
Université Libre de Bruxelles
Institut de Recherches Interdisciplinaires 
et de Développements en Intelligence Artificielle

Incremental Local Search

in Ant Colony Optimization:

Why it Fails for the

Quadratic Assignment Problem

Prasanna Balaprakash, Mauro Birattari, Thomas

Stützle, Marco Dorigo

IRIDIA – Technical Report Series

Technical Report No.

TR/IRIDIA/2006-011

April 2006



IRIDIA – Technical Report Series

ISSN 1781-3794

Published by:

IRIDIA, Institut de Recherches Interdisciplinaires

et de Développements en Intelligence Artificielle

Université Libre de Bruxelles

Av F. D. Roosevelt 50, CP 194/6
1050 Bruxelles, Belgium

Technical report number TR/IRIDIA/2006-011

The information provided is the sole responsibility of the authors and does not necessarily
reflect the opinion of the members of IRIDIA. The authors take full responsability for
any copyright breaches that may result from publication of this paper in the IRIDIA –
Technical Report Series. IRIDIA is not responsible for any use that might be made of
data appearing in this publication.



Incremental Local Search

in Ant Colony Optimization:

Why it Fails for the

Quadratic Assignment Problem

Prasanna Balaprakash, Mauro Birattari, Thomas Stützle, Marco Dorigo

April 6, 2006

Abstract

Ant colony optimization algorithms are currently among the best performing algorithms

for the quadratic assignment problem. These algorithms contain two main search procedures:

solution construction by artificial ants and local search. Local search algorithms improve

the ants’ solutions that, once locally optimized, are used to modify the pheromone trails,

which the ants use in their solution construction. Incremental local search is an approach

that consists in re-optimizing partial solutions by a local search algorithm at regular intervals

while constructing a complete solution. In this paper, we investigate the impact of adopting

incremental local search in ant colony optimization to solve the quadratic assignment problem.

Notwithstanding the promising results of incremental local search reported in the literature in

a different context, the computational results of our new ACO algorithm are rather negative.

We provide an empirical analysis that explains this failure.

1 Introduction

Ant colony optimization (ACO) is a recent metaheuristic technique that is inspired by ants’ trail
laying and following behavior. In ACO algorithms, artificial ants are stochastic solution construc-
tion procedures that generate solutions in dependence of (artificial) pheromones and heuristic
information; the ants’ solutions are then used to modify the pheromone trails, shifting them to-
wards the construction of solutions similar to the better ones seen previously in the algorithm.
The definition of the ACO metaheuristic includes also the possibility of using local search [1]:
Once ants complete their solution construction phase, local search algorithms can be used to re-
fine their solutions before using them for the pheromone update. Various experimental researches
have shown that the combination of solution construction by ants and local search procedures is
a promising approach [1].

There exist a large number of possible choices when using local search in ACO algorithms. We
refer the reader to [1, 2] for a recent review of these techniques. The primary goal of this paper
is to investigate the opportunity of adopting incremental local search in ACO, that is, to improve
via a local search algorithm the ants’ partial solutions at regular intervals during the solution
construction process. Previous works on incremental local search in non-ACO algorithms have
reported promising results: Russel [3] introduced a method for re-optimizing partial solutions by
means of an interchange procedure after every k steps of the solution construction. Gendreau
et al. [4] introduced a generalized insertion heuristic to solve the traveling salesman problem
and extended the same approach to a vehicle routing problem [5]. In a nutshell, generalized
insertion can be described as an insertion procedure that uses a limited form of incremental local
search. Caseau and Laburthe [6] introduced an approach that applies local search after each
step of the solution construction process to solve a large constrained vehicle routing problem.

