
From Grammars to Parameters: Automatic
Iterated Greedy Design for the Permutation
Flow-shop Problem with Weighted Tardiness

Franco Mascia, Manuel López-Ibáñez, Jérémie Dubois-Lacoste, and
Thomas Stützle

IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium
{fmascia,manuel.lopez-ibanez,jeremie.dubois-lacoste,stuetzle}@ulb.ac.be

Abstract. Recent advances in automatic algorithm configuration have
made it possible to configure very flexible algorithmic frameworks in or-
der to fine-tune them for particular problems. This is often done by the
use of automatic methods to set the values of algorithm parameters. A
rather different approach uses grammatical evolution, where the possi-
ble algorithms are implicitly defined by a context-free grammar. Possi-
ble algorithms may then be instantiated by repeated applications of the
rules in the grammar. Through grammatical evolution, such an approach
has shown to be able to generate heuristic algorithms. In this paper we
show that the process of instantiating such a grammar can be described
in terms of parameters. The number of parameters increases with the
maximum number of applications of the grammar rules. Therefore, this
approach is only practical if the number of rules and depth of the deriva-
tion tree are bounded and relatively small. This is often the case in the
heuristic-generating grammars proposed in the literature, and, in such
cases, we show that the parametric representation may lead to supe-
rior performance with respect to the representation used in grammatical
evolution. In particular, we first propose a grammar that generates iter-
ated greedy (IG) algorithms for the permutation flow-shop problem with
weighted tardiness minimization. Next, we show how this grammar can
be represented in terms of parameters. Finally, we compare the quality
of the IG algorithms generated by an automatic configuration tool using
the parametric representation versus using the codon-based representa-
tion of grammatical evolution. In our scenario, the parametric approach
leads to significantly better IG algorithms.

Keywords: automatic algorithm configuration, grammatical evolution,
iterated greedy, permutation flow-shop problem

1 Introduction

Designing an effective stochastic local search (SLS) algorithm for a hard optimi-
sation problem is a time-consuming, creative process that relies on the experience
and intuition of the algorithm designer. Recent advances in automatic algorithm

2 F. Mascia, M. López-Ibáñez, J. Dubois-Lacoste, T. Stützle

configuration have shown that this process can be partially automated, thus
reducing human effort. This allows algorithm designers to explore a larger num-
ber of algorithm designs than it was previously feasible and, by relying less on
human intuition, to explore many design choices that would have never been
implemented and tested because they were regarded as supposedly poor design
alternatives.

Nowadays, methods for automatic algorithm configuration are able to handle
large parameter spaces composed of both categorical and numerical parameters
with complex interactions. This capability has enabled researchers to automat-
ically configure flexible frameworks of state-of-the-art SAT solvers [7], and to
automatically design multi-objective algorithms [9]. The development of these
flexible frameworks follows a top-down approach, in which a framework for gen-
erating SLS algorithms is built starting from algorithmic components already
known to perform well for the problem at hand.

Instead, we consider here a bottom-up approach, where an algorithm is assem-
bled from simple components without a priori fixing how they could be combined.
There are two recent works that follow such a bottom-up approach. Vázquez-
Rodŕıguez and Ochoa [13] automatically generate by using genetic programming
an initial order for the NEH algorithm, a well-known constructive heuristic for
the PFSP. More recently, Burke et al. [2] automatically generate iterated greedy
(IG) algorithms for the one-dimensional bin packing problem. Both works in-
stantiate algorithms bottom-up from a context-free grammar.

In this paper, we propose to use a parametric representation, using cate-
gorical, numerical and conditional parameters, to instantiate algorithms from a
grammar. In particular, we show how grammars can be represented in terms of a
parametric space, using categorical, numerical and conditional parameters. Such
parametric representation exploits the abilities of automatic configuration tools,
which are mentioned above. Moreover, the proposed parametric representation
avoids known disadvantages of GE, such as low fine-tuning behaviour due to the
low locality of the operators used by GE [10]. We apply our proposed approach to
the automatic generation of IG algorithms for the permutation flow-shop prob-
lem (PFSP). The PFSP models many variants of a common kind of production
environment in industries. Because of its relevance in practice, the PFSP has at-
tracted a large amount of research since its basic version was formally described
decades ago [6]. Moreover, with the exception of few special cases, most variants
of the PFSP are NP-hard [5], and, hence, tackling real-world instances often
requires the use of heuristic algorithms. For these reasons, the PFSP is an im-
portant benchmark problem for the design and comparison of heuristics. When
tackling new PFSP variants, the automatic generation of heuristics can save a
significant effort.

