
Automatically Designing State-of-the-Art
Multi- and Many-Objective Evolutionary

Algorithms

Leonardo C. T. Bezerra leobezerra@imd.ufrn.br
Instituto Metrópole Digital (IMD), Universidade Federal do Rio Grande do Norte,
Natal, RN, Brazil

Manuel López-Ibáñez manuel.lopez-ibanez@manchester.ac.uk
Alliance Manchester Business School, University of Manchester, UK

Thomas Stützle stuetzle@ulb.ac.be
IRIDIA, CoDE, Université Libre de Bruxelles, Belgium

Abstract
A recent comparison of well-established multi-objective evolutionary algorithms
(MOEAs) has helped better identify the current state-of-the-art by considering (i) pa-
rameter tuning through automatic configuration, (ii) a wide range of different setups,
and (iii) various performance metrics. Here, we automatically devise MOEAs with ver-
ified state-of-the-art performance for multi- and many-objective continuous optimiza-
tion. Our work is based on two main considerations. The first is that high-performing
algorithms can be obtained from a configurable algorithmic framework in an auto-
mated way. The second is that multiple performance metrics may be required to guide
this automatic design process. In the first part of this work, we extend our previ-
ously proposed algorithmic framework, increasing the number of MOEAs, underlying
evolutionary algorithms, and search paradigms that it comprises. These components
can be combined following a general MOEA template, and an automatic configuration
method is used to instantiate high-performing MOEA designs that optimize a given
performance metric and present state-of-the-art performance. In the second part, we
propose a multi-objective formulation for the automatic MOEA design, which proves
critical for the context of many-objective optimization due to the disagreement of es-
tablished performance metrics. Our proposed formulation leads to an automatically
designed MOEA that presents state-of-the-art performance according to a set of met-
rics, rather than a single one.

Keywords
Multiobjective optimization, evolutionary algorithms, automatic algorithm design.

1 Introduction

Multi-objective optimization problems (MOPs) involve determining the best tradeoff
solutions between various, typically conflicting objectives. In the most general case,
MOPs are treated in the Pareto-sense and a best possible approximation of the Pareto-
optimal front is desired. MOPs arise in many real-world situations and are more dif-
ficult to solve than their single-objective counterparts. Given the enormous challenge
posed by MOPs, a large number of solution approaches for tackling them have been
proposed (Paquete and Stützle, 2007; Ehrgott and Gandibleux, 2004; Deb, 2001; Coello
Coello et al., 2007). As one of the main alternatives for tackling MOPs, multi-objective

c©2020 by the Massachusetts Institute of Technology Evolutionary Computation Pre-print(x): xxx-xxx

This is a pre-print version of the article: M. López-Ibáñez, and T. Stützle. Evolutionary Computation,
2020. doi:~10.1162/evco_a_00263

evolutionary algorithms (MOEAs) have become very popular (Deb, 2001; Coello Coello
et al., 2007; Mezura-Montes et al., 2008). Relevant contributions from the MOEA com-
munity to solving MOPs include effective algorithmic components like dominance sort-
ing (Goldberg, 1989; Deb, 2001), as well as the theoretical basis for the performance
assessment of multi-objective algorithms (Zitzler et al., 2003).

Among the open challenges for the research on MOEAs are many-objective opti-
mization problems (MaOPs), that is, MOPs with a large number of objectives (Fleming
et al., 2005), which can be found in practical applications. Early MOEAs have shown
performance limitations on MaOPs, which has motivated the proposal of a number
of new algorithms over the last decade (Chand and Wagner, 2015; Li et al., 2015). In
what follows, we will refer to MOEAs that have specifically been designed to tackle
many-objective problems, as many-objective evolutionary algorithms (EAs). Although
several many-objective EAs have been proposed, their effectiveness is not yet fully un-
derstood, as only few experimental comparisons exist (Bezerra et al., 2018; Tanabe et al.,
2017). In general, such comparisons show that the improvements of the many-objective
EAs considered over established MOEAs is less than expected once a rigorous experi-
mental setup is adopted (e.g., parameters are properly configured).

