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Abstract- The task of approximating a non linear map-
ping using a limited number of observations, asks the data
analyst to make several choices involving the set of relevant
variables and observations, the learning algorithm, and the
validation protocol. In the case of models which are linear
in the parameters (e.g. polynomials), statistical theory and
economical cross-validat ion met hods provide fast and effec-
tive ways to support these choices. However, when pure ap-
proximation performance is at stake, a unique linear struc-
ture to cover the whole range of data, is often far from opti-
mal. Memory-based methods in contrast are well known to
considerably improve the approximation performance, since
all the regression analysis is done locally and repeated for
each new query. In this paper, we discuss the use of these
cross-validation procedures for selecting the features, the
neighbors and the polynomial degree for each prediction.
The possible automation of these selections on a query ba-
sis provides memory-based methods (generally not used in
such a flexible way) with a larger degree of adaptivity. Ex-
perimental results in time series prediction are presented.
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where L(y, f-(x, a)) is the 1oss function in a point x of the
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I .  INTRODUCTION

FUNCTION approximation consists of the estimation of
the regression function which assigns to each input II:

a number y(z) equal to the conditional expectation of the
scalar y (regression estimation problem [l]):

Y(z) = s YF(YlX)dY = E[YI4* (1)
In the classical neural approach, the problem of learning
an input-output mapping is postulated as a problem of
function estimation, that is of choosing from a given set
of parametric functions f (x, a), a E A, the one which best
approximates the unknown data distribution. The problem
of predicting the value of the unknown function at a new
point is solved in two steps: first estimating the function,
then computing the value using the estimation of the func-
tion. In this scheme one solves a relatively simple prob-
lem (estimation of the function value) by first solving a
much more difficult intermediate problem (a function esti-
mation).  Function estimation is a complex task, generally
treated as a minimization problem of a global cost function
J (risk functional) [2]  h hw ic measures the discrepancy over
the whole input space between the function underlying the
data set and
the following

the approximator f(x, QI) In general, J has
form:

J( >a= s L(Y,  f (x7  Q>)P<XT  Y> dXdY7 (2)
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input space. It is ‘well known that when the loss-function
in (2) is

JqY, f(X, 4) = (Y - fK g27 (3)
the regression function is the function which minimizes
the functional (2) (minimum mean-square error estimator).
This is essentially the perspective of the neural modeling
approach. What makes this approach complex is that only
a finite amount of data is available and that the risk func-
tional has to be replaced by an approximation (empirical
risk functional) constructed on the basis of the training
set. Vapnik [3]  showed that the minimization of the risk
functional starting from the empirical risk is an ill-posed
problem unless some a priori assumption about the func-
tional dependence is made (e.g. regularization [4]).

Memory-based methods [5] aim to solve the function ap-
proximation problem taking the opposite direction: given
that the problem of functional estimation is hard to be
solved in a generic setting, why not to try a more restricted
set of linear models and approximate the function only in
the neighborhood of the point to be predicted? The main
advantage of this approach comes from the fact that the
simple structure of these local approximators allows an ef-
fective use of well known and powerful statistical tools.
Memory-based learning turns out to be a single step ap-
proach where the whole problem is seen as a value estima-
tion instead of a function estimation problem. This method
does not build a global model of the regression function but
defers any processing of the data until a new query x* needs
to be answered and then performs a linear estimation of the
regression function value E[y]x*].  In this case the subject
of the estimation is not a function but a real value, and
the data used to perform the approximation are the avail-
able samples that fall in a neighborhood of the query point.
Like any other estimator inferred from a set of limited data,
this approximator is affected by an error. However, unlike
other approximators, this has the advantage that the as-
sessment of its reliability is a very fast process thanks to
linear cross validation or bootstrap methods. These meth-
ods make possible an iterative process which searches for
the best configuration of the estimator, adapting its struc-
ture to available data.

Another important feature of this approach is the pos-
sibility to decompose a global approximation task in more
simple local modeling tasks, where the hypothesis of lo-
cal polynomial complexity is acceptable. This gives the
data analyst the opportunity to exploit a set of theoretical
results and techniques from the field of linear statistical
analysis, otherwise useless in non linear domains. There
are many other examples in literature where the idea of
decomposition appears (e.g. regression trees [6], mixture
models [7]  and neuro-fuzzy inference systems [S] ). How-
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ever, unlike the memory-based approach, in these modular
architectures the learning process obeys a global function
estimation criterion. In this paper we will show how the
adaptive memory-based methodology is not simply a differ-
ent tool for better prediction, but a flexible methodology
to select on-line the features, the number of relevant ob-
servations and the structure of the local model. Starting
from the work of Atkeson et al. [9]  and of Cleveland [lo]  on
local weighted regression and from the one of Hastie and
Tibshirani [ll]  on classification, we propose an adaptive
methodology for non-linear data analysis where methods
and tools from linear statistics are intensively used. We
see an important field of application of this approach to
problems of time series prediction where the lack of a pri-
ori knowledge about the order (i.e. the regressors) and the
complexity of the model can be effectively managed with
a local approach. We present some experimental results
obtained in the prediction of a chaotic time series.