1



This methodology is compared with a customary technique that constructs solutions by greedy
insertion and uses local search at the end to improve solutions. The computational results showed
that, in this particular context, incremental local search was not only faster, but also produced
much better solutions. They conclude that incremental local search is able to perform some
improvements during the construction process that full local search may not be able to perform
once the solution is complete. In the context of constructive methods, Fleurent and Glover [7]
proposed a strategy called proximate optimality principle that consists in re-optimizing partial
solutions of a greedy randomized adaptive procedure to solve the quadratic assignment problem.
They suggest that imperfections introduced during the construction step of the procedure can be
removed by applying local search on the partial solutions. Since the method we investigate here
is very similar to this experimental study, we have also chosen the quadratic assignment problem
for our analysis.

The main motivation behind our research is that a priori the idea of re-optimizing the partial
solutions of the ants during the solution construction looks promising, since the use of local search
in ACO algorithms has already proven to often lead to a strong improvement of performance,
and incremental local search has been successfully applied in other settings where constructive
methods were used. However, the results of our computational experiments are negative and, at
least for the QAP, the inclusion of incremental local search actually worsens the performance. In
this paper, we analyse the possible reasons for this effect by studying the convergence behavior of
the ACO algorithm. In fact, our analysis also gives hints on conditions under which incremental
local search may become useful in ACO algorithms. For instance, since the empirical analysis
shows that the incremental local search introduces a strong exploration in the search process of
ACO, one might try to use it to generate new solutions when the search stagnates.

The paper is organized as follows. Section 2 shows how to use incremental local search in ACO
for solving the quadratic assignment problem. In Section 3, we report our computational results,
which show that incremental local search in ACO obtains rather poor results. An analysis of why
incremental local search in ACO is not effective for the quadratic assignment problem is presented
in Section 4. Section 5 concludes the paper.

2 Incremental Local Search in Ant Colony Optimization for

the Quadratic Assignment Problem

The quadratic assignment problem (QAP) can be described in the following way: Consider a set of
n facilities that have to be assigned to n locations. A matrix A = [ars] gives the distances between
locations, where ars is the distance between location r and s. A matrix B = [btu] characterizes the
flows among facilities, where btu is the flow between facility t and facility u. An assignment is a
permutation π of {1,· · · ,n}, where π(r) is the facility that is assigned to location r. The problem
is to find a permutation π* that minimizes the sum of the products of the flows among facilities
by the distance between their locations.

Among the various metaheuristics, ACO has been shown to be particularly successful on
QAP and among several ACO variants, MAX −MIN ant system (MMAS-QAP) is among
the best ones [8, 9]. Hence, we have chosen MMAS-QAP as a starting point for our analysis.
MMAS-QAP constructs solutions by assigning at each construction step a facility to some loca-
tion. Pheromone trails τij refer to the desirability of assigning facility j to location i and the usual
probabilistic choice known from ant system is used; since MMAS-QAP does not use any form of
heuristic information, the probability pij of assigning facility j to location i is directly proportional
to τij for feasible assignments. The pheromone update is done by lowering the pheromone trails
by a constant factor ρ and depositing pheromone on the individual solution components of either
the best solution in the current iteration (iteration-best), the best solution found so far by the
algorithm (best-so-far), or the best solution found since the last re-initialization (restart-best) of
the pheromone trails. We refer the reader to [9] for a more detailed explanation of MMAS-QAP.

MMAS-QAP uses an iterative improvement algorithm based on the 2-exchange neighborhood,

2



where the set of neighbors of a permutation π comprises all permutations that can be obtained by
exchanging the location of two facilities. This iterative improvement algorithm is referred to as
2-opt. When using 2-opt in MMAS-QAP, each ant constructs a feasible solution and improves
it by this local search.

