
An Improved Dimension-Sweep Algorithm for the Hypervolume
Indicator

Carlos M. Fonseca, Luı́s Paquete, and Manuel López-Ibáñez

Abstract— This paper presents a recursive, dimension-sweep
algorithm for computing the hypervolume indicator of the
quality of a set of n non-dominated points in d > 2 dimensions.
It improves upon the existing HSO (Hypervolume by Slicing
Objectives) algorithm by pruning the recursion tree to avoid
repeated dominance checks and the recalculation of partial
hypervolumes. Additionally, it incorporates a recent result for
the three-dimensional special case. The proposed algorithm
achieves O(nd−2 log n) time and linear space complexity in
the worst-case, but experimental results show that the pruning
techniques used may reduce the time complexity exponent even
further.

I. INTRODUCTION

The performance assessment of algorithms for multiobjec-
tive optimization problems is far from being a trivial issue.
Recent results indicate that unary performance measures,
i.e. performance measures which assign a single value to
each non-dominated point set, are inherently limited in their
inferential power [1]. Despite these limitations, the hypervol-
ume indicator is still considered to possess some reasonable
properties, having also been proposed as a guidance criterion
for accepting solutions in Multiobjective Evolutionary Algo-
rithms [2], [3]. Therefore, the computational time taken for
computing the hypervolume indicator is a crucial factor for
the performance of such algorithms.

The paper is organized as follows. In the next section, the
hypervolume indicator is defined, and some background on
its computation is provided. Then, an algorithm is proposed
which improves upon current practice in the Evolutionary
Computing community, while remaining simple to imple-
ment. The results of an experimental study conducted to
validate the implementation are presented and compared to
previously published results to the extent possible. The paper
concludes with a discussion of the relative merits of the
various techniques proposed and with directions for future
work.

II. BACKGROUND

The unary hypervolume indicator [4] is a measure of
the quality of a set P = {p(1), p(2), . . . , p(n)} of n non-
dominated objective vectors produced in a run of a mul-
tiobjective optimizer, such as a multiobjective evolution-

Carlos M. Fonseca (cmfonsec@ualg.pt) is with Centro de Sistemas
Inteligentes, Faculdade de Ciências e Tecnologia, Universidade do Algarve
and Luı́s Paquete (lpaquete@ualg.pt) is with Faculdade de Economia
and Centro de Sistemas Inteligentes, Universidade do Algarve, 8005-139
Faro, Portugal

Manuel López-Ibáñez (m.lopez-ibanez@napier.ac.uk) is with
Centre for Emergent Computing, School of the Built Environment, Napier
University, EH10 5DT, Edinburgh, UK

p(1)

p(2)

p(3)

r

Fig. 1. The hypervolume indicator in the two-objective case

ary algorithm. Assuming a minimization problem involv-
ing d objectives, this indicator consists of the measure of
the region which is simultaneously dominated by P and
bounded above by a reference point r ∈ R

d such that r ≥
(maxp p1, . . . , maxp pd), where p = (p1, . . . , pd) ∈ P ⊂ R

d,
and the relation ≥ applies componentwise. As illustrated in
Fig. 1, this region consists of an orthogonal polytope, and
may be seen as the union of n axis-aligned hyper-rectangles
with one common vertex (the reference point, r).

Several algorithms have been proposed for computing
the hypervolume indicator in any number of dimensions.
The inclusion-exclusion algorithm [5] is a natural, brute-
force approach based on the inclusion-exclusion principle [6]
which exploits the known structure of the polytope directly.
Fleischer [7] proposed an apparently efficient algorithm,
called LebMeasure, but a more detailed analysis has shown
the worst-case time complexity of this algorithm to be at
least O(nd) [8].