II. T HE A DAPTIVE  M E M O R Y- BASED ( A M B )  P A R A D I G M

Modeling from data involves integrating human insight
with learning techniques. In many real cases, the analyst
faces a situation where a limited set of data is available
and an accurate prediction is required. Often, informa-
tion about the order, the structure or the set of relevant
variable is missing or not reliable. The process of learn-
ing consists in a trial and error procedure during which
the model is properly tuned on the available data. In a
function estimation approach, the dominant criterion is
the global performance of the resulting approximator over
the whole input space: what is required to the model is
a good performance on average. Let us consider for ex-
ample an input-output mapping where the distribution of
the input is not uniform. The definition of the learning
problem as a risk minimization assumes that those areas
of the input space where the density p(x) is higher de-
serve more attention. The risk functional, in fact, weights
each prediction error L(y,  f( x, a))  according to the density
value p(x). As a consequence, the minimization procedure
is biased towards approximators which perform better on
the regions where p(x) is higher. On the contrary, in the
memory-based approach, the estimation of the value of the
unknown function is solved giving the whole attention to
the region surrounding the point where the estimation is
required. The classical non-adaptive memory-based proce-
dure consists essentially in these steps:
l for each query point x*, defining a set of neighbors, each
weighted according to some relevance criterion (e.g. the
dist ante)  ;
l choosing a regression function f in a restricted family of
parametric functions;
l estimating the local weighted regression;
l computing the regression value f(x*).
The data analyst who adopts a local regression approach,
has to take a set of decisions related to the model (e.g. the
number of neighbors, the weight function, the parametric
family, the fitting criterion to estimate the parameters).

We extend the classical approach with a method that
automatically selects the adequate configuration. To this
aim, we simply import tools and techniques from the field
of linear statistical analysis. The most important and ef-
fective of these tools is the PRESS statistic [12],  which is a
simple, well-founded and economical way to perform leave-
one-out cross validation [13]  and therefore to assess the
performance in generalization of local linear models. Due
to its short computation time which allows its intensive
use, it is the key element of our memory-based approach to
data analysis. In fact, if to each linear model, PRESS can
assign a quantitative performance, alternative of models
with different configurations can be tested and compared
in order to select the best one. This same selection strat-
egy is indeed exploited to select the training sub-set among
the neighbors, as well as various structural aspects like the
features to treat and the degree of the polynomial used as
a local approximator.

A. Adaptive feature selection

A common way to deal with time series is to use a vector
of time delayed observations (delay coordinate embedding
[l4])  to reconstruct the state space of the dynamical system
underlying the time series. Following this approach, time
series prediction consists in predicting a future value using
time delayed observations as regressors. The search for the
best set of these regressors and for their number is a major
problem that have to be faced when modeling complex time
series. While in the case of linear modeling a set of valu-
able instruments is available to deal with this problem, in
the case of non-linear modeling this problem can be solved
only a posteriori controlling how the global performance is
sensitive to the choice of the regressors. Some of the most
effective instruments that can be used in the linear case
are sequential variable selection procedures (e.g. forward
selection, stepwise  regression, backward elimination) [ 121
which search for the optimal subset of regressors, or princi-
pal component analysis (PCA) techniques which compute
optimal linear combination in order to avoid collinearity
and reduce the dimension of the problem. With AMB it
is possible to migrate these same techniques to non linear
situations. The PRESS statistic turns out to be an effec-
tive way to choose which and how many regressors to use
in order to improve the prediction.

B. Adaptive selection of the number of neighbors

Once the correct number and combination of regressors
is chosen, the analyst must search for the best local train-
ing set consisting of the most predictive set of neighbors.
Here again this selection relies on the cross-validation per-
formance computed on sets of growing cardinality. The op-
timal set will be the one which presents the best intrinsic
predictability in the leave-one-out sense. In our approach
all neighbors are weighted by a kernel function which de-
creases with the distance from the query point.
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C. Adaptive selection of the local polynomial degree: the 1.4
possibility of fractional degree

The last parameter that is tuned automatically is the de- , 2 _
’gree of the polynomial used as a local approximator. Two

alternatives have been investigated. In the first one, each 1.1- ,
possible degree, from 0 (the constant model) to a given
maximum, is evaluated on all the possible neighborhoods
using all the possible regressors combination. A second o.g- P
more sophisticated alternative considers as local approxi-
mators polynomial mixings which are polynomials of frac- ‘a8 t \: /-
tional degree [15].  A polynomial of degree p = m+c,  where ,o,7 _ L
m, is an integer and 0 < c < 1, is a linear combination of .
two polynomials, one of degree nz and the other of degree O-6-
m/ + 1, taken with weights 1 - c for the former and c for t f

.
o s _

the latter: t h.
0.4 I I I I I I

,i, ,
.:

fp = (1 - c>fm + cfrn+1 l ( 4 )

0 50 100 150 200 250 300 350 400 450 500

Also in this case, the value of p is selected by means of the Fig. 1. Mackey  Glass time series and AMB prediction (dotted line).
PRESS statistics.