It is straightforward to include incremental local search in MMAS-QAP. While in the original
MMAS-QAP the local search is applied only to complete solutions, in a version that uses incre-
mental local search, the local search is performed on an ants’ partial solution. For convenience,
let us define some terminology: We denote for each ant the number of local searches applied to its
(partial) solutions by i, where i, 1 < i ≤ n, is a user defined parameter. We call MMAS-QAP
with incremental local search as MMAS-QAP(i). For example, MMAS-QAP(2) refers to the
MMAS-QAP algorithm with an incremental local search in which for each of the m ants the (par-
tial) solution is re-optimized twice; for MMAS-QAP(3) three local searches are applied. For the
sake of uniformity, we denote the original MMAS-QAP algorithm in which a single local search
is performed at the end of the solution construction by MMAS-QAP(1). We use the convention
that the local searches are applied after equal sized intervals in the solution construction. Let k
be the number of assignments ; then, in MMAS-QAP(2) local search is applied after k = 1 · ⌊n/2⌋
assignments and on the complete solutions, while in MMAS-QAP(3), local search is applied after
k = 1 · ⌊n/3⌋ and k = 2 · ⌊n/3⌋ assignments are done and once the assignment is completed.

In the local search on partial solutions, the cost difference for exchanging two facilities s and
r in the partial solution is obtained by the instance data restricted to the occupied locations and
used facilities of the current partial solution. The current partial solution is replaced if the local
search finds a better one, and the local search continues until there is no more improvement.
From this locally optimized partial solution, the particular ant continues its solution construction
process. We expect that the computation time for MMAS-QAP(i) increases with i, since more
local searches need to be applied. However, each local search applies to a smaller instance and the
final local search on the complete solution may start from an already improved solution, hence,
requiring less improvement steps; this counteracts the effect on the computation time incurred by
the increased number of local searches and the increase in the computation time per solution is
expected to be less than a factor of i.

3 Experiments

We studied the impact of incremental local search in MMAS-QAP on ten instances from QAPLIB
[10] ranging in size from n = 60 to n = 150. The tested instances fall into one of the following
groups: (i) instances with the distance and flow matrix entries generated randomly according
to a uniform distribution, (ii) instances whose distance matrix is defined as Manhattan distance
between points on a grid, and (iii) randomly generated instances in which the matrix entries are
similar to those of real-life QAP instances. We allowed 10 independent trials for each algorithm
and the code was run on a dual AMD OpteronTM244 1.75GHz processor, 2 GB RAM and 1 MB
L2-Cache. The parameter values for MMAS-QAP are set as proposed in [9] except that the value
of ρ is set to 0.1 which results in slightly better performance than the setting ρ = 0.8 proposed
in the literature. (We run additional experiments that verified that the conclusions drawn in the
following do not depend on the parameter value for ρ.) For MMAS-QAP(i), we vary the value
of i from 1 to 10 and report the solution quality obtained as the percentage deviation from the
best known solutions.

For all instances we first run MMAS-QAP(1) for 1000 iterations on each instance and mea-
sured the average time over 10 trails. This average time is then taken as the termination criterion
for all algorithms to ensure that we compare the algorithms using a same computation time. Ta-
ble 1 shows the average solution cost for all values of i as the percentage deviation from the best
known solution.

From Table 1, we can observe that the average solution cost obtained by MMAS-QAP(i),
for i ≥ 2 is worse than that of MMAS-QAP(1) for all instances; the only exception is that
MMAS-QAP(2) is better than MMAS-QAP(1) on instance tai150b. In Table 2 we give the

3



Table 1: Experimental results of MMAS-QAP(i) algorithms on several QAP instances; given is,
for each instance, the average percentage deviation from the best known solution. All algorithms
were stopped after the same computation time. Best results are in bold-face.