More recently, While et al. [9] have proposed the so-
called HSO (Hypervolume by Slicing Objectives) algorithm,
which is, in fact, a dimension-sweep [10] approach. The
point set is swept by a (d−1)-dimensional hyperplane along
the first coordinate, defining d-dimensional slices between
consecutive points. The total hypervolume is computed as
the sum of the hypervolumes of each individual slice, which
can be obtained by multiplying its height (measured along
the first dimension) by the hypervolume of its (d − 1)-
dimensional base. This leads to the computation of n dif-
ferent hypervolumes in d−1 dimensions, each of which can
be solved in a similar way. The process is repeated until a
sufficiently small number of dimensions (two, in this case)
is reached. Indeed, the two-dimensional case can be easily
solved in linear time after a preliminary sorting step. The
HSO algorithm runs in O(nd−1) time for d > 2.

Remarkably, the more general form of this problem which
is obtained by removing the common vertex constraint has

0-7803-9487-9/06/$20.00/©2006 IEEE

2006 IEEE Congress on Evolutionary Computation
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

3973

already been studied in the field of Computational Geometry.
It is known both as the measure of the union of rectangles
in d-dimensions and as the d-dimensional Klee’s Measure
Problem [11][12], and can be solved in O(nd/2 log n)-time
in the decision-tree computational model [12].

Very recently, Paquete et al. [13] have noted the connection
between these two problems. Since the same upper-bound
applies to the computation of the hypervolume indicator,
HSO is in fact sub-optimal for all d > 2. Furthermore, they
have produced an even faster, O(n log n)-time, algorithm to
compute the hypervolume indicator in three dimensions, also
based on dimension-sweeping.

Extending these results [9][13], this article presents
a recursive dimension-sweep algorithm which exhibits
O(nd−2 log n)-time and linear space complexity for d > 2,
matching the time complexity of Overmars and Yap’s algo-
rithm [12] for d = 4 and improving upon HSO [9] for d > 2
by a factor of n/ logn. Although this new algorithm has
higher time complexity than Overmars and Yap’s algorithm
for d > 4, it is conceptually much simpler, and is much
easier to implement.

III. PROPOSED ALGORITHM

The algorithm proposed here follows up directly on
While’s work on HSO [9], improving upon it in three ways.
Firstly, a new efficient algorithm by Paquete et al. [13] is
used for the three-dimensional case, allowing one level of
recursion (or slicing) to be avoided. Secondly, the set of
non-dominated points is stored in a dedicated data structure
throughout the operation of the algorithm, avoiding repeated
slicing and merging of lists, and maintaining linear space
complexity. Finally, this data structure is extended to store
the current dominance state of each point as well as in-
termediate hypervolume values, allowing the recursion tree
to be pruned whenever results computed previously can be
reused. Throughout the paper, time complexity is derived
while considering the decision tree computational model.

A. Three-dimensional case

Paquete et al. [13] have developed a dimension-sweep
algorithm for the three-dimensional case based on an existing
algorithm for the maxima of a point set [10]. Considering
minimization, the operation of the algorithm may be briefly
described as follows.

Let the non-dominated points in the input set P be
sorted in ascending order of their z-coordinate values pz ,
where p ∈ P , and stored in a list L. Let nextz(p) and
prevz(p) denote the points immediately above and below p
on the z coordinate, respectively (and similarly for the x
and y coordinates). Furthermore, maintain a threaded, height-
balanced binary tree T , which will be used to store the non-
dominated projections on the (x, y)-plane of the points in L,
using the y coordinate as key. Note that any non-dominated
set in two dimensions may be strictly ordered with respect to
either dimension. Insert the first point in L into T , determine

the area A of the region which its projection on the (x, y)-
plane dominates (given the reference point), and initialize the
volume V to zero.

