
Exogenous Fault Detection

in a Collective Robotic Task

Anders Lyhne Christensen, Rehan O’Grady, Mauro Birattari, and
Marco Dorigo

IRIDIA, CoDE, Université Libre de Bruxelles
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Abstract. In robotics, exogenous fault detection is the process through
which one robot detects faults that occur in other, physically separate
robots. In this paper, we study exogenous fault detection in a collective
leader-follower task for autonomous robots. We record sensory inputs
from the robots while they are operating normally and after simulated
faults have been injected. Given that faults are simulated, we can corre-
late the flow of sensory inputs with the fault state of the robots. We use
back-propagation neural networks to synthesize fault detection compo-
nents. We show that the flow of sensory inputs is sufficient information
for performing exogenous fault detection, that is, we show that the leader
robot is capable of detecting faults in the follower robot. All results are
based on experiments with real robots.

1 Introduction

Some faults are hard to detect in the robot in which they occur. These faults
include software bugs that cause a robot to hang, sensor failures that prevent
a robot from detecting that something is wrong, and mechanical faults such as
a loose connection to a battery. In this study, we show how fault injection and
learning can be applied in order to synthesize software components for exoge-
nous fault detection in autonomous robots. We present a concrete method for
obtaining components that let one robot detect faults in collaborating robots.
The ability to perform exogenous fault detection can improve the reliability of
multi-robot systems. If one of the constituent robots fails, other robots in the
system can take corrective actions even if the failed robot is unable to detect or
communicate that it has experienced a fault.

The method relies on recording sensory data, firstly over a period of time
when the robots are operating as intended, and secondly over a period of time
when simulated hardware faults have been injected. After the data collection
phase, fault detection components in the form of back-propagation neural net-
works are synthesized through supervised learning. The method requires no spe-
cial fault detection hardware and relatively few computational resources on the
robots. The work presented in this paper is an extension of previous studies
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in which we have shown that the proposed method can be used to synthesize
endogenous fault detection components for autonomous robots [1].

Technically, a fault is an unexpected change in system function which ham-
pers or disturbs normal operation, causing unacceptable deterioration in perfor-
mance. Fault detection is a binary decision process confirming whether or not
a fault has occurred in a system. Fault detection is a single facet of the larger
objective of ensuring fault tolerance. Other aspects of achieving fault tolerance
for a system might include fault diagnosis, namely determining the type and
location of faults, and protection which comprises any steps necessary to ensure
continued safe operation of the system [2].

2 Related Work

Fault detection is based on observations of a system’s behavior. Deviations from
normal behavior can be interpreted as symptoms of a fault in the system. Several
model-based approaches have been proposed [2,3]. In model-based fault detection
some model of the system or of how it is supposed to behave is constructed. The
actual behavior is then compared to the predicted behavior and deviations can
be interpreted as symptoms of faults. A deviation is called a residual, that is,
the difference between the estimated and the observed value. As uncertainty
and noise play a significant role, techniques such as artificial neural networks
and radial basis function networks for residuals-based fault detection have been
proposed [4,5,6].

Alternative approaches relying on multi-model estimation have been studied,
see for instance [7,8]. In these studies, banks of Kalman filters are applied to track
multiple models with embedded fault states. Recently, computationally efficient
approaches for approximating Bayesian belief using particle filters1 have been
suggested as a means for fault detection and identification [9,10,11].

Systems of multiple collaborating robots have the potential to achieve a high
degree of fault tolerance. If one robot in such a system fails while performing
a task, another one can take over and complete the task. In some cases, fault
tolerance is an inherent property of the system and not handled explicitly. Lewis
and Tan [12] have, for instance, shown that their control algorithm for main-
taining geometric formations exhibits correct behavior even if one of the robots
fails. However, the fault tolerance is a consequence of the adaptive nature of
their controller design (robots attempt to maintain a virtual structure and do
not let any robots fall behind) and not of explicit fault detection, diagnosis and
protection. Implicit fault tolerance by design is, however, not generally feasible.
In most tasks, faults must be detected and handled explicitly for the system to
be fault tolerant.

Parker [13] has demonstrated that cooperating teams of robots based on the
ALLIANCE software architecture can achieve a high degree of fault tolerance.
Fault tolerance is obtained by modelling “motivations” mathematically and by
1 Particle filters are Monte Carlo methods capable of tracking hybrid state spaces of

continuous noisy sensor data and discrete operation states.
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Fig. 1. Two s-bots, sensors and actuators. An s-bot has a diameter of 120 mm, a height

of 190 mm, and weighs approximately 700 g.

adaptive task selection based on these motivations. If a robot experiences a
fault in one or more of its components and if the fault degrades performance,
the robot’s motivation for performing its current task decreases. Eventually, the
robot will switch to another task that it may still be able to perform. Alterna-
tively, another robot will discover that there is limited or no progress in the task
undertaken by the failed robot, and take over.