Finally, we also compare our proposed parametric representation with the
codon-based representation used in GE. Our experiments show that, for the
particular grammar considered in this paper, the parametric representation pro-
duces better heuristics than the GE representation.

From Grammars to Parameters: Automatic IG Design for the PFSP 3

This paper is structured as follows. In Section 2 we introduce the PFSP
problem we tackle. Section 3 presents the methodology we use and describes the
mapping from a grammar to a parametric representation. Next, we present our
experimental results in Section 4 and we conclude in Section 5.

2 Permutation Flowshop Scheduling

The flowshop scheduling problem (FSP) is one of the most widely studied schedul-
ing problems, as it models a very common kind of production environment in
industries. The goal in the FSP is to find a schedule to process a set of n jobs
(J1, . . . , Jn) on m machines (M1, . . . ,Mm). The specificity of flowshop environ-
ments is that all jobs must be processed on the machines in the same order, i.e.,
all jobs have to be processed on machine M1, then machine M2, and so on until
machine Mm. A common restriction in the FSP is to forbid job passing between
machines, i.e., to restrict to solutions that are permutations of jobs. The result-
ing problem is called permutation flowshop scheduling problem (PFSP). In the
PFSP, all processing times pij for a job Ji on a machine Mj are fixed, known in
advance, and non-negative. In what follows, Cij denotes the completion time of
a job Ji on machine Mj and Ci denotes the completion time of a job Ji on the
last machine, Mm.

In many practical situations, for instance when products are due to arrive at
customers at a specific time, jobs have an associated due date, denoted here by di
for a job Ji. Moreover, some jobs may be more important than others, which can
be expressed by a weight associated to them representing their priority. Thus,
the so-called tardiness of a job Ji is defined as Ti = max{Ci−di, 0} and the total
weighted tardiness is given by

∑n
i=1 wi · Ti, where wi is the priority assigned to

job Ji.
We consider the problem of minimizing the total weighted tardiness (WT).

This problem, which we call PFSP-WT , is NP-hard in the strong sense even for
a single machine [3]. Let πi denote the job in the i-th position of a permutation
π. Formally, the PFSP-WT consists of finding a given job permutation π as to

minimize F (π) =

n∑
i=1

wi · Ti

subject to Cπ0j = 0 j ∈ {1, . . . ,m},
Cπi0 = 0 i ∈ {1, . . . , n},
Cπij = max{Cπi−1j , Cπij−1}+ pij ,

i ∈ {1, . . . , n} j ∈ {1, . . . ,m}.
Ti = max{Ci − di, 0} i ∈ {1, . . . , n}.

(1)

We tackle the PFSP-WT by means of iterated greedy (IG), which has been
shown to perform well in several PFSP variants [11]. Our goal is to automatically
generate IG algorithms in a bottom-up manner from a grammar description. The
next section explains our approach in more detail.

4 F. Mascia, M. López-Ibáñez, J. Dubois-Lacoste, T. Stützle

3 Methods

The methodology used in this work is the following. Given a problem to be tack-
led, we first define a set of algorithmic components for the problem at hand,
avoiding as much as possible assumptions on which component will contribute
the most to the effectiveness of the algorithm or which is the best way of combin-
ing the components in the final algorithm. Once the building blocks are defined,
we use tools for automatic algorithm configuration to explore the large design
space of all possible combinations and select the best algorithm for the problem
at hand.

The size and complexity of the building blocks is set at a level that is below
a full-fledged heuristic, but still allows us to easily combine them in a modular
way to generate a very large number of different algorithms. This is in contrast
with the more standard way of designing SLS algorithms for a given problem,
in which the algorithm designer defines the full-fledged heuristics and leaves out
some parameters to tune specific choices within the already defined structure.

In this paper, the building blocks and the way in which they can be combined
will be described by means of context-free grammars. Grammars comprise a set
of rules that describe how to construct sentences in a language given a set of
symbols. The grammar discussed in this paper generates algorithm descriptions
in pseudo-code, the actual grammar used in the experiments is equivalent to the
one presented in this paper but generates directly C++ code.