Then, for each new p in L, add to V the product of A by
the difference between the z coordinates of p and prevz(p).
Query T to determine where p should be inserted on the y
axis, and determine q = prevy(p), if it exists. If qx ≤ px, then
p is dominated by q and it should be discarded. Otherwise,
determine t = nexty(p), if it exists. If px ≤ tx, then the
(x, y)-projection of t is now dominated by the corresponding
projection of p. In this case, proceed by deleting t from
T , and update A accordingly. Note that A can be updated
in constant time given the knowledge of q, nexty(t) and
the reference point r. Repeat this procedure for each new
t = nexty(p) until no more points in T are dominated by p.
Finally, insert p into T and update A to reflect the insertion.
The whole procedure is repeated until all points in L are
considered.

Since the algorithm performs at most n tree insertions and
n tree deletions, each at a cost of O(log n) time, the time
complexity of this algorithm is O(n log n). Note that T is
threaded, which makes it possible to determine prevy(p) and
nexty(p) in constant time.

B. A recursive algorithm for d > 3

To support dimension sweeping in more than three
dimensions, the input set P is now sorted in ascend-
ing order along each dimension i, for 3 ≤ i ≤ d,
and stored in d − 2 circular double-linked lists Li with
sentinels nil(Li), such that nexti(nil(Li))← head(Li) and
previ(nil(Li))← tail(Li). This preprocessing stage takes
O(dn log n) time.

The main advantage of the data structure adopted is
that, when sweeping along a given dimension i, it becomes
rather easy to delete points in lower dimensions, and to
reinsert them later in the correct position, all in O(d)-time,
provided deletion and reinsertion always occur in reverse
order. A similar data structure has previously been used
in the computation of the multivariate empirical cumulative
distribution function for a set of points in R

d [14].
Pseudo-code is given in Algorithm 1. The algorithm is

organized as two consecutive loops, and is invoked with
i = d. In the first loop, the current dimension i is swept
in descending order of pi, and the points found are deleted
(via delete(·)) from all lists corresponding to dimensions
lower than i, until the minimum value of coordinate i is
reached. Then, the algorithm recurses for lower dimensions
in order to compute the hypervolume indicator of the (i−1)-
dimensional polytope defined by the remaining point(s).
Note that, whenever a single point is left, the corresponding
indicator value could also be computed directly. As soon
as dimension three is reached, the hypervolume indicator is
computed by the procedure explained in Section III-A.

In the second loop, the same dimension i is swept in
reverse (i.e., ascending) order, reinserting one point at the
time in the lower-dimension lists (via reinsert(·)). As in
HSO, the hypervolume indicator associated with the slice

3974

Algorithm 1 H(i, Li, r, len)

Require: i is the dimension, Li is the linked list at dimen-
sion i, r is the reference point, and len = |Li−1|

1: if i = 3 then
2: {see Section III-A.}
3: else if i > 3 then
4: hvol← 0
5: p← nil(Li)
6: while len > 1 do
7: p← previ(p)
8: delete(p, i)
9: len← len− 1

10: q ← previ(p)
11: H ← H(i− 1, Li−1, r, len)
12: while p 6= nil(Li) do
13: hvol← hvol +H · (pi − qi)
14: reinsert(p, i)
15: len← len + 1
16: q ← p
17: p← nexti(p)
18: H ← H(i− 1, Li−1, r, len)
19: hvol← hvol +H · (ri − qi)
20: return hvol

defined by the i-th coordinates of the two consecutive points
p and q (pi > qi) is obtained by multiplying the height
of the slice (pi − qi) by the hypervolume indicator of
the (i − 1)-dimensional polytope defined by the points in
Li−1, including q. Here, this indicator value is computed
recursively in steps 11 and 18 of the algorithm.

The three-dimensional special case allows O(nd−2 log n)-
time complexity to be achieved, which is faster than HSO.
In addition, linear space complexity is maintained, since
deletions and reinsertions operate on the given lists in place.
HSO’s description is less specific in this regard: the algorithm
is explained in terms of a breath-first tree-expansion, which
would lead to exponential space complexity, but the authors
do mention processing intermediate lists of points as they are
generated as a useful improvement, suggesting a depth-first,
linear-space implementation.