Other approaches, such as MURDOCH [14,15] and TraderBots [16], use ex-
plicit communication and negotiation of task allocation. In these cases fault
detection and tolerance are built into the negotiation process.

In this paper, we address the issue of how a robot can determine if a col-
laborating robot is not operating correctly. Exogenous fault detection is only
based on sensory inputs. There is no explicit communication, nor is there any
pre-specified behavior used to aid fault detection. We take techniques that we
have successfully used in the past for endogenous fault detection and apply them
to exogenous fault detection [1]. We apply a technique known as software im-
plemented fault injection (SWIFI) used in dependable systems research. The
technique is usually applied to measure the robustness and fault tolerance of
software systems [17]. In our case, we inject faults to discover how sensory read-
ings and the control signals sent to the actuators by the control program change
when faults occur.

3 The Robots and The Task

For the experiments, we use real robots known as s-bots [18] (see Fig. 1). The
s-bot platform has been used for several studies in swarm intelligence and col-
lective robotics [19,20,21]. Each s-bot is equipped with an Xscale CPU running
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Fig. 2. The software architecture.

at 400 MHz and several sensors including an omni-directional camera and in-
frared proximity sensors. Each s-bot also has a number of actuators. These in-
clude differential treels (combined tracks and wheels) and 8 sets of RGB colored
LEDs distributed around the circumference of the s-bot body. Using the omni-
directional camera, one s-bot can see the colored LEDs on other s-bots up to
50 cm away depending on the light conditions.

We have chosen a simple follow the leader task in which two robots are placed
in a 180 cm by 180 cm walled arena. One of the robots has been preassigned the
leader role, while the other has been preassigned the follower role. The leader
moves around in the environment. The follower tails the leader and tries to stay
at a distance of 35 cm. If the follower falls behind, the leader waits. During
experiments, we inject faults in the follower robot.

4 Software Architecture

An overview of the software architectures is shown in Fig. 2. The Control Pro-
grams are responsible for steering the robots. They read sensory inputs and send
control signals to the robots’ actuators. The Fault Detectors passively monitor
the flow of sensory inputs and control signals that passes to and from the Control
Programs. Faults are simulated by the SWIFI Module in the follower. When the
follower ’s Control Program sends actuator control signals, these commands pass
through the SWIFI Module. If no fault is currently being simulated the SWIFI
Module forwards all actuator control signals to the robot hardware. If a fault has
been injected, control signals to the hardware affected by the fault are discarded.
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vations from one tap.

The Fault Detector component consists of a time-delay artificial neural net-
work (TDNN). A TDNN is a feed-forward network that allows for reasoning
based on time-varying inputs without the use of recurrent connections [22,23].
In a TDNN, the input layer is logically organized into a number of groups. In
each group, the activations of the neurons are set based on observations from a
fixed distance into the past. TDNNs have been extensively used for time-series
prediction due to their ability to make predictions based on data distributed
in time. The TDNNs used in this study are normal multilayer perceptrons for
which the inputs are taken from multiple, equally spaced points in a delay-line
of past observations. Fig. 3 illustrates this concept. The current sensor inputs
and control signals are stored in a tapped delay-line, and the activations of the
neurons in the input layer are set based on data from the delay-line. The neurons
from all input groups are fully connected to the neurons in the hidden layer. The
term input group distance refers to the distance in time between adjacent input
groups. In this study, we use an input group distance of 5 control cycles (as
illustrated in Fig. 3), and TDNNs with hidden layer of 5 neurons and an input
layer with a total of 10 input groups. Each input group consists of 15 neurons
corresponding to the 15 infrared proximity sensors and 16 neurons encoding data
extracted from the omni-directional camera. Images from the camera are parti-
tioned into 16 sections and each of the 16 neurons are assigned values inversely
proportional to the distance of the closest object perceived in the corresponding
section. The image processor has been configured to detect colored LEDs. This
configuration means that the camera only detects other s-bots and not objects
like walls.
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5 Experimental Setup

A total of 60 runs on real s-bots are performed. In each run, the robots start
in perfect condition, and at some point during the run a fault is injected in
the follower. The fault is injected at a random point in time after the first 5
seconds of the run and before the final 5 seconds of the run according to a
uniform distribution. There is a 50% probability that a fault affects both treels
instead of only one of the treels, and faults of the type stuck-at-zero and stuck-
at-constant are equally likely to occur. A fault of the type stuck-at-zero means
that the affected treel effectively blocks and stops to move. A stuck-at-constant
fault means that the speed of the motor controlling a treel is set to a random
value and the motor ceases to respond to control signals sent from the control
program.