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10

tai60b 0.0004 0.0086 0.0335 0.0449 0.0610 0.0557 0.0428 0.0578 0.0694 0.0690

tai80a 1.2304 1.6836 2.0250 2.1809 2.3091 2.2281 2.2934 2.3209 2.3216 2.3115

tai80b 0.0204 0.0535 0.1294 0.0806 0.0932 0.1052 0.1110 0.1107 0.1176 0.1207

sko81 0.0672 0.1433 0.2556 0.2714 0.2786 0.3114 0.3215 0.3125 0.3415 0.3331

sko90 0.1376 0.2089 0.2382 0.2863 0.3469 0.3477 0.3837 0.3436 0.4042 0.4168

sko100a 0.1222 0.1888 0.2193 0.2826 0.3342 0.3517 0.3536 0.3530 0.3505 0.4477

tai100a 0.3579 0.8090 0.9702 1.2808 1.2440 1.1532 1.1214 1.0984 1.0902 1.1808

tai100b 0.0452 0.1009 0.1289 0.1655 0.2456 0.2432 0.2391 0.2540 0.2632 0.2723

tho150 0.2115 0.2909 0.3530 0.3527 0.4230 0.4336 0.4677 0.5053 0.5104 0.5344

tai150b 0.2757 0.1935 0.2858 0.2852 0.4685 0.5319 0.5184 0.6217 0.6654 0.6968

Table 2: Experimental results of MMAS-QAP(i) algorithms on several QAP instances; given is,
for each instance, and algorithm pair, the average number of iterations done in a same computation
time.

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10

tai60b 983.1 837.3 711.2 614.9 544.4 489.3 373.2 352.0 354.9 354.0

tai80a 987.7 788.9 450.2 584.3 517.2 355.1 338.8 390.9 338.9 337.9

tai80b 991.2 782.2 460.3 569.6 503.6 353.7 333.9 376.0 325.4 325.8

sko81 1082.1 696.4 768.8 482.5 444.3 419.4 399.8 361.3 417.7 323.6

sko90 1097.7 909.9 769.1 486.7 591.1 531.7 408.6 363.0 414.6 387.6

sko100a 1070.6 890.1 522.5 653.5 578.3 411.5 376.8 363.9 333.8 380.7

tai100a 909.1 757.0 426.6 561.5 501.2 349.3 318.6 309.5 279.2 327.9

tai100b 981.7 760.8 455.4 555.5 488.0 344.0 318.2 302.5 280.4 316.2

tho150 998.2 791.2 663.6 416.0 504.7 454.8 329.1 318.9 299.1 330.3

tai150b 979.1 793.1 679.6 465.4 439.0 393.4 286.4 272.3 257.7 284.5

average number of iterations that each of the algorithm variants was able to do in the computation
time that was determined as described above. As we had conjectured in the previous section, the
average cost for each final solution generated increases with i—this can be seen by the fact that by
increasing value of i, generally also the number of iterations done by MMAS-QAP(i) decreases.

Taking into account this latter observation on the number of iterations run, we could tentatively
attribute the reason for the worse performance of MMAS-QAP(i) to the fact that it could generate
less complete solutions in the same time. Naturally, the question arises what would be the case, if
all the algorithms are allowed to generate the same number of complete solutions. To answer this
question, we re-run all the MMAS-QAP(i) allowing each to perform 500 iterations. These results
are given in Table 3. As it can easily been seen, the average solution quality of MMAS-QAP(1)
for most instances is still better than that of MMAS-QAP(i) for i ≥ 2. There are only two
exceptions: instances tai80b and tai150b. This means that, in general, the usage of incremental
local search is actually causing a deterioration of MMAS-QAP’s performance, although it is
allowed much more computation time. Said in other words, incremental local search is not only
computationally expensive but also interferes negatively with the solution process of the ACO
algorithm–at least for the QAP.

One may stop here and simply report this as a negative result. However, we were wondering
as to why there may be a negative influence of incremental local search into the ACO algorithm’s
search process. A possible answer to this question is given in the next section.

4 Analysis

In this section, we try to explain why the incremental local search produces a detrimental effect
on MMAS-QAP’s performance. For motivating the main line of attack of this analysis, let us
consider first what is known about the convergence behavior of MMAS-QAP, a high-performing

4



Table 3: Experimental results of MMAS-QAP(i) algorithms on several QAP instances; given is,
for each instance, the average percentage deviation from the best known solution. All algorithms
were stopped after 500 iterations.