The basic algorithm just described may be improved by
using the data structure adopted to remember intermediate
calculations, so that the recursion tree may be effectively
pruned in certain common circumstances. This is possible
without compromising on space complexity, as will be ex-
plained next.

C. Further improvements

1) Skipping over dominated points: Whenever a new point
p is found to be dominated by another point q already
in Li (with respect to dimensions 1, . . . , i only), the same
will occur for dimensions 1, . . . , j when j < i, because
q will never be deleted before p when sweeping along
one of these dimensions. If p is dominated with respect
to dimensions 1, . . . , i, then the hypervolume H[p, i] of the

Algorithm 2 skipdom(q, i, Li, r, len)

Require: q is a point, i is the dimension, Li is the linked list
at dimension i, r is the reference point, and len = |Li−1|

1: if flag[q] ≥ i then
2: H[q, i]← H[previ(q), i]
3: else
4: H[q, i]← H(i− 1, Li−1, r, len)
5: if H[q, i] ≤ H[previ(q), i] then
6: flag[q]← i

(i − 1)-dimensional polytope defined by all points now in
Li−1 (including p) will be the same as H[q, i], with q =
previ(p). In this case, p may be flagged as dominated in
dimensions 1, . . . , i, and H[p, i] may be simply set equal to
H[q, i] as long as no points are removed from Li. For this
reason, any point flagged lower than the current dimension
must have its flag reset (to indicate non-dominated) before
the first loop executes.

Algorithm 2 shows the pseudo-code of the function
skipdom(·), which is called instead of steps 11 and 18 of
Algorithm 1. Point q is flagged with the dimension value i
whenever H[q, i] ≤ H[previ(q), i] (but note that H[q, i] may
only be less than H[previ(q), i] due to numerical accuracy
issues). Subsequently, the recursion step is skipped whenever
q is found again at dimension i or lower and, in that
case, H[q, i] is set equal to H[previ(q), i]. In addition, the
hypervolume indicator is updated at steps 13 and 19 of
Algorithm 1 by substituting H[q, i] for H.

2) Reusing previous calculations: Computation time may
be reduced further by breaking out of the first loop whenever
the hypervolume of the i-dimensional polytope defined by
the remaining points in Li is known to have been computed
before. Algorithm 3 shows the pseudo-code for the final
proposal. Let the value of the hypervolume indicator of the
i-dimensional polytope defined by p and all the remaining
points below it along coordinate i be stored in V [p, i]. Clearly,
this value will become stale whenever points are deleted or
reinserted below p. Thus, a vector of bound values b, all
of which are initially set to −∞, is maintained. In order to
keep track of which V [p, i] are current, these bounds must be
updated at each deletion and at each reinsertion, as performed
in steps 9 and 20. Note that, again, only linear space is
required.

IV. EXPERIMENTAL RESULTS

In order to study the impact of the various techniques
proposed in the previous section on the global performance
of the algorithm, four different versions were implemented,
as follows:

• Version 1 corresponds to Algorithm 1, but using a linear
time algorithm for the two-dimensional case instead of
the algorithm for the three-dimensional case described
in Section III-A. Its time complexity is O(nd−1);

• Version 2 is the same algorithm as Version 1, but
with detection of dominated points and skipping of

3975

Algorithm 3 H(i, Li, r, len)

Require: i is the dimension, Li is the linked list at dimen-
sion i, r is the reference point, and len = |Li−1|

1: if i = 3 then
2: {see Section III-A.}
3: else if i > 3 then
4: {Reset flag for all points in Li (see Section III-C.1)}
5: hvol← 0
6: p← nil(Li)
7: while previ(p) > bi ∧ len > 1 do
8: p← previ(p)
9: bj ← min{bj, pj}, ∀j < i

