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Abstract. A key challenge, perhaps the central challenge, of multi-
objective optimization is how to deal with candidate solutions that are
ultimately evaluated by the hidden or unknown preferences of a human
decision maker (DM) who understands and cares about the optimization
problem. Alternative ways of addressing this challenge exist but perhaps
the favoured one currently is the interactive approach (proposed in vari-
ous forms). Here, an evolutionary multi-objective optimization algorithm
(EMOA) is controlled by a series of interactions with the DM so that
preferences can be elicited and the direction of search controlled. Multi-
criteria decision-making (MCDM) has a key role to play in designing and
evaluating these approaches, particularly in testing them with real DMs,
but so far quantitative assessment of interactive EMOAs has been lim-
ited. In this paper, we propose a conceptual framework for this problem
of quantitative assessment, based on the definition of machine decision
makers (machine DMs), made somewhat realistic by the incorporation of
various non-idealities. The machine DM proposed here draws from ear-
lier models of DM biases and inconsistencies in the MCDM literature.
As a practical illustration of our approach, we use the proposed machine
DM to study the performance of an interactive EMOA, and discuss how
this framework could help in the evaluation and development of better
interactive EMOAs.

Keywords: machine decision makers, artificial decision makers, MCDM,
interactive EMO, performance assessment

1 Introduction

Good introductions to the current state of research in interactive evolutionary
multi-objective optimization algorithms (iEMOAS) [3, 10, 21] indicate that sev-
eral important issues remain to be tackled when combining methods from multi-
criteria decision making (MCDM) and evolutionary multi-objective optimization
(EMO). We think that a most fundamental one is that few interactive approaches
have been evaluated in a quantitative way, in particular in a way that would re-
veal how effective and efficient they are at finding a solution the decision-maker
(DM) finds satisfactory or preferred. More than this, we think that quantitative



assessment of methods involving decision-making remains controversial3, and
this controversy has perhaps led to a position where it is standard to propose
new methods, and to justify them on theoretical grounds, but not to test them
in a way that reveals practical properties. Testing is difficult (and controversial)
because of the need for a DM who interacts with the system (and cares about
the result), and the fact that DMs are all different [6, 27]. Nevertheless, there
is ongoing research pursuing the goal of quantitative assessment by means of
empirical analysis [7, 16]. In one of the first works pursuing a theoretical quan-
titative analysis, Brockhoff et al. [5] derived bounds on both the runtime and
the number of queries to the DM for two different local-search based EMOAs,
under the simplifying assumption that the DM would be able to answer a query
whenever the EMOA had an incomparable pair of solutions to choose between.
A common criticism of such quantitative analysis is that they rely on strongly
simplifying assumptions about human DMs.

Simulating human DMs is not an easy task and most work in MCDM has
focused on how to model and elicit the DM’s preferences. Few works have con-
sidered the simulation of human factors and other non-idealities of the decision-
making process. Kornbluth [17] incorporates “unsureness” of the DM as a range
of values of the utility function for which the DM cannot make a decision. Mor-
gan [19] describes the development of an even more realistic model to simulate
expert decision-making in dynamic and time-critical environments (e.g., air com-
bat); yet, the model itself is not fully described and its applicability to other con-
texts remains unclear. Perhaps the most extensive simulation of DM biases and
other non-idealities has been conducted by Stewart [22,23,24], who studied how
the ranking of efficient solutions is affected by these non-idealities. Nonetheless,
the usual approach when evaluating interactive EMOAs in the recent literature
is to add random noise to the DM’s preferences [7, 16].

The step which we propose (and begin to investigate here) beyond recent
studies is to use more realistic machine decision makers, and to perform a more
detailed and multi-factorial analysis of the relationships between performance,
DM satisfaction (i.e., finding and recommending a solution close to the ideal one
the DM would choose), DM biases, and the EMO/MCDM interactive approach.

This paper is structured as follows. Section 2 presents our proposed concep-
tual framework for quantitative assessment of interactive multi-objective opti-
mization. In particular, we propose the concept of machine DMs as a problem-
and preference-independent framework for the simulation of realistic DMs. Sec-
tion 3 describes a possible instantiation of our framework based on previous
work from the EMO and MCDM literature. The goal of this instantiation is not
only to serve as an example, but also to show how variations of the human non-
idealities can have strong and surprising effects on the behavior of an interactive
EMOA. Towards this goal, we present in Section 4 experimental results that
confirm these effects. Finally, Section 5 discusses in more depth related work

3 This is apparent from several discussions at the Dagstuhl series of seminars concerned
with MCDM and EMO [1].



and the context of our proposal within the ongoing effort to combine MCDM
and EMO approaches.

