the-box metaheuristics, a high sensitivity to the parameters is definitely an
issue; on the other hand, if one wishes to implement a custom metaheuristic, the
sensitivity is an opportunity that can be exploited in order to finely adapt the
algorithm to the class of instances to be tackled.

Another point that can be observed concerns the comparison of the ranking
obtained by the metaheuristics in the two contexts considered, and the one
proposed in [3] on similar instances. Even if, certainly, more experiments are
necessary before drawing conclusion, the general trend reported in [3] appears
very similar to the one obtained in the out-of-the-box context.

These results clearly support our claim according to which there is a strong
difference between the performance of metaheuristics used out-of-the-box or in
a custom way. Moreover, they make us to wonder whether the versions that can
be found in the literature are necessarily to be considered custom, when applied
to problem instances that differ from those considered in the original study.

5 Conclusions

In the paper, five of the most successful metaheuristics, namely tabu search,
simulated annealing, genetic algorithm, iterated local search, and ant colony
optimization, have been compared on the vehicle routing problem with stochastic
demand. These five metaheuristics and this same optimization problem have
been the focus of a research recently published by [3].

Each approach has been considered both in an out-of-the-box and in a cus-
tom version. The procedure used for choosing the values of the parameters is
the element that differentiates a custom version of a metaheuristic from the
corresponding out-of-the-box one: In the former, the parameters are fine-tuned
through the F-Race algorithm. In the latter, they are drawn at random. Our goal
is to highlight that results obtained in one context cannot be directly generalized
to the other.

As it could be expected, the empirical results show that the custom version of
each metaheuristic achieves better results than the corresponding out-of-the-box
one. The difference is always statistically significant according to the Friedman
test. Moreover, the relative performance of algorithms differs greatly in the two
contexts. This can be ascribed to the fact that different metaheuristics might be
more or less sensitive to variations of their parameters.
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On the basis of this case study, we can conclude that there may be a strong
difference in the results achievable by using the out-of-the-box or the custom
version of metaheuristics. This difference may concern both the quality of the
solutions returned by an approach, and the relative performance of algorithms.
As a consequence, one should clearly describe the implementation criteria fol-
lowed in the design of an algorithm, in order to allow the readers to focus on the
more suitable implementations, given their specific goals.

The experimental analysis raises doubts on the possibility of a priori ascribing
the results that are reported in the literature to one of the two contexts. The
computations reported suggest that this is not the case. A further analysis needs
to be devoted to this point.
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20. Bäck, T., Fogel, D., Michalewicz, Z. (eds.): Handbook of Evolutionary Computa-
tion. IOP Publishing Ltd. Bristol, UK (1997)
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Belgium (submitted for journal publication, 2006)

33. Aarts, E., Korst, J., van Laarhoven, P.: Simulated annealing. In: Aarts, E., Lenstra,
J. (eds.) Local Search in Combinatorial Optimization, pp. 91–120. John Wiley &
Sons, Inc. New York, USA (1997)

34. Whitley, D., Starkweather, T., Shaner, D.: The traveling salesman problem and
sequence scheduling: quality solutions using genetic edge recombination. In: Davis,
L. (ed.) Handbook of Genetic Algorithms, pp. 350–372. Van Nostrand Reinhold,
New York, USA (1991)

35. Friedman, J.: Multivariate adaptive regression splines. The Annals of Statistics 19,
1–141 (1991)

36. Birattari, M., Zlochin, M., Dorigo, M.: Towards a theory of practice in metaheuris-
tics design: A machine learning perspective. Theoretical Informatics and Applica-
tions, Accepted for publication (2006)


	Implementation Effort and Performance
	Introduction
	Literature Overview
	Main Elements of the Analysis
	The Problem
	Metaheuristics
	The Tuning Process

	Experimental Analysis
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