10: delete(p, i)
11: len← len− 1
12: q ← previ(p)
13: if len > 1 then
14: hvol← V [previ(q), i]+H[previ(q), i]·(qi−previ(q))
15: V [q, i]← hvol
16: skipdom(q, i, Li, r, len)
17: while p 6= nil(Li) do
18: hvol← hvol +H[q, i] · (pi − qi)
19: bi ← pi

20: bj ← min{bj, pj}, ∀j < i
21: reinsert(p, i)
22: len← len + 1
23: q ← p
24: p← nexti(p)
25: V [q, i]← hvol
26: skipdom(q, i, Li, r, len)
27: hvol← hvol +H[q, i] · (ri − qi)
28: return hvol

points known to be dominated (see Section III-C.1).
This version should be roughly comparable to HSO
as described in [9], and its time complexity is still
O(nd−1);

• Version 3 corresponds to Algorithm 3, but still using
the linear time algorithm for the two-dimensional case.
Since it reuses previous calculations where possible, as
described in Section III-C.2, it should improve upon
Version 2. However, its worst-case time complexity is
still O(nd−1);

• Version 4 is a full implementation of Algorithm 3. Its
time-complexity is O(nd−2 log n);

The code was written in C and compiled using
GCC 3.3.5 with optimization level 3. Source code is
available at http://sbe.napier.ac.uk/˜manuel/
hypervolume. The program was run under Debian
GNU/Linux on an Intel Pentium IV (Prescott) 3.2 GHz
processor with 1MB of cache.

Experiments were run on two different families of non-
dominated point set instances, namely the randomly gener-
ated sets and the spherical fronts produced and made avail-

 0.001

 0.01

 0.1

 1

1000500100

co
m

pu
ta

tio
n

tim
e

(s
ec

s.
)

number of points

 ver. 1
 ver. 2
 ver. 3
 ver. 4

Fig. 2. Results for random d = 4.

 0.001

 0.01

 0.1

 1

1000500100
co

m
pu

ta
tio

n
tim

e
(s

ec
s.

)

number of points

 ver. 1
 ver. 2
 ver. 3
 ver. 4

Fig. 3. Results for spherical d = 4.

able1 by While et al. [9]. Since both HSO and the proposed
algorithm are sensitive to the order in which objectives are
considered, data was presented to the algorithm in such
a way that objectives were processed exactly in the same
order as in [9]. Likewise, the randomly generated fronts were
transformed so as to correspond to a minimization problem.

Figures 2 to 11 show the measured CPU times vs. the
number of points for the four algorithm versions tested. For
each combination of family, number of objectives, and size
of the set, the algorithms were run once on each of the 10
different instances available. The number of objectives and
size of the sets were selected so as to keep the maximum
individual run times below 1000 seconds.

To study the effect of the improvements introduced in the
actual asymptotic behaviour of the algorithms, a linear least-
squares fit of the theoretical complexity bounds to the run
times t achieved by each algorithm on each set of instances
was performed. For Versions 1 to 3, the regression model
was simply

log10 t = α log10 n + log10 c

corresponding to a theoretical complexity of the form
t = c · nα. In the case of Version 4, the model used was

log10(t/ log2 n) = α log10 n + log10 c4

to account for the additional log n in the theoretical time
complexity of this version. Base 10 was chosen for the

1http://wfg.csse.uwa.edu.au/Hypervolume

3976

 0.001

 0.01

 0.1

 1

 10

 100

 1000

1000500100 50

co
m

pu
ta

tio
n

tim
e

(s
ec

s.
)

number of points

 ver. 1
 ver. 2
 ver. 3
 ver. 4

Fig. 4. Results for random d = 5.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