3.1 The Grammar for PFSP

The PFSP has been the object of many studies over the past decades, and it is
still attracting a significant amount of research nowadays. Recent studies [11, 4]
have shown that many high-performing algorithms to tackle the PFSP (whatever
is the objective to optimize) are based on the iterated greedy (IG) principle. IG
consists of the iterative partial “destruction” of the current solution, and its
“reconstruction” into a full solution afterwards. The term “greedy” comes from
the fact that the reconstruction of the solution is often done using a greedy
heuristic. In the case of the PFSP, the destruction phase removes a number of
jobs from the schedule. The reconstruction phase inserts these jobs back in the
solution, to obtain again a complete solution.

In this work, we define a grammar for generating IGs for the PFSP in which
we allow several underlying heuristic choices. State-of-the-art IG algorithms for
the PFSP from the literature always apply a local search step to each full solu-
tion after the reconstruction phase. However, such local search step would hide
performance differences when using different choices for the other components of
IG. Our goal is not to generate a state-of-the-art IG for the PFSP, but rather to
study different methods for the automatic generation of algorithms, and, thus,
in this paper we do not apply any local search step.

Fig. 1 shows the grammar for generating the main step of the IG algo-
rithm in Backus–Naur Form (BNF). In BNF, production rules are in the form
<non-terminal> ::= expression . Each rule describes how the non-terminal

From Grammars to Parameters: Automatic IG Design for the PFSP 5

<program> ::= procedure ig_step()
<select_jobs>
<select_more>
remove_selected()
sort_removed_jobs(<order_criteria> <tie_breaking>)
insert_jobs(insert_criteria)

<select_more> ::= <select_jobs> <select_more>
| ""

<select_jobs> ::= select_jobs(<heuristic>, <num>, <low_range>, <high_range>)

<heuristic> ::= priority | position | sumProcessingTimes | dueDate
| tardiness | waitingTime | idleTime

<num> ::= [0..100]

<low_range> ::= [0..99]

<high_range> ::= [0..100]

<tie_breaking> ::= , <order_criteria> <tie_breaking>
| ""

<order_criteria> ::= order(<comparator>, <heuristic>)

<comparator> ::= "<" | ">"

<insert_criteria> ::= weightedTardiness
| weightedTardiness, sumCompletionTimes
| weightedTardiness, sumCompletionTimes, weightedEarlyness
| weightedTardiness, weightedEarlyness
| weightedTardiness, weightedEarlyness, sumCompletionTimes

Fig. 1. Grammar that describes the rules for generating IG algorithms for the PFSP.

symbol on the left-hand side can be replaced by the expression on the right-
hand side. Expressions are strings of terminal and/or non-terminal symbols. If
there are alternative strings of symbols for the replacement of the non terminal
on the left-hand side, the alternative strings are separated with the symbol “|”.

In Fig. 1, the non-terminal symbol <program> defines the main step of the
algorithm. First one or more jobs are marked for removal from the current solu-
tion, then the selected jobs are removed and sorted, and finally the solution is
reconstructed inserting the jobs back in the current solution.

Implementing an IG algorithm for the PFSP requires to make some design
choices. In particular, (i) which jobs and how many are selected for removal, (ii)
in which order the jobs are reinserted; and (iii) which criteria should be optimized
when deciding the insertion point. All the possibilities that we consider in this
paper are described by the grammar in Fig. 1. Next, we explain these components
in detail.

Heuristics for the selection of jobs. The selection of jobs for removal (rule
<select_jobs>) consists in the application of one or more selection rules. In
particular this is done with the function select_jobs(<heuristic>, <num>,

<low_range>, <high_range>) that selects <num> jobs from the current solution

6 F. Mascia, M. López-Ibáñez, J. Dubois-Lacoste, T. Stützle

according to the rule specified in <heuristic>. Each rule computes a numerical
value for each job Ji, which may be one of the following properties:

– Priority: the weight wi that defines its priority;
– DueDate: its due date di;
– SumProcessingTimes: the sum of its processing times,

∑m
j=1 pij ;

– Position: its position in the current solution;
– Tardiness: its tardiness in the current solution;
– WaitingTime: its waiting time between machines computed as

∑m
j=2 Cπij −

Cπij−1 − pπij ;
– IdleTime: the time during which machines are idle because the job is still

being processed on a previous machine, that is,
∑m
j=1 Cπij − Cπi−1j − pπij ,

for i 6= π1.

