
Proceedings of the 10th Annual Water Distribution Systems Analysis Conference WDSA2008, Van Zyl, J.E.,
Ilemobade, A.A., Jacobs, H.E. (eds.), August 17-20, 2008, Kruger National Park, South Africa.

PARALLEL OPTIMISATION OF PUMP SCHEDULES
WITH A THREAD-SAFE VARIANT OF EPANET TOOLKIT

M. López-Ibáñez1, D.T. Prasad2 and B. Paechter3

1Centre for Emergent Computing, School of Engineering and the Built Environment,

Napier University, Edinburgh UK; email: m.lopez-ibanez@napier.ac.uk

2Centre for Emergent Computing, School of Engineering and the Built Environment,
Napier University, Edinburgh UK; email: p.tumula@napier.ac.uk

3Centre for Emergent Computing, School of Computing,

Napier University, Edinburgh UK; email: b.paechter@napier.ac.uk

Abstract

The optimisation of pump operations in water distribution networks is an ongoing research topic
motivated by the great energy savings that a careful scheduling of pumps may achieve. State-of-the-art
approaches often combine an optimisation algorithm, such as Evolutionary Algorithms, and full hydraulic
simulation. Despite the advances in optimisation techniques and hardware performance, the time
required to obtain a near-optimal schedule is still measured in hours. Multiple CPUs are increasingly
used to parallelise tasks that require a high computation time. In fact, parallel optimisation algorithms
are widely present in the literature. On the other hand, hydraulic simulators that support parallel
computation are scarce. The most popular research simulator, EPANET, was not designed with
concurrency in mind. In this paper, a new thread-safe variant of the EPANET Toolkit is proposed. As an
application example, we propose a parallel variant of an Ant Colony Optimisation (ACO) algorithm for
optimal pump scheduling in water distribution networks.. The thread-safe EPANET library is combined
with the parallel ACO algorithm to achieve reduced computation time in a multi-core computer.
Experimental results show that an initial computation time close to 2 hours may be reduced to less than
half an hour without sacrificing the quality of the results. The number of ants is also identified as a
parameter that influences execution time in the parallel ACO approach proposed in this paper.

1. INTRODUCTION

From high-performance supercomputers accessible to researchers, to the new generation of multi-core
personal computers and laptops, parallel computers are becoming increasingly prevalent nowadays.
Parallel computation may reduce the time required to solve a problem. However, our tools need to be
adapted in order to take advantage of it. In the context of the problem of finding an optimal schedule of
pumps in a water distribution network, the tool may be a combination of an optimisation algorithm and a
hydraulic simulator. The optimisation algorithm generates potential schedules of pumps, while the
hydraulic simulator evaluates those schedules to calculate its cost and identify violations of system and
performance constraints. Although a hydraulic simulator may require just a few seconds to perform an
extended period simulation of a particular pump schedule, finding a near-optimal schedule typically
requires the evaluation of thousands of different schedules. Some optimisation algorithms, such as
Evolutionary Algorithms and Ant Colony Optimisation (ACO), are particularly well-suited for parallel
execution, since, at each iteration, they generate a population of candidate solutions that can be
independently evaluated. However, one of the most popular research simulators, the EPANET Toolkit
(Rossman, 1999), was not designed with parallelism in mind. In this paper we explain the implementation

of a thread-safe variant of the EPANET Toolkit, which involves a more object-oriented design, allowing
concurrent multiple simulations within the same application to be performed. This thread-safe variant
allows a program to execute multiple simulations in concurrent “threads”, which are lightweight
processes within the same computer program. The performance benefits of this thread-safe variant of
EPANET Toolkit are tested by combining it with an Ant Colony Optimisation (ACO) algorithm.
Previously published research shows that this ACO algorithm obtains good results when compared to
other techniques, such as Evolutionary Algorithms, for the pump scheduling problem (López-Ibáñez et
al., 2008). However, as other algorithms (Atkinson et al., 2000; van Zyl et al., 2004), it requires a long
computation time for large real-world networks. We propose a modification of this ACO algorithm to
take advantage of multiple CPUs by creating a number of threads that concurrently simulate pump
schedules and return the results to the main ACO algorithm. The simulation of the schedules is carried out
using the new thread-safe EPANET Toolkit.