2 A conceptual framework of Machine Decision Making
in Interactive Multi-objective Optimization

One of the difficulties when comparing interactive EMOAs is that competing
algorithms not only differ in their interaction style and the preference models
they can handle, but also on the underlying MOEA that ultimately provides
the alternatives that are considered by the DM. Thus, it is difficult to assess
whether any observable differences are due to one or another aspect, or their
precise combination. The other major difficulty, as discussed above, is how to
simulate a realistic DM in a way that allows us to understand the influence that
human biases and other non-idealities have on the behavior of iEMOAs.

In order to overcome the above difficulties, we propose a conceptual frame-
work for the quantitative analysis of iEMOAs. The architecture of our proposed
framework is shown in Figure 1. It is composed of three main modules: a machine
decision maker, an interactive module and an EMOA. Traditionally, research on
interactive EMOAs has focused on the combination of the two latter compo-
nents and considered the machine DM as a preference function, perhaps with
some added noise.

Let us assume a multi-objective optimization problem with m objectives, and
let z = (z1, . . . , zm) ∈ Rm represent an objective vector. Moreover, let us assume
that there is an ideal preference function U(z) ∈ R that must be maximized in
order to satisfy the DM. Then, in our proposed framework, the machine DM
simulates a true preference function U(·), but in addition it simulates several
biases that distort the expression of the true preference function. As a result,
the interaction module does not have access to the true preference function and
instead it interacts (either directly or indirectly) with the resulting imperfect
preference function Û(·). Another characteristic of the proposed framework is
that the machine DM may also distort the true set of objectives (the true criteria
z ∈ Rm) such that they are different from the criteria optimized by the EMOA
(the modeled criteria ẑ ∈ Rm′

). The rationale for this is that the way the DM
sees the problem is not necessarily the way that the EMOA is able to optimize
it. If both non-idealities are present, they are combined such that the imperfect
preference function is evaluated on the modeled criteria.

A particular instantiation of each module can be defined by setting their
parameters (the parameter layer in Fig. 1). An instantiation of the framework
can then be applied to a given preference function and optimization problem,
and the effect of different parameter settings can hopefully help us to identify
general effects on the performance of various interactive EMOAs. Thus, the main
goal of the proposed framework is to enable a factorial analysis, where the effect
of the different modules can be analyzed separately and independently from a
particular preference function and optimization problem being tackled.
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Fig. 1. A conceptual framework for the quantitative assessment of iEMOAs. The frame-
work comprises three modules: the machine decision maker, the EMOA, and the in-
teraction approach, which mediates between the other two. The parameter layer (top)
encapsulates the settings of each module to be controlled, which enables experiments
in a range of scenarios to be conducted. One goal of this framework is to generalize over
the actual DM’s preferences (true preference) and the actual optimization problem at
hand (true criteria). Moreover, although the EMOA interacts with the DM via the
interaction module, the problem being optimized by the EMOA (modeled criteria) is
not necessarily identical to the problem seen by the machine DM (true criteria).

3 An example instantiation of our framework

Rather than proposing our own interactive EMOA (iEMOA) here, we chose to
recast previous work as an instantiation of our proposed framework. This allows
us to re-analyze results from the literature in a new light, while also showing
how we can combine advanced iEMOAs with previous studies in MCDM.

The EMO Algorithm. The EMO algorithm used here is BC-EMOA [2], which
is a variant of NSGA-II that learns the DM’s preference function using support
vector ranking (SVR).

The Interaction Module. BC-EMOA offers several alternatives for interac-
tion. Here we consider the one recommended by the authors, which is based
on periodically presenting a set of solutions to the DM, who must rank them
according to her preferences. This means that, when the interaction module is
active, the EMOA algorithm does not have direct access to the preference values.

The Machine DM. The machine DM used in this work follows the simulation
of non-idealities proposed by Stewart [22]:

– Omitted objectives. From the m objectives considered by the DM, q < m
objectives are not known, that is, they are not modeled by the iEMOA. This
may be due to a failure to identify relevant objectives when modeling the
problem. The m − q objectives (ẑk, k = 1, . . . ,m − q) that are known are
selected randomly with a probability proportional to their true weights.