After the heuristic values are computed, they are normalized in the fol-
lowing way: the minimum for each heuristic value among all jobs is normal-
ized to 0, the maximum one to 100, and values in-between are normalized lin-
early to the range [0, 100]. Only jobs whose normalized heuristic value is be-
tween a certain range [low, high] are considered for selection. The range is com-
puted from the values given by the grammar as high = <high_range> and
low = <low_range> · high/100. Finally, from the jobs considered for selection,
at most <num> percent (computed as <num> · n/100) of the jobs are actually se-
lected, where n is the total number of jobs. An example of selection rule would
be select_jobs(DueDate,20,10,50), which means that, from those jobs that
have a normalized due date in the range [10, 50], at most 0.2 ·n jobs are selected.

Rules for ordering the jobs. The function that sorts jobs for re-insertion
(sort_removed_jobs) is composed by one or more order criteria (<order_criteria>),
where each additional order criterion is used for breaking ties. Each order crite-
rion sorts the removed jobs by a particular heuristic value, in either ascending
or descending order, according to <comparator>. The result is a permutation of
the removed jobs according to the order criteria.

Rules for inserting the jobs. In this paper we consider the minimization of
the weighted tardiness of the solution, thus, it is natural to optimize primarily
this objective when choosing the position for re-inserting each job. However, it
often happens that the weighted tardiness is the same for any insertion position
of a job (in particular, when the solution is partial: all jobs can easily respect
due dates and therefore the weighted tardiness is 0).

Thus, we consider the possibility of breaking ties according to additional
criteria, namely, the minimization of the sum of completion times and the max-
imization of the weighted earliness, computed as

∑n
i=1 wi · (di − Ci). Both are

correlated with the minimization of the weighted tardiness and allow us to differ-
entiate between partial schedules with zero weighted tardiness because none of
the jobs is tardy. In total, we consider five alternatives for the insertion criteria
(<insert_criteria>), corresponding to breaking ties with any combination of
either, none or both sum of completion times and weighted earliness.

From Grammars to Parameters: Automatic IG Design for the PFSP 7

Table 1. Parametric representation of the grammar in Fig. 1

Parameter Domain Condition

select jobs1 {Priority, Position, SumProcessingTimes, DueDate,
Tardiness, WaitingTime, IdleTime}

num1 [0,100]
low range1 [0,99]
high range1 [0,100]
select jobs2 {Priority, Position, SumProcessingTimes, DueDate,

Tardiness, WaitingTime, IdleTime, ""}
num2 [0,100] if select jobs2 6= ""
low range2 [0,99] if select jobs2 6= ""
high range2 [0,100] if select jobs2 6= ""
.
select jobsi {Priority, Position, SumProcessingTimes, DueDate,

Tardiness, WaitingTime, IdleTime, ""} if select jobsi−1 6= ""
numi [0,100] if select jobsi 6= ""
low rangei [0,99] if select jobsi 6= ""
high rangei [0,100] if select jobsi 6= ""
order criteria1 {Priority, Position, SumProcessingTimes, DueDate,

Tardiness, WaitingTime, IdleTime}
comparator1 {"<", ">"}
order criteria2 {Priority, Position, SumProcessingTimes, DueDate,

Tardiness, WaitingTime, IdleTime, ""}
comparator2 {"<", ">"} if order criteria2 6= ""
.
order criteriaj {Priority, Position, SumProcessingTimes, DueDate,

Tardiness, WaitingTime, IdleTime, ""} if order criteriaj−1 6= ""
comparatorj {"<", ">"} if order criteriaj 6= ""
insert criteria {"WaitingTime",

"WaitingTime, SumCompletionTimes",
"WaitingTime, SumCompletionTimes,

WeightedEarlyness",
"WeightedEarlyness, WeightedEarlyness",
"WaitingTime, WeightedEarlyness,

SumCompletionTimes"}

3.2 From Grammars to Parameters

To tune the algorithms with a tool for automatic algorithm configuration, we
need to define the process of instantiating a grammar as a choice between al-
ternative parameter settings. Table 1 is a possible parametric representation
of the grammar given in Fig. 1. We now explain in detail how the parametric
representation was obtained.

First, rules that do not contain alternatives do not require a parameter.
Second, numeric terminals, such as <num>, <low_range> and <high_range> in
Fig. 1 can be naturally represented by numerical parameters with a defined
range. Third, rules with alternative choices are represented as categorical pa-
rameters. This is especially natural in the case of rules that consist only of
alternative terminals, such as <insert_criteria>.