D. The AMB final algorithm III. E X P E R I M E N T S

The general ideas of the approach can be summarized in
A. Without adaptation of the number of regressors

the following way: The approach has been tested on the prediction of the

1. the task of learning an input output mapping is decom- chaotic Mackey-Glass time series, a well-known benchmark

posed in a series of linear estimation problems;
in time series prediction (fig. 1). We used a training set of

2. each single estimation is treated as an optimization 500 points and a test set with an equal number of sam-

problem in the space of alternative model configurations; ples from the benchmark available on the web’. In this

3. the estimation ability of each alternative model is as- first experiment we limited to the adaptive selection of the

sessed by the cross-validation performance computed using number of neighbors and the degree of the local model.

the PRESS statistic. We predicted the value of the series at time t + 85 from
inputs at time t, t - 6, t - 12 and t - 18. We achieved a

This leads to the following optimization algorithm which Normalized RMSE equal to 0.059. One referential result
can be described in the following form using a pseudo- obtained with the RAN approach is NRMSE = 0.075 [16].
programming language:

bestPress  := Inf;
noReg is the number of regressors
for noReg  := minNoReg to maxNoReg

noNeighb is the number of neighbors
for noNeighb  := minNoNeighb  to maxNoNeighb

Deg is the polynomial degree
for Deg := 0 to maxDeg

if Press(noReg,noNeighb,Deg) < bestPress
bestPress := Press(noReg,noNeighb,Deg);
best NoRegressors  : = noReg;
bestNoNeighbors := noNeighb;
best PolyDegree  : = Deg;

end
end

end
end
Prediction : = ValueEstimation(z*,bestNoRegressors,.  . .

bestNoNeighbors,bestPolyDegree);

In fig. 2 we represent the prediction on a time window of
100 samples (diagram a), and the relative prediction square
error (diagram b). Moreover, for each of the predicted time
step we report in diagram (c) the optimal polynomial de-
gree and in diagram (d) the number of neighbors taken
in consideration in our iterative selection procedure. It is
worth noticing how the output of the method is not simply
a good prediction but a more complete information about
the behavior of the dynamical system underlying the time
series. In fig. 3 we report the relation existing between the
square error estimated in cross-validation by the PRESS
statistic (on the x-axis) and the real square error of the
prediction (on the y-axis) for the prediction of one time
step (the 382nd).  Each point in the figure represents a dif-
ferent model analyzed in the model search procedure. The
points are roughly distributed along the line y = x. We de-
note with a cross (close to x = 0, y = 0) the model chosen
by AMB and with a circle (close to x = 0.02, y = 0) the
optimal model. Although our method selects the model
represented by the point with the lowest abscissa x, while
the optimal choice should be the point with the lowest or-

In the future we will investigate more sophisticated search
techniques than just rough exhaustive methods.

‘http://legend.gwydion.cs.cmu.edu/
neural-bench/benchmarks/mackey-glass.html
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Fig. 2. Mackey Glass time series and AMB prediction (dotted line)
on a 100 samples time window (a); square error (b); polynomial Fig. 4. Square error with a fixed number of regressors (above) and

with the automatic selection procedure (below).degree (c) and number of neighbors (d) .
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Fig. 3. PRESS estimation of the square error (z-axis) vs. real square
error (y-axis).

dinate,  the PRESS procedure still selects a model among
those with the lowest real square error. This reveals how
the approach is able to have accurate and consistent pre-
dictions even in a difficult non linear configuration.

B. With adaptation of the number of regressors

Our second experiment concerns the predictions of the
same chaotic time series using a AMB models which at
each time step automatically selects the number of regres-
sors that yields the most accurate prediction. In fig. 4
we report a comparison between the square error obtained
with a fixed number of regressors and the error obtained
with the time step selection. In this case we limited tlhe

3.5 - I

3- I I I I

300 310 320 330 340 350 360 370 380 390 400
(cl

Fig. 5. Mackey Glass time series and AMB prediction with regressors
selection (dotted line) on a 100 samples time window (a); square
error (b) ; number of regressors (c) .

choice between 3 and 4 regressors. We improved the previ-
ous result by achieving a Normalized RMSE equal to 0.054.
In fig. 5 we report the prediction on the same time window
of fig. 2, and the prediction square error (diagram b). In
diagram (c) we plot the number of regressors taken into
consideration for each single prediction.

IV. C ONCLUSIONS

The utility of a model inferred from a limited set of avail-
able data can be evaluated according to different criteria.
These criteria depend on the aim underlying the analysis of
the sample. It can vary from accurate prediction to physi-
cal insight or qualitative description. The neural approach
to non-linear modeling focuses mainly on the accuracy of
the prediction which, due to the lack of effective tools for
extracting further information from the approximator, re-
mains essentially black-box. The adaptive memory-based
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learning approach, decomposing the problem into simpler
sub-problems, allows to reach a comparable if not superior
prediction performance and to exploit the flexibility asso-
ciated with the use of linear models. It also allows the
designer to obtain a more complete information about the
underlying function. This information can be essential for
the better exploitation of learning results which are useful
for control system design or for fault diagnosis.
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