– Mixed objectives. The objectives modeled might actually correspond to
the aggregation of two or more of the objectives internally considered by the
DM. The machine DM simulates this “mixing” by making the m− q known
objectives a combination of two true objectives such that ẑk = (1− γ)zck +
γzck+1

, where γ ∈ [0, 1) is called the mixing parameter, and ck is the position
of objective k in the random selection described above (the position for not
selected objectives does not matter).

– Imperfect preference function. Instead of the true preference function
U(z), the machine DM uses a transformed function Û(ẑ), which is similar
to the true preference function except that
• the q objectives that are not modeled are always set to the same value,
• and the addition of Gaussian noise N(0, σ2), where σ is a parameter of

the machine DM.

4 Experimental Analysis

4.1 Experimental Setup

In order to assess the impact of the non-idealities and compare our results with
those reported in the literature, we use similar parameters for BC-EMOA as
in the original paper [2], that is, the algorithm runs for 500 generations, with a
population of 100 individuals, and the standard crossover and mutation operators
of NSGA-II. After the first 200 generations, the algorithm presents 10 solutions
to the machine DM, who must rank them according to her preferences (either
the true preference function or the imperfect one). This interaction occurs at
most three times, with 20 generations between each interaction.

In the experimental analysis, we compare the best solution returned by three
variants of the algorithm:

– G, or the gold standard variant [2], uses the true utility function U(z) di-
rectly without any interaction. The MOEA optimizes the true criteria z.

– M, or the modeled variant, uses the imperfect utility function Û(ẑ) directly
without any interaction. In addition, the MOEA uses the modeled criteria ẑ
instead of the true criteria z. When q = 0, γ = 0 and σ = 0, then Û(ẑ) and
U(z) are equal, thus G and M are equivalent.

– I, or the interactive variant, interacts with the machine DM as described
above. The machine DM uses the imperfect utility function to rank solutions
and the MOEA optimizes the modeled criteria.

As for the machine DM parameters, we consider all combinations of the
following settings: m − q ∈ {0, 1, 2}, γ ∈ {0.0, 0.05, 0.1, 0.2} and σ ∈ {0.0, 0.05,
0.1, 0.2}, which are in the range of those considered by Stewart [22].

As a simple benchmark problem suite, we consider DTLZ1, DTLZ2, DTLZ6
and DTLZ7 [11] with m = 5, 7 objectives and n = 2m variables. As for the true
preference function, although in principle any arbitrary additive value function
could be used [22], for simplicity, we consider here a machine DM with a linear



scalarizing function and three different sets of randomly generated weights. The
application of the machine DM described above to such a preference function is
straightforward.

We repeat each run 10 times with different random seeds, but in order to
reduce variance, we use the same set of 10 seeds for all the variants compared.
Since some of the variants are equivalent, they will produce the same results.

We assess the results according to normalized true utility value U(·) of the
most preferred solution found computed as follows. For a given problem and
preference function, we compute the maximum and minimum values of the true
preference function ever found over all runs of the algorithms, then we normalize
the true preference values corresponding to the most preferred solution returned

by each run to the interval [0, 1], as U ′(z) = (U(z)−Umin)
(Umax−Umin)

, such that 0 corresponds

to the worst value and 1 to the best one.

4.2 Experimental Results

We present the results in terms of plots (e.g., Figure 2) of the mean U ′ for each
of the three variants G, M and I described above. Each point corresponds to
the mean value of the 10 runs for each of the three preference settings. The error
bars denote a 95% confidence interval around the mean.

Figure 2 shows the results of omitting objectives (parameter q) without noise
or mixing objectives for all problem instances with m = 5 (left) and m = 7
(right) objectives. When no objective is omitted (q = 0), the variants G and M
are equivalent. As soon as we omit one or two objectives, there is a significant
drop in the normalized preference value of the solutions found by M and I, which
for q = 2 becomes more than two times worse for some problems. Interestingly,
the difference between I and M often decreases for larger q. This is explained by
the fact that by dropping objectives, learning the imperfect preference function
becomes easier, despite the fact that the imperfect function is further away from
the true one.

Figure 3 shows the results of mixing objectives, where the degree of mixing is
controlled by parameter γ. The similar values obtained by G and M suggest that
γ = 0.1 is not high enough to produce a noticeable effect. On the other hand,
further increasing γ up to 0.2 produces an effect that is problem-dependent: In
the case of DTLZ2, it makes more difficult for the interactive approach I to
produce as good preferred solution as either G or M, whereas in the case of
DTLZ7 and m = 5, the value γ = 0.2 produces the opposite effect.