500100 50

co
m

pu
ta

tio
n

tim
e

(s
ec

s.
)

number of points

 ver. 1
 ver. 2
 ver. 3
 ver. 4

Fig. 5. Results for random d = 6.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 125 100 75 50

co
m

pu
ta

tio
n

tim
e

(s
ec

s.
)

number of points

 ver. 1
 ver. 2
 ver. 3
 ver. 4

Fig. 6. Results for random d = 7.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 100 75 50 25

co
m

pu
ta

tio
n

tim
e

(s
ec

s.
)

number of points

 ver. 1
 ver. 2
 ver. 3
 ver. 4

Fig. 7. Results for random d = 8.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

1000500100 50

co
m

pu
ta

tio
n

tim
e

(s
ec

s.
)

number of points

 ver. 1
 ver. 2
 ver. 3
 ver. 4

Fig. 8. Results for spherical d = 5.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

500100 50

co
m

pu
ta

tio
n

tim
e

(s
ec

s.
)

number of points

 ver. 1
 ver. 2
 ver. 3
 ver. 4

Fig. 9. Results for spherical d = 6.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 300 200 100 50

co
m

pu
ta

tio
n

tim
e

(s
ec

s.
)

number of points

 ver. 1
 ver. 2
 ver. 3
 ver. 4

Fig. 10. Results for spherical d = 7.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 100 75 50 25

co
m

pu
ta

tio
n

tim
e

(s
ec

s.
)

number of points

 ver. 1
 ver. 2
 ver. 3
 ver. 4

Fig. 11. Results for spherical d = 8.

3977

TABLE I

CURVE-FITTING COEFFICIENTS FOR THE RANDOMLY GENERATED INSTANCES.

d ver. 1 ver. 2 ver. 3 ver. 4 min.
α log10 c α log10 c α log10 c α log10 c4 size

4 3.15 -9.03 2.75 -8.42 2.74 -8.56 1.76 -7.53 100
5 4.16 -9.67 3.35 -8.53 3.34 -8.69 2.39 -7.76 50
6 4.93 -9.80 3.89 -8.46 3.94 -8.78 3.16 -8.27 50
7 5.60 -9.89 4.31 -8.22 4.31 -8.53 3.73 -8.37 50
8 6.23 -9.99 5.10 -8.64 4.91 -8.66 4.65 -8.97 30

TABLE II

CURVE-FITTING COEFFICIENTS FOR THE SPHERICAL FRONT INSTANCES.

d ver. 1 ver. 2 ver. 3 ver. 4 min.
α log10 c α log10 c α log10 c α log10 c4 size

4 3.20 -9.17 2.96 -8.74 2.92 -8.90 1.72 -7.11 100
5 4.09 -9.46 3.83 -8.98 3.78 -9.40 2.68 -7.88 50
6 4.93 -9.83 4.79 -9.55 4.67 -10.08 3.69 -8.76 50
7 5.63 -9.94 5.54 -9.74 5.46 -10.66 4.75 -9.86 50
8 6.46 -10.42 6.36 -10.20 6.32 -11.44 5.68 -10.73 30

“outer” logarithms to make it easier to perceive the actual
values of c and c4 from their logarithms. On the other hand,
the choice of base 2 for the log n factor in the complexity
bound of Version 4 reflects this algorithm’s use of a height-
balanced binary tree. Since the regression models adopted
refer to asymptotic complexity, only instances larger than a
given number of points were used for fitting, depending on
the number of objectives. Tables I and II show the estimated
coefficients for these models, as well as the minimum in-
stance size used in the regression. The curve fits obtained
are shown on the plots together with the observed data.

It is worth noting that the theoretical exponent of the
complexity of Version 1 is recovered from the data for
dimensions 4–6, and that, for dimensions 7 and 8, the results
are in fact better than expected. This may indicate that
the sizes of the instances are just too small for the true
asymptotic behaviour to be observed, for example, due to
the cache of the processor. Note that the algorithms implicitly
assume a flat memory model and do not attempt to exploit
any memory hierarchy.