The only difficulty appears if the same rule can be applied more than once,
for example, rules <select_jobs> and <tie_breaking>. In such a case, each
application requires its own parameter. Some of these rules might be applied
an infinite number of times, and, thus, they might seem to require an infinite
number of parameters. However, when generating algorithms from grammars,
such rules are never applied more than a small number of times. We use this

8 F. Mascia, M. López-Ibáñez, J. Dubois-Lacoste, T. Stützle

consideration and explicitly limit the number of parameters that describe such
rules; thus, in this way we also limit the length of the generated algorithm.

Converting rules that can be derived an unbounded number of times is the
non trivial case, and we will explain it here with an example. Assume we want
to map the following rule to a set of categorical parameters:

<select_jobs> ::= <a_job> | <a_job> <select_jobs>

<a_job> ::= criterion1 | criterion2

What is expressed by the rule is that a valid program contains a list of at
least one criterion. Suppose we want to limit the number of rule-applications
to five, then the rule could be converted into five categorical parameters with
possible values criterion1 or criterion2. This mapping leads to exactly five
criteria. To have at most five, the parameters should consider also the empty
string among the possible values. The corresponding grammar would be the
following:

<select_jobs> ::= <a_job> <a_job> <a_job> <a_job> <a_job>

<a_job> ::= criterion1 | criterion2 | ""

In order to have at least one job, the first parameter should not have the
empty string among the possible values. This would more directly map to the
following equivalent grammar:

<select_jobs> ::= <a_job> <further_jobs>

<further_jobs> ::= "" | <a_job> <further_jobs>

<a_job> ::= criterion1 | criterion2

Table 1 shows the mapping of Fig. 1 to parameters. Both rules <select_jobs>
and <order_criteria> can be applied up to i and j times respectively. More-
over, each parameter used in those rules has to be duplicated for each possible
application of the rules.

3.3 From Grammars to Sequences of Integers

How to search for the best algorithm in the design space defined by the gram-
mar and how to represent the sequence of derivation rules that represent an
algorithm is the goal of different methods in grammar based genetic program-
ming (GBGP) [10]. Among the GBGP techniques proposed in the literature, we
consider recent works in grammatical evolution (GE) [2].

In GE, the instantiation of a grammar is done by starting with the <program>
non-terminal symbol, and successively applying the derivation rules in the gram-
mar, until there are no non-terminal symbols left. Every time that a non-terminal
symbol can be replaced following more than one production rule, a choice has
to be made. The sequence of specific choices made during the derivation, which
leads to a specific program, is encoded in a sequence of integers.

This linearisation of the derivation tree, leads to a high decoupling between
the sequence of integers and the programs being generated. For example, when

From Grammars to Parameters: Automatic IG Design for the PFSP 9

a derivation is complete and there are still numbers left in the sequence, these
numbers are discarded. Conversely, if the derivation is not complete and there are
no numbers left in the sequence, the sequence is read again from the beginning.
This operation is called wrapping and is repeated for a limited number of times.
If after a given number of wrappings the derivation is not complete, the sequence
of strings is considered to lead to an invalid program. Moreover, since the integers
are usually in a range which is bigger than the possible choices for the derivation
of a non terminal, a modulo operation is applied at each choice.

In GE, the sequences of integers are used as chromosomes in a genetic algo-
rithm that is used to derive the best algorithm for a given problem. The high
decoupling between the programs and their representation, has it drawbacks
when used within a genetic algorithm. The decoupling translates to non locality
in the mutation and crossover operators [10]. Wrapping operations are clearly
responsible of this decoupling, but even without wrapping, the way in which an
algorithm is derived from a grammar and the sequence of integer values leads
to non locality in the operation. In fact, since the integer values are used to
transform the left-most non terminal symbol, a choice in one of the early trans-
formations can impact on the structure of the program being generated and on
the meaning of all subsequent integers in the sequence. Therefore since a mu-
tation on one integer in the sequence (a codon) impacts on the meaning of all
the following codons, one-bit mutations in different positions of the individual
genotype have impacts of different magnitude on the phenotype of the individ-
ual. For the same reason the offspring of two highly fit parents is not necessarily
composed of highly fit individuals. On the contrary a one-point cross-over of the
best individuals in the population could lead to individuals whose genotype can
not be translated to any algorithm, because of the upper-bound on the wrap-
ping operations. But, regardless of the specific issues when used in a genetic
algorithm, we are interested to see if this representation presents similar draw-
backs also when used with a tool for automatic algorithm configuration. In fact,
this linearisation of the grammar, can easily be used within a tool for algorith-
mic configuration by mapping all codons to categorical parameters. The choice
here between integer and categorical parameters is due to the high non linear
response between the values of the codons and the algorithm they are decoded
into.