2. LIMITATIONS OF EPANET TOOLKIT FOR PARALLEL ALGORITHMS

The EPANET Toolkit (Rossman, 1999) is an open-source C library that provides an application
programming interface (API) for hydraulic and water quality simulations. An optimisation algorithm
would call certain functions of EPANET to load a network description, modify the schedule of the pumps,
run an extended period simulation and collect information such as the energy consumption of the pumps,
tank levels and pressure values. Figure 1 shows the algorithmic schema that a hypothetical sequential
optimisation algorithm would follow when interacting with EPANET. Among other functions, EPANET
allows an application to load a network instance (ENopen), obtain information about the network
(ENgetcount), assign schedules to pumps (ENsetpattern), and run extended period simulations
(ENopenH, ENinitH, ENrunH, ENnextH, ENcloseH). The simple and straightforward interface is
probably one of the reasons why EPANET is widely used for research. However, some aspects of the
design of EPANET make difficult its use in parallel applications.

First, the complete status of a particular simulation cannot be easily retrieved and saved. That is, we
cannot simply make a copy of a running simulation, then start a new one and, once the new one is
finished, restart the first one. In fact, the implementation of the library keeps most of its internal
information on global variables that are dynamically allocated with no encapsulation at all. Moreover,
data structures related to a particular simulation are often lumped together with data concerning the
network description, which typically never changes during the simulation. This lack of encapsulation
means that the status of a particular simulation cannot be isolated from another different simulation.

The second issue that precludes the use of EPANET in parallel algorithms is that most API functions are
not reentrant. A reentrant function only depends on its arguments and it doesn't hold any internal state. It
neither calls non-reentrant functions. Therefore, it can be re-entered while it is running. This does not
imply thread-safety by itself. If a reentrant function modifies its arguments and multiple threads call the
function with the same arguments, there will be a problem of data synchronization. However, a non-
reentrant function called by multiple threads will not execute correctly even if the arguments are not
shared among threads. In order to take advantage of parallel execution of multiple simulations, the
functions called during simulation must be reentrant.

Two main refactoring efforts were undertaken to enable parallelism in EPANET. First, data structures
related to a hydraulic simulation were encapsulated within a simulation object, thus multiple simulations
can be created and modified concurrently. There are already types in EPANET for pumps, tanks and other
elements. However, these objects contain both data that corresponds to the description of the network,
such as pump shut-off head and tank maximum volume, and data that is dynamically calculated during
simulation, such as pump energy usage and tank head. Thus an important step in our refactoring effort

was the separation of these two kinds of data. Simulation data is encapsulated into a new type of object
ENsimulation_t. This was not the only new type that was created during refactoring. Other internal
structures were also encapsulated within objects because these new types will also help us to make crucial
EPANET functions reentrant.

Figure 1. Example of optimisation algorithm using EPANET Toolkit

The second refactoring task was the review of all EPANET functions, identifying those which are
required in order to perform concurrent hydraulic simulations and converting them into reentrant
functions. Since a reentrant function should only call other reentrant functions, the conversion proceeded
from the API functions down to the internal functions used only within EPANET. In the original
EPANET code, a function would depend on some internal state, reading and writing global variables, thus
the same function cannot be executed by multiple threads. A reentrant variant works on a simulation
object which is passed as an argument to the function. Hence, two threads can execute the same function
concurrently as long as they use different simulation objects.

Figure 2 shows an example of an optimisation algorithm using the new thread-safe variant of EPANET.
For our purposes, it is not necessary that two threads are able to concurrently execute all EPANET
functions on the same data. In fact, we don't even need all functions to be reentrant, since there is no need
in a parallel optimisation algorithm to execute those functions in parallel. An example would be
ENopen(), which is responsible for reading the network description from an input file. This function
only needs to be called once. By restricting ourselves to our objective of enabling parallel hydraulic
simulation, we obviate the incorporation to the EPANET library of synchronization mechanisms, such as
locking and mutual exclusion, that would be required otherwise. As well, this avoids new dependencies in
order to build and use the EPANET library. We do not negate that future developments of EPANET may
incorporate these characteristics. Nevertheless, as we shall see in the next sections, the current approach is
sufficient to implement state-of-the-art optimisation algorithms that make use of parallelism to reduce
their execution time.