Figure 4 shows the effect of adding noise to the utility function via parameter
σ. With a sufficient high noise, we can observe that the variant using the im-
perfect preference (M) deteriorates noticeably with respect to the gold variant
G. However, the effect on the actual interactive variant I is limited. In fact, for
DTLZ1 and m = 5, a high σ does actually help I to approximate better the most
preferred solution. Except for a few cases (DTLZ2 and DTZL7 with m = 7), the
noise does not seem strong enough to produce any differences between G and
M, and neither it has a remarkable effect on I.
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(f) DTLZ2, m = 7
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(h) DTLZ7, m = 7

Fig. 2. Results when omitting q out of m objectives without noise (σ = 0.0) nor mixing
of objectives (γ = 0.0).
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(h) DTLZ7, m = 7

Fig. 3. Results when mixing objectives (parameter γ) without omitting objectives (q =
0) and without noise (σ = 0.0).
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(d) DTLZ7, m = 5
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Fig. 4. Results when adding noise to the utility function (parameter σ) without omit-
ting objectives (q = 0) and mixing them (γ = 0.0).



Finally, Figure 5 shows the combined effect of both noise (σ = 0.2) and mix-
ing of objectives (γ = 0.2) when omitting q = 0, 1, 2 objectives. The results are
mostly as expected, that is, the combined effect is a sharp decrease of the nor-
malized utility with respect to the gold variant G. The other major difference
with the corresponding plots in Fig. 2 is that, in this case, the interactive ap-
proach that learns the preferences (I) is sometimes better than the approach that
directly uses the imperfect preference of the machine DM (M), e.g., in DTLZ2.
In addition, the results for DTLZ7 when q = 0 suggest that this problem is
quite easy for BC-EMOA. Yet, when omitting one or two objectives, there is an
enormous degradation of the utility value, despite the fact that there is almost
no difference between the values obtained by the interactive algorithm I and
the variant using directly the imperfect preference M. Thus, this indicates that,
although learning the preference function is relatively easy in this problem, even
in the presence of noise or mixing of objectives, the omission of two objectives
will lead the algorithm to a completely wrong answer with respect to the true
preference.

5 Discussion and Related Work

Although nearly 15 years old, the review by Coello Coello [9] is worthy of atten-
tion for the number of attempts at merging methods from MCDM with EMO
approaches already proposed by that time. Of course, in the intervening period
there has been much further progress in EMO and in preference-based opti-
mization and a proliferation of algorithms and interaction schemes. However,
we believe the advancement in methods for the assessment of interactive EMO
methods (in terms of their ability to satisfy a decision maker, or decision makers
of different types) is less clear and there seems to be much less work in this
direction.

As reviewed by Coello Coello [9], MCDM splits in broad terms into the French
and American schools, and there is in general much difference of opinion about
how preferences should be elicited, the benefits and vagaries of different schemes,
and any number of difficulties associated with this task. This is all further com-
pounded when one considers how to marry an MCDM approach eliciting and
modelling preferences interactively (or otherwise) to an EMO algorithm, which
generates a highly non-deterministic trajectory through the candidate solution
space. But sidestepping this undoubted complexity, we can ask a simpler ques-
tion. If a DM had a certain set of preferences and if they were expressible in some
fixed way (as in the American school), how could we assess whether a particular
modeling of this DM — the outcome of the method of preference elicitation —
was successful? We could answer this simple question by agreeing to use not
a human, but a machine DM for which we have full access to the underlying
preference model. What makes it a machine DM simulating a human DM, and
not merely a simple preference structure, is that we can also add into it more
complex actions like biases, inconsistencies, learning and so forth (but all con-
trollable by us). Using this approach, we can then evaluate how well the DM’s
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Fig. 5. Results when omitting q out of m objectives with both noise (σ = 0.2) and
mixing of objectives (γ = 0.2).



true preference is captured by the preference elicitation scheme, or in an EMO
system, we can measure how well the search finds a solution that satisfies the
DM’s true preferences.

We are by no means the first to approach quantitative assessment in this
way. Indeed, we were inspired in this work most strongly by previous work by
Stewart [22,23,24], and based several aspects of our approach on it. In particular,
modeling several non-idealities of real human decision making, Stewart [22] mea-
sured the robustness in the ranking of alternatives obtained when attempting
to model the DM as a stable additively-independent (non-linear) value function.
Working with simulations involving 7 criteria and 100 nondominated alterna-
tives, a series of sensitivity analyses showed that the ‘elicited’ value functions
worked well in preserving the ‘true’ ranking of solutions provided that (i) the
value function was modeled as piecewise linear with a sufficient number of pieces
(4 seemed sufficient for value functions derived from Prospect Theory [15]), (ii)
the criteria are close to additively independent, and (iii) not too many criteria
are missed out (missing one or two was not very detrimental).