Both the parameters and the sequence of codons limit the length of the
algorithms that can be generated. In fact, a grammar can represent an arbitrarily
long algorithm, but in practice the length is limited by the number of parameters
in one case, and in the other case by the number of possible wrapping operations.

4 Experimental Results

4.1 Experiments

The automatic configuration procedure used in this work is irace [8], a publicly
available implementation of Iterated F-Race [1]. Iterated F-Race starts by sam-
pling a number of parameter configurations uniformly at random. Then, at each

10 F. Mascia, M. López-Ibáñez, J. Dubois-Lacoste, T. Stützle

iteration, it selects a set of elite configurations using a racing procedure and the
non-parametric Friedman test. This racing procedure runs the configurations
iteratively on a sequence of (training) problem instances, and discards config-
urations as soon as there is enough statistical evidence that a configuration is
worse than the others. After the race, the elite configurations are used to bias
a local sampling model. The next iteration starts by sampling new configura-
tions from this model, and racing is applied to these configurations together
with the previous elite configurations. This procedure is repeated until a given
budget of runs is exhausted. The fact that irace handles categorical, numerical
and surrogate parameters with complex constraints makes it ideal to instantiate
algorithms from grammars in the manner proposed in this paper.

Benchmark Sets. We generated two benchmark sets of PFSP instances: 100
instances of 50 jobs and 20 machines (50x20), and 100 other instances of 100 jobs
and 20 machines (100x20). These two sizes are nowadays the most common ones
in the literature to evaluate heuristic algorithms on various PFSP variants. The
processing times of the jobs on each machine are drawn from a discrete uniform
distribution U{1, . . . , 99} [12]. The weights of the jobs are generated at random
from U{1, . . . , 10}, and each due date di is generated in a range proportional to
the sum of processing times of the job Ji as: di =

⌊
r ·
∑m
j=1 pij

⌋
, where r is a

random number sampled from the continuous uniform distribution U(1, 4).

Experimental Setup. We compare the quality of the heuristics generated by
irace when using either the grammar representation used by GE (irace-ge)
or the parametric representation given in Table 1 (irace-param). In irace-ge

an algorithm is derived from the grammar by means of 30 codons, which are
mapped to 30 integer parameters that can assume values in the range [0, 100].
For the parametric representation given in Table 1, we need to specify the num-
ber of times the select_jobs and order_criteria rules are applied (i and j,
respectively). Large values give more flexibility to the automatic configuration
tool to find the best heuristics, however, they also enlarge the space of potential
heuristics. We study three possibilities: irace-param5, which uses i = 5, j = 3;
irace-param3, which uses i = 3, j = 3, and irace-param1, which uses i = 1,
j = 1. The first variant is larger than what we expect to be necessary, and its
purpose is to test if irace can find shorter heuristics than the maximum bounds.
The purpose of the last variant is to verify that more than one application per
rule is necessary to generate good results.

Each run of irace has a maximum budget of 2 500 runs of IG, and each run
of IG is stopped after 0.001 · n ·m seconds.

Using the same computational budget, we also consider two additional meth-
ods that generate heuristics randomly, to use as a baseline comparison. These
methods generate 250 IG heuristics randomly, run them on 10 randomly selected
training instances and select the heuristic that obtains the lowest mean value.
Method rand-ge uses the grammar representation, while method rand-param

uses the parametric representation.

From Grammars to Parameters: Automatic IG Design for the PFSP 11

● ●●

●

●

● ● ●

irace−ge

irace−param1

irace−param3

irace−param5

rand−ge

rand−param

20 40 60 80

50x20 family

RPD

●

●

●

●

irace−ge

irace−param1

irace−param3

irace−param5

rand−ge

rand−param

4 6 8 10

100x20 family

RPD

Fig. 2. Mean relative percentage deviation (RPD) obtained by the heuristics generated
by each tuning method. Results are given separately for the heuristics trained and
tested on 50x20 instances and on 100x20 instances.

Each method (irace-ge, irace-param5, irace-param3, irace-param1, rand-ge,
rand-param) is repeated 30 times with different random seeds for each bench-
mark set, that is, in total, each method generates 60 IG heuristics. The training
set used by all methods are the first 90 instances of each size. A grammar equiv-
alent to the one in Fig. 1 is used to generate directly C++ code, which is in turn
compiled with GCC 4.4.6 with optimization level -O3. Experiments were run on
a single core of an AMD Opteron 6272 CPU (2.1 GHz, 16 MB L2/L3 cache size)
running under Cluster Rocks Linux version 6/CentOS 6.3, 64bits.