Figure 2. An example of optimisation algorithm using the new thread-safe version of EPANET

3. PARALLEL RANDOM SEARCH

In order to assess the potential of the new thread-safe version of EPANET, we run a parallel random
search. This random search algorithm simply generates a number of random pump schedules and
evaluates them. After reaching a maximum of evaluations, it returns the schedule that generated the
lowest electrical cost without violating any constraint. The parallel random search evaluates schedules in
parallel by using a number of threads. A candidate schedule of the pumps is assigned to each thread,
which evaluates the schedule by performing a hydraulic simulation. As soon as one thread finishes the
evaluation of a solution, a new random solution is generated and assigned to it. Therefore, a thread does
not wait for other threads to finish.

We apply the random search algorithm to the Richmond network instance (Atkinson et al., 2000; van Zyl
et al., 2004). The Richmond network is a real water distribution network located in the United Kingdom.
The network comprises 948 links, 836 nodes, 7 pumps, 6 tanks and one reservoir. The efficacy of the
algorithm in terms of solution quality is of no interest here. Our only goal is to study how much the
execution time is reduced by increasing the number of threads in a multi-core computer. We are also
interested in the algorithm speedup, which is defined as:

Sp=
T 1

T p
 (1)

where Sp is the speedup, p is the number of processors, T1 is the time required by the sequential algorithm
and Tp is the time of the parallel algorithm with p processors. The concept of speedup indicates how well
a parallel algorithm scalates with the number of processors. Ideal speedup occurs when Sp = p.
Conversely, an ideal parallel execution time can be calculated, which corresponds to the execution time of
the parallel algorithm that result in ideal speedup.

Figure 3 shows the wall-clock time required for 8,000 evaluations of the random search algorithm in a
4-CPU machine (2 dual-core AMD64 Opteron 275, 2.2 GHz and 64KB/1MB of cache memory per core)
running GNU/Linux. The algorithm is implemented in C and uses POSIX threads (Kerrisk, 2005). With
one thread the algorithm is sequential and only makes use of one CPU. In this case, Fig. 3 shows that the
runtime for the 8,000 evaluations is close to one hour. By using two threads, the load is shared between
two CPUs and therefore, the computation time is halved. For 4 or more threads, the speedup obtained is
practically ideal, that is, close to 4. Therefore, there is little to no overhead in the parallel implementation
of the EPANET library with respect to the sequential version.

Admittedly, the random search algorithm discussed here is of little practical interest. The next step is to
perform the same experiment in a state-of-the-art optimisation algorithm, where a smaller speedup is
expected due to the sequential parts of the algorithm.

Figure 3. Runtime in seconds for random search algorithm

4. PARALLEL ACO FOR THE PUMP SCHEDULING PROBLEM

Ant Colony Optimisation (ACO) (Dorigo and Stützle, 2004) is an optimisation technique that mimics the
behaviour of real ants when finding the optimal path between food and their nest. ACO has been
successfully applied to both the design of water distribution networks (Maier et al., 2003) and the
optimisation of pump schedules in water distribution networks (López-Ibáñez et al., 2008). In the context
of the pump scheduling problem, the ACO algorithm proposed by López-Ibáñez et al. (2008) obtained
state-of-the-art results. However, computation time was still high (over one hour). Our proposal in this
section is to apply parallelism to this algorithm in such a way that the behaviour of the algorithm stays the
same but, in the presence of multiple CPUs, the computation time can be notably reduced.

At every iteration of ACO, a fixed number of artificial ants iteratively construct candidate solutions to a
problem. Each ant constructs a solution by stochastically adding solution components to its partial
solution. The probability of an ant choosing a particular solution component is influenced by numerical
information called pheromone, which is associated to each solution component.. After being constructed,
each solution is evaluated to calculate its objective function cost and possible constraint violations.. The
ant that constructed the best solution is allowed to deposit pheromone along its path. That is, the
pheromone information associated to solution components that are part of the best solution is increased.
Thus, in subsequent iterations, those solution components will have a higher probability of being chosen
by an ant to complete a partial solution. This is a very general schema of the ACO framework. However,
it suffices to describe how parallelism can be introduced in an ACO algorithm.