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10

tai60b 0.0056 0.0195 0.0435 0.0649 0.0564 0.0535 0.0583 0.0729 0.0546 0.0546

tai80a 1.2951 2.0692 2.0393 2.3263 2.3028 2.1805 2.1112 2.2939 2.2204 2.2204

tai80b 0.1287 0.1128 0.1300 0.0734 0.0907 0.0800 0.1495 0.1042 0.1021 0.1021

sko81 0.1279 0.1872 0.2463 0.2573 0.2630 0.3391 0.3224 0.3072 0.3828 0.3074

sko90 0.1391 0.2669 0.2747 0.2925 0.4189 0.3746 0.3730 0.3768 0.3370 0.4409

sko100a 0.1736 0.2115 0.2318 0.3160 0.3307 0.3867 0.3369 0.3849 0.3267 0.3757

tai100a 0.4320 0.8002 1.0031 1.2218 1.3383 1.1167 1.0470 1.0566 1.0507 1.1497

tai100b 0.0748 0.0903 0.1507 0.1397 0.2198 0.2111 0.2164 0.2397 0.2133 0.2555

tho150 0.2347 0.3456 0.3827 0.3633 0.4236 0.4384 0.4236 0.4736 0.4787 0.4615

tai150b 0.3318 0.2598 0.4174 0.3835 0.4508 0.4320 0.4678 0.5603 0.4773 0.6855

ACO algorithms. Essentially, the search process of MMAS-QAP shows a transition from an
exploration phase, which is characterized by iteration-best update and relatively high branching
factor, to an exploitation phase, where the search is directed towards a search space region whose
center is defined by the best-so-far solution seen by the algorithm. Interestingly, while in the ex-
ploration phase good quality solutions can already be found, typically the highest quality solutions
in a trial of MMAS-QAP are found when the search is in its exploitation phase–characterized
by a low branching factor and by the fact that the solutions generated by the ants are relatively
close to the best-so-far solution. In fact, MAX –MIN Ant System was designed with the explicit
intention to allow a careful transition between the exploration and exploitation phases and to
further avoid search stagnation in the exploitation phase [11, 8].

We suspected that the local changes introduced by the incremental local search disturb the
behavior of MMAS-QAP in the exploitation phase. This suspicion is based on the fact that the
local search on the partial solution does not take into account the pheromone trails and, hence,
may lead to significant changes to the partial solution. As an effect of this, the final complete
solution before the final local search phase may actually be rather far from the best-so-far solution
and, thus, hinder the exploitation phase from being effective. This effect is certainly increased
for an increased frequency of partial re-optimizations. Differently, if ants do not apply partial
re-optimization, the solutions they construct are relatively close to the best-so-far solution.

Hence, we decided to examine more carefully the variability of the generated solutions by the
various settings of i in MMAS-QAP(i). The main idea of our analysis is to examine the distance
of the complete solutions generated in the current iteration from the best-so-far solution before
and after the final application of the local search algorithm on the complete solutions. This is
done for all the 10 settings of i. Since MMAS-QAP(1) has proven to be a state-of-the-art ACO
algorithm for the QAP, we use the computed distance as a yardstick for the analysis. For our
analysis, we compute the distance d(π, π′) between two solutions π and π′ as the minimum number
of applications of 2–exchange moves that are required to convert one solution into the other one.
This distance measure reflects that deviations in the individual assignments from the best-so-far
solution can be undone by exchanging facilities between locations. Note that this distance measure
can easily be computed using a linear time algorithm [12].

To make our analysis simpler, we consider a variant of MMAS-QAP, denoted as rbMMAS-
QAP, that lets update pheromones only to the best candidate solution since the last re initialization
of the pheromones, the restart-best solution. (Hence, the best-so-far and iteration-best solutions
are not taken into account in the pheromone deposit.) To justify the usage of rbMMAS-QAP in
the analysis, we first tested whether the versions rbMMAS-QAP(i), i = 1, . . . , 10 shows the same
type of behavior as MMAS-QAP(i), using as stopping criterion again 500 iterations. Table 4
shows that this is essentially the case, although rbMMAS-QAP gives overall slightly worse results
than MMAS-QAP. Nevertheless, we can conclude that rbMMAS-QAP captures the same trend
as MMAS-QAP and that it is safe to limit the analysis to rbMMAS-QAP.