4.2 Results

For assessing the quality of the generated heuristics, we run them on 10 test
instances (that are distinct from the ones used for the training), repeating each
run 10 times with different random seeds. Next, we compute the relative per-
centage deviation (RPD) from the best solution ever found by any run for each
instance. The RPD is averaged over the 10 runs and over the 10 test instances.

Figure 2 compares the quality of the heuristics generated by the four methods
described above on each test set for 50x20 and 100x20 benchmark sets. For each
method, we plot the distribution of the mean RPD of each heuristic generated
by it. In both benchmark sets, irace-param5 and irace-param3 obtain the best
heuristics. The heuristics generated by irace-param1 are typically worse than
those generated by irace-ge.

Pairwise comparisons using the Wilcoxon signed rank test indicate that all
pair-wise differences are statistically significant with the only exception being the
pair rand-param and irace-param1. Moreover, we compare the different meth-
ods using the Friedman test in Table 2. Both irace-param5 and irace-param3

are ranked much better than irace-ge, thus confirming the superiority of the
parameterised representation in our case studies.

12 F. Mascia, M. López-Ibáñez, J. Dubois-Lacoste, T. Stützle

Table 2. Comparison of the methods through the Friedman test on the two bench-
mark sets. ∆Rα=0.95 gives the minimum difference in the sum of ranks between two
methods that is statistically significant. For both benchmark sets, irace-param5 and
irace-param3 are clearly superior to the other methods.

Family ∆Rα=0.95 Method (∆R)

50x20 265.55 irace-param5 (0), irace-param3 (453), irace-ge (1574.5),
rand-param (3706.5), irace-param1 (3976), rand-ge (4705)

100x20 262.85 irace-param3 (0), irace-param5 (474.5), irace-ge (2106),
irace-param1 (4214.5), rand-param (4380), rand-ge (4917)

When analysing the heuristics generated by each method, we observe that
both irace-ge and rand-ge generate on average around three <select_jobs>

rules and no more than 2.23 <order_criteria> rules. On the other hand,
irace-param5 and rand-param generate on average more than 4.5 <select_jobs>
rules and more than 2.5 <order_criteria> rules. This suggests to us that the
GE-based representation has trouble generating programs with as many rules
as the parametric representation. The results obtained by irace-param1 and
irace-param3 suggest also that at least three rules are necessary to obtain
good results. In terms of the particular heuristics generated, we observe that
most heuristics contain a rule that selects jobs according to idle time. Perhaps
more surprising is that the most common order criteria for sorting removed
jobs is by position. On the other hand, there is no clear winner among the
insert_criteria methods, which suggests that breaking ties in some particu-
lar order is not advantageous. A complete analysis of the heuristics is not the
purpose of this paper, but our results indicate that the heuristics generated by
irace are quite different from what a human expert would consider when design-
ing a similar algorithm.

5 Conclusions

The main conclusion from our work is that existing automatic configuration tools
may be used to generate algorithms from grammars.

Defining algorithmic components to be combined in an SLS algorithm presents
several advantages over the design of a full fledged heuristic, where some design
choices are left to be tuned automatically. Most importantly, less intuition, and
therefore less bias of the designer goes in the definition of the separate blocks
with respect to the classical top-down approach. But there are also more practi-
cal advantages of following a bottom-up strategy. In fact, every instantiation of
the grammar is a minimal SLS algorithm designed and implemented to have a
very specific behaviour. Less programming abstractions are needed, and a sim-
pler code may be optimised more easily by the compilers. Even the parameters
become constant values in the source code, and there is no need to pass them to
various parts of the algorithm. On the contrary, when following a top-down ap-
proach, the designer tackles the hard engineering task of designing a full-fledged

From Grammars to Parameters: Automatic IG Design for the PFSP 13

framework where all possible combinations of design choices have to be defined
beforehand. This leads to a reduced number of possible combinations with re-
spect to a modular bottom-up approach, and also to the added complexity of
intricate conditional expressions required to instantiate only the parts of the
framework needed to express a specific algorithm.