In typical ACO algorithms, the number of ants is a parameter that does not change during runtime.
Moreover, it is frequent that, after each ant constructs one solution, all solutions must be evaluated before
updating the pheromones. Ants evaluate their solutions sequentially as shown in Fig. 4. However, these
evaluations can be performed in parallel by using as many threads as the number of ants. Therefore, the
maximum speedup will be limited by the number of ants. However, the number of ants, ranging from 10
to a few hundreds, is typically larger than the number of CPUs available in a multi-core computer, so this
is not a limitation in practice. Assuming the number of CPUs is smaller than the number of ants and, in
order to maximise the speedup, we must take into account the fact that. some schedules may require more
simulation time than others. This may be due to several factors, such as the time required to find a

solution to the hydraulic equations. As well, system constraints, such as pressure constraints, may be
violated early into the simulation, and, thus, the schedule would be considered infeasible without
requiring a complete simulation. Whatever the reason, the fact is that some schedules will require more
computation time than others and, hence, depending on the assignment of schedules to threads, some
threads will take considerably more time to finish. The effect can be minimised by making the assignment
dynamic. That is, instead of equally distributing the solutions among the threads, one solution is assigned
to each thread and the rest of solutions are assigned as threads finish evaluating previous solutions. A
higher ratio of solutions per thread would also tend to minimise the impact of particularly long
simulations. Figure 5 shows a timeline of the execution of one iteration of the parallel ACO algorithm
using 3 threads. In this example, ant 5 is assigned to the third thread because the other threads are still
busy evaluating the other ants' solutions.

Another issue that affects the maximum speedup is the time required by the sequential code, which, by
definition, is not reduced by using a higher number of parallel threads. If the stopping criteria of ACO are
a maximum number of evaluations or a time limit, a smaller number of ants would increase the number of
iterations of the algorithm. This, in turn, increases the time required by the sequential part of the
algorithm.

Figure 4. Execution schema of sequential ACO

Figure 5. Execution schema of parallel ACO using 3 threads

5. EXPERIMENTS WITH PARALLEL ACO USING THREAD-SAFE EPANET

We empirically test the benefits of the parallel ACO approach described above. The underlying ACO
algorithm is the one described by López-Ibáñez et al. (2008). This algorithm is modified to incorporate
the parallel evaluation of solutions by dynamically assigning solutions to a number of threads. This
algorithm is linked to the new thread-safe version of EPANET proposed in this paper. The goal of our
empirical study is to analyse the performance, in terms of wall-clock time, of the algorithm. The
performance in terms of solution quality is not considered here because the parallel variant generates the
same sequence of solutions as the sequential ACO algorithm. In other words, given the same parameters,
the quality of solutions generated by both algorithms is the same and only the computation time is smaller
in the parallel variant. Our objective is to determine how much computation time is reduced by the use of
multiple concurrent threads. In the previous section, we argued that the number of ants may have some
effect on computation time. Thus, several values for the number of ants are tested.

Following the work by López-Ibáñez et al. (2008), we apply the parallel ACO algorithm to the
optimisation of pump schedules in the Richmond network and the algorithm is stopped at 8,000
evaluations. Experiments are performed on the same 4-CPU machine described above. The
implementation of the parallel ACO algorithm uses the C language and POSIX threads (Kerrisk, 2005).
We conduct several runs of ACO with different number of ants (5, 10, 20, 40, 80) and different number of
threads (1, 2, 3, 4, 5, 6).

The left plot in Fig. 6 shows the wall-clock time taken by ACO for each combination of parameters, while
the plot on the right gives the corresponding speedup. The left plot shows that the sequential ACO
(corresponding to using 1 thread) requires almost 2 hours of computation time. The differences in
computation time for the sequential case are explained by the different sequence of solutions generated
when using different number of ants. As explained above, for the same number of ants, the same sequence
of solutions is generated independently of the number of threads. However, different number of ants will
generate different results and, thus, there will be variations in the computation time. On the other hand,
the speedup for each value of the number of ants is calculated with respect to the computation time
required when using 1 thread and the same number of ants. Therefore, variations in the time required by
the sequential algorithm do not translate into variations in the speedup. Thus, it is an interesting result that
the speedup decreases with the number of ants. This indicates that parallelism is better exploited by using
a high number of ants. The explanation for this result was already given in the previous section. The
higher ratio of ants to threads allows a better utilization of the multiple CPUs and minimises the impact of
schedules that require particularly long simulation time. We also hinted that a low number of ants will
increase the time spent on the non-parallelised parts of ACO. However, our tests showed that less than 10
seconds of computation time are spent on these parts of the algorithm independently of the number of ants
used. Thus, differences in the time spent on the sequential parts of the algorithm cannot have a significant
influence on the observed differences in speedup. The overall, conclusion is that, in the parallel ACO
algorithm, a higher number of ants reduces computation time. This is an encouraging result because, as
reported by López-Ibáñez et al. (2008), the ACO algorithm obtains the best schedules, in terms of quality,
when using a high number of ants.