Each run consists of 1000 control cycles (equivalent to 150 seconds) and for
each control cycle the sensory inputs, control signals, and the current fault state
are recorded. The data sets are partitioned into two subsets, one consisting of
data from 40 runs, which is used for training; and one consisting of the data
from the remaining 20 runs, which is used for performance evaluation. After a
network has been trained by a batch learning back-propagation algorithm, it is
evaluated on data from one evaluation run at a time. The output of the network
is recorded and compared to the fault state.

Fault detection is a binary classification problem and, in this study, we
present results for threshold-based classification. If the TDNN outputs a value
lower than the threshold we interpret it as a no fault classification, whereas we
interpret outputs equal to or above the threshold as a fault classification. The
interpreted output is compared to the correct output and fault detectors are
scored on their latency and the number of false positives they produce.

Latency refers to the span of time from the moment a fault is injected until
it is detected. False positives refers to the number of control cycles for which a
fault detector is wrongly classifying the state as a fault. For this study, we have
chosen the threshold to be 0.75. If we were to choose a lower threshold, we would
expect a lower latency but more false positives. Similarly, if we were to choose a
higher threshold we would expect a higher latency and fewer false positives.

6 Results

Box-plots of the latency and the false positive results from the 20 evaluation
runs are shown in Fig. 4. Each box comprises observations ranging from the first
to the third quartile. The median is indicated by a bar, dividing the box into
the upper and lower part. The whiskers extend to the farthest data points that
are within 1.5 times the interquartile range. Outliers are shown as dots. Each
sample point corresponds to the results of a single evaluation run. In the figure
we have plotted results for the follower performing endogenous fault detection
and for the leader performing exogenous fault detection during the same runs.
The median latency for the follower performing endogenous fault detection is
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Fig. 4. Box-plots of the performance results using threshold-based classification for the

follower performing endogenous fault detection and for the leader performing exoge-

nous fault detection during the same runs.

14 control cycles, while the median latency for the leader performing exogenous
fault detection is 19 control cycles. This difference of 5 control cycles corresponds
to 750 ms. The median number of false positives is 5 control cycles for both
the endogenous and exogenous detection. In every trial, the fault injected was
detected.

The results indicate that the leader robot is capable of detecting faults in-
jected in the follower. Furthermore, the performance of the exogenous fault de-
tection is comparable to the performance of the endogenous fault detection per-
formed by the follower. The latency is, however, slightly higher for exogenous
fault detection.

In order to obtain a fault detector that produces fewer false positives, we
implemented a threshold-based classification scheme based on the moving av-
erage of the TDNN output value. Hence, instead of interpreting the output of
the TDNN directly, as above, a number of past values are stored, and the fault
classification is based on the average of those values. Fig. 5 shows the false pos-
itive results for the different lengths of the moving average window. For moving
average windows up to 10 control cycles, false positives occur in several trials.
For longer windows, false positives are only observed in one or two trials. When
a moving average window of length 50 is used, the exogenous fault detector
produces no false positives.

For window lengths of 20-50, false positives for the follower performing en-
dogenous fault detection occurred in one of the 20 trials. The endogenous fault
detector produced 173 false positives with a window length of 20 control cycles
and 128 false positives with a window length of 50 cycles for the trial in ques-
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Fig. 5. False positives results for moving average threshold-based classification.

tion. These results are not shown in Fig. 5, since they are outside the scale of
the figure.

When the moving average is used, the latencies are increased by the length
of the moving average window (results are not shown). Thus, introducing a
threshold-based classification scheme based on the moving average of the TDNN
output value can remove nearly all false positives, but this comes at the cost of
a higher latency.

7 Conclusion

In this study, we synthesized fault detection components for exogenous faults
using fault injection and supervised learning. Our synthesizing technique can
be used for both endogenous and exogenous fault detection. We achieved this
transparency between endogenous and exogenous faults by avoiding the use of
any explicit modelling. The method’s only requirement is that a fault must create
a detectable change in the detecting robot’s flow of sensory input. Our method
proved effective on real robots; one robot was able to detect faults injected in
another robot without the use of explicit communication or any specific behavior
written to aid fault detection.
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Many faults cannot be detected endogenously. We therefore believe that the
use of exogenous fault detection in combination with endogenous fault detec-
tion has the potential to significantly enhance the reliability and robustness of
multi-robot systems. We are currently investigating the scalability of the pro-
posed approach. One consideration is how to apply exogenous fault detection
to systems with larger numbers of robots. When multiple robots with limited
sensory range interact, it is unclear how a set of observations from one robot
should be correlated with the fault state of other robots that may or may not
be within sensory range. We are also investigating how larger numbers and a
broader range of faults can be detected.
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