While seminal as a simulation to quantify the robustness and limits of ad-
ditive value functions, the paper (ibid.) does not consider either the elicitation
process per se, or search (optimization). Thus the problem of evaluating iEMOAs
is a good deal more involved. We hope that we have remained true to Stewart’s
aim of using (machine) DMs that mimic real human behaviours in important
ways, while showing how we can begin to assess complete interactive EMO al-
gorithms in ways that matter for the DM who would be using them.

The choice of iEMOA used in the study, BC-EMO, is somewhat arbitrary;
although, the fact that it can handle up to five different types of preference infor-
mation means that future analysis can compare the results presented here with
those obtained with more complex preference models. Nonetheless, our frame-
work is intended to be able to abstract away from any particular EMO algorithm,
DM’s preference model and preference elicitation technique. Thus, it would be
very interesting to extend our analysis to other leading methods in interactive
EMO such as [4, 8, 12, 13, 14, 20, 28] within the same framework, and this is our
longer term goal. In particular, it would be important to study potential mis-
match between methods that use reference points and a DM with preferences
that do not rely on such, or vice versa. Evaluating very sophisticated approaches,
like robust ordinal regression [13] or those based on machine learning [7], would
shed light on whether these approaches really work in practice, and under what
violations of DM assumptions do they also begin to exhibit poorer performance.
And as EMO algorithms become more adept at handling many objectives, it will
be increasingly important to put proposals for preference-based many-objective
methods such as [28] to more stringent testing.

From a broader perspective still, the problem of eliciting human preferences
while searching [25, 26] is not limited to mathematical optimization per se. A
common scenario where human DMs are exercised on a daily basis are web or
database searches for things such as books, holidays, and property. In these cases,
human users both seem to learn about or construct their preferences through the



interaction, and also learn the querying system. Work in this area (ibid.) seems
advanced compared to work on iEMOAs in terms of the interaction systems
proposed, and also concerning evaluation of them. We see a bright future for
iEMOAs if and only if we can embrace a similar focus on the objective evaluation
of our MCDM/EMO hybrids, including realistic and generalized DM models
(machine DMs), and a more stringent testing regime that presents a variety of
challenges to the working of these methods.

6 Conclusion

We have given an illustration how EMO/MCDM interactive approaches can be
evaluated quantitatively using a conceptual framework based on machine DMs
incorporating human-like non-idealities. Whilst iEMOAs are becoming more so-
phisticated, incorporating more advanced methods both from EMO and MCDM,
it has remained unclear up to now how we can quantitatively assess the im-
provement. We proposed and demonstrated a few parameters of machine DMs
for assessing iEMOA performance quantitatively. Importantly, the robustness
of iEMOAs can be evaluated using this approach and we show with an exam-
ple that existing iEMOAs are not very robust in the face of these lesser tested
non-idealities. In particular, BC-EMOA is very sensitive to the omission of ob-
jectives and much less sensitive to their mixing. In fact, we observed that there
are non-obvious interactions between various parameters of the machine DM.
For instance, under some circumstances, the mixing of objectives may actually
help the iEMOA to not get confused by an imperfect preference function. From
these foundations, we hope to build a more comprehensive testing facility for
the interactive EMOA community.

The experiments reported here are evidently preliminary. We plan in the
future to extend the experiments to more complex preference functions. Given
the variability of these preliminary results, carrying out a full factorial ANOVA
would help to identify the most important factors. Future work will extend the
framework of machine DMs to other types of interactions, such as goal program-
ming [24] and aspiration-based techniques [23]. It is currently an open question
how to extend the framework to incorporate a wider range of human behaviors
and other non-idealities, in particular, the role of learning or evolving preferences
by the DM. Finally, the ultimate goal of this framework should be to provide
incentives and a way to benchmark interactive EMOAs able to cope with the
complex behaviors of human DMs, possibly enabling at some point in the future
the automatic design of interactive EMOAs [18].
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16. Köksalan, M., Karahan, I.: An interactive territory defining evolutionary algo-
rithm: iTDEA. IEEE Transactions on Evolutionary Computation 14(5), 702–722
(Oct 2010)

17. Kornbluth, J.: Sequential multi-criterion decision making. Omega 13(6), 569–574
(1985)
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