In our analysis, we compute at each iteration of rbMMAS-QAP(i), i = 1, . . . , 10, the distance

5



Table 4: Experimental results of rbMMAS-QAP(i) algorithms on several QAP instances; given is,
for each instance, the average percentage deviation from the best known solution. All algorithms
were stopped after 500 iterations.

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10

tai60b 0.0168 0.0473 0.0562 0.0620 0.0540 0.0745 0.0643 0.0638 0.0585 0.0585

tai80a 1.7958 1.9787 2.1666 2.3629 2.4193 2.1998 2.1897 2.2693 2.2188 2.2188

tai80b 0.1708 0.0952 0.0999 0.1062 0.1342 0.0987 0.1069 0.1454 0.1448 0.1448

sko81 0.1789 0.2312 0.3063 0.2773 0.3072 0.3303 0.3459 0.3134 0.3749 0.3417

sko90 0.2288 0.2835 0.3000 0.3290 0.3664 0.4189 0.3875 0.3720 0.4062 0.4620

sko100a 0.1982 0.2830 0.2665 0.3414 0.3768 0.3519 0.3353 0.3942 0.3725 0.4135

tai100a 0.6073 0.9753 0.9763 1.3606 1.3204 1.1283 1.0974 1.1031 1.0001 1.1883

tai100b 0.0938 0.1231 0.1583 0.2297 0.2368 0.2242 0.2450 0.2811 0.3014 0.3303

tho150 0.2800 0.3405 0.4061 0.3990 0.4490 0.4966 0.4540 0.4924 0.4653 0.5229

tai150b 0.3076 0.3318 0.3907 0.3681 0.4677 0.5531 0.5978 0.6605 0.5857 0.6691

between an ants’ complete solution and the restart-best solution before and after the final local
search on the complete solution has been applied. These distances are then averaged across
the m = 5 ants. We denote these two measures as d− (average distance before the final local
search) and d+ (average distance after the final local search), respectively. Figure 1 illustrates
the observed results for the values of d− and d+ obtained by rbMMAS-QAP(i), i = 1, . . . , 10,
over 500 iterations for the instance sko100a. The trend shown in these plots is representative for
all the other instances we tested. (We used Tukey’s (Running Median) Smoothing [13, 14] for
plotting the curves.)

Several important observations can be made from Figure 1. Firstly, the lowest values for d−

and d+ are reached by rbMMAS-QAP(1). The difference to the other configurations with i ≥ 2
is smallest for i = 2 but then rises quickly with i to values slightly larger than 0.8n. (Recall that
rbMMAS-QAP(2) performs best among the versions that use incremental local search, as can be
seen from Table 1.) Hence, we can conclude that incremental local search on the partial solutions
eventually leads to solutions which are very different from restart-best solution. Interestingly, for
rbMMAS-QAP(1) the values for d+ are much larger than d−, which indicates that rbMMAS-
QAP(1) can still explore a significant part of the search space, despite the fact that it converges
quickly to the exploitation phase, as indicated by the low values of d−.

Overall, these results confirm our hypothesis that the incremental local search interferes nega-
tively with the exploitation phase of the ACO algorithm and induces a too strong exploration of
the search space. For example, for rbMMAS-QAP(1) we have that d− is around 30 for instance
sko100a, while for rbMMAS-QAP(2) it increases to about 60—roughly double. Hence, already
one incremental local search that is applied after k = n/2 assignments have been done, leads to a
rather strong perturbation in the exploitation phase, that is, to solutions that are rather distant
from the restart-bets one. The raise in the values of d+ is not as strong as for d−, since it starts
from a much larger value of approximately 50; however, for rbMMAS-QAP(2) d+ is already sig-
nificantly larger than for rbMMAS-QAP(1), explaining also rbMMAS-QAP(2)’ worse behavior,
in general. As said, these general observations also hold for all other instances; detailed results
are available from http://iridia.ulb.ac.be/∼prasanna/ANTS-2006/.