Interestingly, the speedup introduced by Version 2 is
achieved in terms of an actual reduction of the complexity
exponent, at the expense of slightly greater overhead (greater
value of c). Version 3 does not generally improve the
exponent any further, but does recover some of the overhead
introduced in Version 2. Finally, Version 4 generally reduces
the exponent by about 1, as expected, although it does
introduce considerably greater overhead, as it is evident from
the plots. Although this is not exactly unusual, it should be
possible to improve the special case implementation in order
to avoid repeating calculations as was done in the recursive
part of the algorithm.

Since While’s HSO implementation is not available at
the time of this study, it is only possible to compare
the experimental results obtained to those published in [9]

TABLE III

COMPARISON WITH HSO FOR A GIVEN NUMBER OF POINTS AND

DIMENSIONS; SEE TEXT FOR MORE DETAILS.

d points HSO HSO∗ ver. 1 ver. 2 ver. 3 ver. 4
4 750 1.0 0.6 1.0 0.3 0.2 0.1
5 200 1.0 0.6 0.8 0.2 0.1 0.1

1300 100 60 2000 80 53 5
6 80 1.0 0.6 0.4 0.1 0.05 0.04

340 100 60 480 25 16 5
7 45 1.0 0.6 0.25 0.08 0.04 0.03

145 100 60 168 13 6 4
8 30 1.0 0.6 0.16 0.08 0.04 0.04

80 100 60 73 12 5 5

by correcting for differences in processor speed. Clearly,
such a comparison disregards many important differences
between the two experimental studies, including different
implementation languages, but should still serve to rule out
any major differences between the two sets of results. In
Table III, some results extracted from [9] are given, and
compared to the results obtained in this study with algorithm
Versions 1 to 4. Column HSO presents the actual CPU times
reported in that study for various combinations of number
of dimensions (column d) and number of points (column
points); column HSO∗ presents the same CPU times scaled to
reflect the different processor speeds HSO∗ = 1.9/3.2·HSO).
The remaining columns show the corresponding CPU times
estimated from the curve fittings described above. It can be
seen that Version 2 compares well to HSO. Version 3 is faster
and, for large sets, Version 4 is much faster.

V. CONCLUSIONS AND FURTHER WORK

This article presented a dimension-sweep algorithm to
compute the hypervolume indicator. Although it implements
the same principle as the HSO algorithm proposed by While
et al. [9], it is based on a data structure which facilitates

3978

not only dimension-sweeping but also the implementation of
some additional speed-ups without sacrificing linear space
complexity. In addition, this algorithm exploits the solution
for the three-dimensional case proposed in [13], which
reduces the overall time complexity by a factor of n/ logn.

The asymptotic behaviour of the algorithm with respect
to CPU time was experimentally derived from runs on two
types of benchmark data instances. The speed-ups proposed
were found to cause a reduction of the complexity exponent
at the expense of slightly greater overhead. In addition, the
experimental results indicate that the full algorithm proposed
clearly outperforms HSO as the number of points grows,
although there should still be some room for improving
the integration of the three-dimensional case code with the
recursive part of the algorithm.

Although not examined here, the permutation heuristics
developed for HSO in [15] should also have a positive effect
on the performance of the algorithms tested. Another promis-
ing direction for further work consists of developing a special
case of Overmars and Yap’s algorithm [12] specifically for
the computation of the hypervolume indicator. Indeed, even
in its generic form, that algorithm already guarantees strictly
lower time complexity than other alternatives for computing
the hypervolume indicator in d > 4 dimensions.

Acknowledgement

Carlos M. Fonseca acknowledges funding from the Por-
tuguese Foundation for Science and Technology under grant
POCTI/EME/48448/2002, with the support of FEDER and
the Portuguese State. Manuel López-Ibáñez wishes to ac-
knowledge the Faculty of Economics of the University of
Algarve for receiving him as a visitor in December 2005 in
connection with this work.