We have shown that it is possible to represent the instantiation of the gram-
mar by means of a parametric space. The number of parameters required is
proportional to the number of times a production rule can be applied, and,
hence, our approach is more appropriate for grammars where this number is
bounded and not excessively large. It is an open research question for which
kind of grammars the number of parameters required to represent applications
of production rules becomes prohibitively expensive and other representations
are more appropriate. Nonetheless, the grammar used in this work is similar in
this respect to others that can be found in the literature, and, hence, we believe
that grammars, where production rules are to be applied only a rather limited
number of times are common in the development of heuristic algorithms.

From our experimental results, the heuristics generated by irace when using
the parametric representation achieve better results than those generated when
using the GE representation. This indicates that the parametric representation
can help to avoid disadvantages of grammatical evolution such as a low fine-
tuning behaviour due to a low locality of the used operators. Furthermore, our
approach is not limited to irace and it can be applied using other automatic
configuration tools, as long as they are able to handle categorical and conditional
parameters.

In future work, we plan to compare our approach with a pure GE algorithm,
which is the algorithm used in previous similar works. Moreover, our intention
is to test the proposed method on different grammars and benchmark problems
to investigate its benefits and limitations.

Acknowledgments. This work was supported by the META-X project, an Action

de Recherche Concertée funded by the Scientific Research Directorate of the French

Community of Belgium. Franco Mascia, Manuel López-Ibáñez and Thomas Stützle

acknowledge support from the Belgian F.R.S.-FNRS, of which they are postdoctoral

researchers and a research associate, respectively. Jérémie Dubois-Lacoste acknowl-

edges support from the MIBISOC network, an Initial Training Network funded by the

European Commission, grant PITN–GA–2009–238819. The authors also acknowledge

support from the FRFC project “Méthodes de recherche hybrids pour la résolution de

problèmes complexes”. This research and its results have also received funding from the

COMEX project within the Interuniversity Attraction Poles Programme of the Belgian

Science Policy Office.

References

1. Balaprakash, P., Birattari, M., Stützle, T.: Improvement strategies for the F-
race algorithm: Sampling design and iterative refinement. In: Bartz-Beielstein, T.,

14 F. Mascia, M. López-Ibáñez, J. Dubois-Lacoste, T. Stützle

Blesa, M.J., Blum, C., Naujoks, B., Roli, A., Rudolph, G., Sampels, M. (eds.) Hy-
brid Metaheuristics, Lecture Notes in Computer Science, vol. 4771, pp. 108–122.
Springer, Heidelberg, Germany (2007)

2. Burke, E.K., Hyde, M.R., Kendall, G.: Grammatical evolution of local search
heuristics. IEEE Transactions on Evolutionary Computation 16(7), 406–417 (2012)

3. Du, J., Leung, J.Y.T.: Minimizing total tardiness on one machine is NP-hard.
Mathematics of Operations Research 15(3), 483–495 (1990)

4. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: A hybrid TP+PLS algorithm
for bi-objective flow-shop scheduling problems. Computers & Operations Research
38(8), 1219–1236 (2011)

5. Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop
scheduling. Mathematics of Operations Research 1, 117–129 (1976)

6. Johnson, D.S.: Optimal two- and three-stage production scheduling with setup
times included. Naval Research Logistics Quarterly 1, 61–68 (1954)

7. KhudaBukhsh, A.R., Xu, L., Hoos, H.H., Leyton-Brown, K.: SATenstein: Auto-
matically building local search SAT solvers from components. In: Boutilier, C.
(ed.) Proceedings of the Twenty-First International Joint Conference on Artificial
Intelligence (IJCAI-09). pp. 517–524. AAAI Press/International Joint Conferences
on Artificial Intelligence, Menlo Park, CA (2009)

8. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package,
iterated race for automatic algorithm configuration. Tech. Rep. TR/IRIDIA/2011-
004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)

9. López-Ibáñez, M., Stützle, T.: The automatic design of multi-objective ant colony
optimization algorithms. IEEE Transactions on Evolutionary Computation 16(6),
861–875 (2012)

10. Mckay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y., O’Neill, M.: Grammar-based
genetic programming: a survey. Genetic Programming and Evolvable Machines
11(3-4), 365–396 (Sep 2010)

11. Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the per-
mutation flowshop scheduling problem. European Journal of Operational Research
177(3), 2033–2049 (2007)

12. Taillard, É.D.: Benchmarks for basic scheduling problems. European Journal of
Operational Research 64(2), 278–285 (1993)

13. Vázquez-Rodŕıguez, J.A., Ochoa, G.: On the automatic discovery of variants of
the NEH procedure for flow shop scheduling using genetic programming. Journal
of the Operational Research Society 62(2), 381–396 (2010)