Finally, we run also experiments for the incremental local search when starting from random
initial solutions. (We have chosen random initial solutions, since for the QAP no high-performing
construction heuristics are available.) We run the random restart local search algorithm for the
same average computation time as needed for MMAS-QAP(1) to perform 1000 iterations. Table
5 shows the average cost of the solution as the percentage deviation from the best known solution,
obtained by this random restart local search with different numbers of local searches performed
on the (partial) solutions. These results clearly show that for almost all instances, the usage of
the incremental local search improves the performance over the version where only once a local
search is run on a complete solutions. Hence, these results agree with the computational results
reported in the literature [3, 4, 6, 7] and indicate that the usage of incremental local search can
be, in some situations, helpful. In fact, random restart has no means to exploit the possibility

6



2
0

4
0

6
0

8
0

1
0

0 number of local search = 1

sko100a

iterations

d
is

ta
n

ce
 b

e
tw

e
e

n
 t
h

e
 a

n
ts

’ s
o

lu
tio

n
s 

a
n

d
 t
h

e
 r

e
st

a
rt

−
b

e
st

 s
o

lu
tio

n

Before Local Search(d−)
After Local Search(d+)

0 50 100 150 200 250 500

2
0

4
0

6
0

8
0

1
0

0 number of local search = 2

0 50 100 150 200 250 500

2
0

4
0

6
0

8
0

1
0

0 number of local search = 3

0 50 100 150 200 250 500

2
0

4
0

6
0

8
0

1
0

0 number of local search = 4

0 50 100 150 200 250 500

2
0

4
0

6
0

8
0

1
0

0 number of local search = 5

0 50 100 150 200 250 500

2
0

4
0

6
0

8
0

1
0

0 number of local search = 6

0 50 100 150 200 250 500

2
0

4
0

6
0

8
0

1
0

0 number of local search = 7

0 50 100 150 200 250 500

2
0

4
0

6
0

8
0

1
0

0 number of local search = 8

0 50 100 150 200 250 500

2
0

4
0

6
0

8
0

1
0

0 number of local search = 9

0 50 100 150 200 250 500

2
0

4
0

6
0

8
0

1
0

0 number of local search = 10

0 50 100 150 200 250 500

Figure 1: Experimental results of rbMMAS-QAP on instance sko100a. Each plot represents the
average distance between the ants’ solutions and the restart-best solution before and after the final
local search on a completed solution for rbMMAS-QAP(i), i = 1, . . . , 10. The stopping criterion
is set to 500 iterations.

7



Table 5: Experimental results of the random-restart local search on several QAP instances; given
is, for each instance, the average percentage deviation from the best known solution. All algorithms
were stopped after the same computation time as the algorithms in Table 1. The best results are
in bold-face.

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10

tai60b 0.1461 0.1833 0.1991 0.2210 0.1956 0.2202 0.2254 0.2298 0.1716 0.1716

tai80a 2.5402 2.5403 2.4038 2.5176 2.4891 2.2537 2.2732 2.2674 2.3156 2.3156

tai80b 0.6667 0.3876 0.6568 0.6274 0.6334 0.5372 0.6372 0.5625 0.6668 0.6668

sko81 0.7602 0.7085 0.7545 0.6219 0.6211 0.6041 0.6094 0.5591 0.6448 0.6006

sko90 0.8148 0.7860 0.7625 0.7026 0.7263 0.7559 0.7137 0.6285 0.6880 0.6734

sko100a 0.7448 0.7449 0.6419 0.6831 0.6356 0.6355 0.5878 0.6528 0.5590 0.6494

tai100a 1.4651 1.5655 1.2888 1.3980 1.4050 1.1792 1.1433 1.0761 1.0518 1.2299

tai100b 0.6754 0.6708 0.6458 0.5898 0.6056 0.5688 0.6294 0.5817 0.5809 0.5914

tho150 0.9266 0.8679 0.8999 0.8185 0.8746 0.8444 0.7996 0.7739 0.7825 0.8564

tai150b 1.1589 1.2146 1.2039 1.1491 1.234 1.1430 1.1819 1.1388 1.0972 1.0522

of learning and exploiting the most promising region of the search space. This suggests that the
usefulness of the incremental local search depends strongly on the context where it is applied and
the solution construction procedure.