REFERENCES

[1] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. Grunert da
Fonseca, “Performance assessment of multiobjective optimizers: An
analysis and review,” IEEE Transactions on Evolutionary Computa-
tion, vol. 7, no. 2, pp. 117–132, 2003.

[2] J. Knowles, D. Corne, and M. Fleischer, “Bounded archiving using
the lebesgue measure,” in Proceedings of the 2003 Congress on Evo-
lutionary Computation (CEC’03), R. Sarker, R. Reynolds, H. Abbass,
K. C. Tan, B. McKay, D. Essam, and T. Gedeon, Eds. IEEE Press,
Piscataway, NJ, 2003, pp. 2490–2498.

[3] E. Zitzler and S. Künzli, “Indicator-based selection in multiobjective
search,” in Parallel Problem Solving from Nature (PPSN VIII), X. Yao
et al., Eds. Berlin, Germany: Springer-Verlag, 2004, pp. 832–842.

[4] E. Zitzler and L. Thiele, “Multiobjective optimization using evolu-
tionary algorithms – A comparative case study,” in Proceedings of
PPSN-V, Fifth International Conference on Parallel Problem Solving
from Nature. Springer Verlag, Berlin, Germany, 1998, pp. 292–301.

[5] J. Wu and S. Azam, “Metrics for quality assessment of a multiobjective
design optimization solution set,” Journal of Mechanical Design, vol.
123, no. 1, pp. 18–25, 2001.

[6] R. P. Stanley, Enumerative Combinatorics. Cambridge University
Press, 1999, vol. 1.

[7] M. Fleischer, “The measure of Pareto optima: Applications to multi-
objective metaheuristics,” in Evolutionary Multi-criterion Optimization
(EMO 2003), ser. Lecture Notes in Computer Science, C. M. Fonseca,
P. Fleming, E. Zitzler, K. Deb, and L. Thiele, Eds., vol. 2632. Springer
Verlag, Berlin, Germany, 2003, pp. 519–533.

[8] L. While, “A new analysis of the lebmeasure algorithm for calculating
hypervolume,” in Evolutionary Multi-criterion Optimization (EMO
2005), ser. Lecture Notes in Computer Science, C. A. C. Coello, A. H.
Aguirre, and E. Zitzler, Eds., vol. 3410. Springer Verlag, Berlin,
Germany, 2005, pp. 326–340.

[9] L. While, P. Hingston, L. Barone, and S. Husband, “A faster algorithm
for calculating hypervolume,” IEEE Transactions on Evolutionary
Computation, vol. 10, no. 1, pp. 29–38, 2006.

[10] F. P. Preparata and M. I. Shamos, Computational Geometry. Springer
Verlag, 1985.

[11] J. Leeuwen and D. Wood, “The measure problem for rectangular
ranges in d-space,” Journal of Algorithms, vol. 2, no. 3, pp. 282–300,
1981.

[12] M. H. Overmars and C. K. Yap, “New upper bounds in Klee’s measure
problem,” SIAM Journal on Computing, vol. 20, no. 6, pp. 1034–1045,
1991.

[13] L. Paquete, C. M. Fonseca, and M. López-Ibáñez, “An optimal
algorithm for a special case of Klee’s measure problem in three
dimensions,” Centre for Intelligent Systems, University of Algarve,
Faro, Portugal, Tech. Rep. CSI-RT-I-01/2006, 2006.

[14] C. M. Fonseca, “Output-sensitive computation of the multivariate
ECDF and related problems,” in Proceedings of the Conference
COMPSTAT 2002, S. Klinke, P. Ahrend, and L. Richter, Eds., vol.
2002, 2002, p. 30.

[15] L. While, L. Bradstreet, L. Baroneand, and P. Hingston, “Heuristics
for optimising the calculation of the hypervolume for multi-objective
optimisation problems,” in Proceedings of the 2005 Congress on
Evolutionary Computation (CEC’05), vol. 3. IEEE, September 2005,
pp. 2225–2232.

3979

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