Figure 6. Runtime in seconds (left) and speedup (right) of ACO algorithm

6. CONCLUSIONS AND FURTHER WORK

We have discussed the limitations of EPANET for parallel computing. Thereby, we have proposed a
thread-safe version of EPANET that can be used for the implementation of parallel optimisation
algorithms for water engineering problems. We tested the new library on the problem of optimal pump
scheduling in water distribution networks. In particular, we modified a state-of-the-art ACO algorithm to
take advantage of multiple CPUs. The resulting parallel ACO algorithm shows significant savings in
computation time when using 4-CPUs: from almost two hours to slightly less than half an hour. The
performance in terms of quality is not affected by our modifications and the algorithm generates the exact
same schedules. Moreover, from our experiments we conclude that using a large number of ants and more
threads than CPUs usually gives the shortest computation time. The reduced time can be beneficial in
several ways. In real-world applications, it will provide a faster response when an engineer is designing,
testing or operating a water distribution network. As well, it enables to tackle larger and more complex
networks that would require excessive computation time with a non-parallel approach. Researchers may
also take advantage of the thread-safe EPANET, which does not depend on any parallel paradigm or
implementation, to perform massive experimental tests on high-performance computers.

The experimental code of the thread-safe version of EPANET developed during this work is available at
http://sbe.napier.ac.uk/~manuel/epanetlinux and we would like to encourage researchers to use it and
improve it. Further research should apply the thread-safe EPANET to other optimisation algorithms, such
as evolutionary algorithms, more elaborated parallel ACO approaches, and alternative parallelization
techniques. Closely related to the pump scheduling problem are water quality problems, which can be
also evaluated through EPANET. Water quality simulation requires even longer execution times, thus the
benefits of extending EPANET to handle water quality simulation in parallel are potentially greater.
Therefore, further developments should extend the thread-safe variant of EPANET to be useful for other
optimisation problems.

Acknowledgement. This work was carried out under the HPC-EUROPA project (RII3-CT-2003-
506079), with the support of the European Community - Research Infrastructure Action under the FP6
“Structuring the European Research Area” Programme.

7. REFERENCES

Atkinson, R., van Zyl, J.E., Walters, G.A., and Savic, D.A. (2000) “Genetic algorithm optimisation of

level-controlled pumping station operation”. In Water network modelling for optimal design and
management, Centre for Water Systems, Exeter, U.K., 79–90.

Dorigo, M., and Stützle, T. (2004) Ant Colony Optimization, MIT Press.
Kerrisk, M. (2005) “pthreads – POSIX threads” Section 7 of Linux Programmer's Manual.

<http://www.linux-man-pages.org/man7/pthreads/> (accessed May 15, 2008).
López-Ibáñez, M., Prasad, T.D., and Paechter, B. (2008) “Ant colony optimisation for the optimal control

of pumps in water distribution networks”. Journal of Water Resources Planning and Management,
ASCE, (In press).

Maier, H.R., Simpson, A.R., Zecchin, A.C., Foong, W.K., Phang, K.Y., Seah, H.Y., Tan, C.L. (2003)
“Ant colony optimization for design of water distribution systems”. Journal of Water Resources
Planning and Management, ASCE, 129(3), 200–209.

Rossman, L.A. (1999) “The EPANET Programmer’s Toolkit for analysis of water distribution systems”.
Proceedings of the Annual Water Resources Planning and Management Conference, ASCE, Reston,
USA.

van Zyl, J.E., Savic, D.A., and Walters, G.A. (2004) “Operational optimization of water distribution
systems using a hybrid genetic algorithm”. Journal of Water Resources Planning and Management,
ASCE, 130(2),160–170.