5 Conclusions

Motivated by the promising results of incremental local search reported in the literature [3, 4, 6, 7],
we have investigated its behavior and performance in ACO for solving the QAP. Our computational
study has shown, however, rather poor results for this idea when integrated into an ACO algorithm.
Next, we have carried out an analysis that can explain this failure. In fact, we have shown that the
incremental local search somehow destroys the behavior of the ACO algorithm in its exploitation
phase by not allowing it to generate solutions that are rather close to the restart-best or global-best
solutions.

Certainly, our results and explanation is limited to the QAP. However, we conjecture that the
very same issue arises also in applications of ACO algorithms to other challenging combinato-
rial problems. More in general, our results also indicate that probably a more careful study of
the behavior of ACO algorithms in the exploitation phase should be done to understand, which
techniques may be more promising for improving the performance of ACO algorithms. Finally,
our results indicate that incremental local search could be useful for increasing the exploration in
convergence situations of ACO algorithms. Although this was not useful on the QAP, it may well
be that the careful, occasional addition of incremental local searches in specific situation, could
possibly result in improvements for ACO algorithms.

Acknowledgments. This research has been supported by COMP
2
SYS, a Marie Curie Early Stage Re-

search Training Site funded by the European Community’s Sixth Framework Programme under contract

number MEST-CT-2004-505079, and by the ANTS project, an Action de Recherche Concertée funded

by the Scientific Research Directorate of the French Community of Belgium. Thomas Stützle and Marco

Dorigo acknowledge support from the Belgian FNRS of which they are a Research Associate and a Research

Director, respectively.

References

[1] Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge, MA (2004)

[2] Stützle, T., Hoos, H.: Stochastic Local Search: Foundations and Applications. Morgan
Kaufmann (2005)

[3] Russell, R.: Hybrid Heuristics for the Vehicle Routing Problem with Time Windows. Trans-
portation Science 29 (1995) 156–166

8



[4] Gendreau, M., Hertz, A., Laporte, G.: New Insertion and Postoptimization Procedures for
the Traveling Salemsan Problem. Operations Research 40(6) (1992)

[5] Gendreau, M., Hertz, A., Laporte, G.: A Tabu Search Heuristic for the Vehicle Routing
Problem. Management Science 40 (1994) 1276–1290

[6] Caseau, Y., Laburthe, F.: Heuristics for Large Constrained Vehicle Routing Problems. Jour-
nal of Heuristics 5(3) (1999) 281–303

[7] Fleurent, C., Glover, F.: Improved Constructive Multistart Strategies for the Quadratic As-
signment Problem Using Adaptive Memory. INFORMS Journal on Computing 11(2) (1999)
198–204

[8] Stützle, T., Hoos, H.: MAX–MIN Ant System. Future Generation Computer Systems
16(8) (2000) 889–914

[9] Stützle, T., Dorigo, M.: ACO Algorithms for Quadratic Assignment Problem. In Corne, D.,
Dorigo, M., Glover, F., eds.: New Ideas in Optimization. McGraw-Hill, London, UK (1999)
33–50

[10] Burkard, R., Karisch, S., Rendl, F.: (http://www.opt.math.tu-graz.ac.at/qaplib/)

[11] Stützle, T., Hoos, H.H.: Improving the Ant System: A Detailed Report on the MAX–MIN
Ant System. Technical Report AIDA–96–12, FG Intellektik, FB Informatik, TU Darmstadt
(1996)

[12] Schiavinotto, T., Stützle, T.: Metrics on Permutations for Search Space Analysis. Computers
& Operations Research (In press)

[13] Tukey, J.W.: Exploratory Data Analysis. Addison-Wesley, New York (1977)

[14] Cohen, P.R.: Empirical Methods for Artificial Intelligence. MIT Press, Cambridge, MA
(1995)

9