Several issues help explain the results observed in these assessments. One is the
difficulties posed by the increase in the number of objectives, such as increased dom-
inance resistance, i.e., the growth in the number of nondominated solutions on prob-
lems with specific characteristics (Schütze et al., 2011). Recent empirical analyses have
reported disagreements between performance metrics (Jiang et al., 2014; Bezerra et al.,
2018), which again vary as a function of problem characteristics. Another important
issue is the rigor in the assessment of novel MOEAs. Specifically, the literature contains
a large number of multi- and many-objective EAs, too large for researchers to prop-
erly assess their (dis)advantages in a practical way. In addition, MOEAs are commonly
proposed as monolithic blocks, assuming that their components are equally effective
and need to be jointly used. Hence, researchers rarely investigate how the proposed
algorithmic components interact, or whether components from existing MOEAs could
provide more benefits than components from the new MOEAs being proposed. This
monolithic approach is reflected by various MOEA frameworks that offer limited com-
posability of components (Bleuler et al., 2003; Igel et al., 2008; Biscani et al., 2010).

In previous works, we have contributed to help address many of these issues.
In Bezerra et al. (2016), we have proposed a general MOEA template from which a re-
searcher can easily instantiate several existing MOEAs, but also generate a much larger
number of novel MOEAs by combining the algorithmic components available from a
component-wise algorithmic framework. Moreover, by applying an automatic algo-
rithm design methodology (KhudaBukhsh et al., 2009; López-Ibáñez and Stützle, 2012;
Dubois-Lacoste et al., 2011) to this AutoMOEA framework, we have shown that it is pos-
sible to generate several automatically designed MOEAs (AutoMOEAs) that consistently
outperform established MOEAs on both continuous and combinatorial optimization
problems. In another work (Bezerra et al., 2018), we have experimentally compared
the performance of 14 MOEAs for the the literature, after automatically tuning their
parameter settings, on a variety of application scenarios considering four number of
objectives (2, 3, 5 and 10 objectives), different termination criteria based on the max-
imum number of function evaluations (2 500, 10 000 and 40 000 FEs), and considering
three different performance metrics (relative hypervolume, additive ε-indicator, and
inverted generational distance, IGD). From that analysis, we have obtained various in-
sights which should be taken into account by MOEA designers, e.g., that using different

2

http://dx.doi.org/10.1162/evco_a_00263

This is a pre-print version of the article: M. López-Ibáñez, and T. Stützle. Evolutionary Computation,
2020. doi:~10.1162/evco_a_00263

underlying EA operators can significantly boost the performance of MOEAs for contin-
uous optimization. In addition, we have noticed that some recently proposed MOEAs
do not present an empirical performance matching what their proposers had expected.
That study not only gives us a solid basis for comparing the performance of automat-
ically generated MOEAs to the performance of current state-of-the-art MOEAs, but it
also indicates directions to extend our AutoMOEA framework.

In this work, we propose a strongly extended framework, hereon called
AutoMOEA+. The main extensions to obtain AutoMOEA+ are the following. First, we
integrate a further level of composability that allows us to separate between the multi-
objective related aspects of the search from the underlying EA. Effectively, this compos-
ability refinement greatly expands the design space provided by our template, as any
existing MOEA can be coupled with the most relevant EAs from the literature. More
importantly, by doing so we contemplate the potential interactions between multi-
objective components and underlying EAs. Second, we extend our template to com-
prise decomposition-based algorithms (Zhang and Li, 2007; Zhang et al., 2009; Hughes,
2003; Deb and Jain, 2014), in addition to the originally comprised dominance- (Deb
et al., 2002; Zitzler et al., 2002) and indicator-based (Beume et al., 2007; Zitzler and
Künzli, 2004; Bader and Zitzler, 2011) algorithms. Specifically, we implement compo-
nents from relevant decomposition-based MOEAs such as MOPSO (Hughes, 2003) and
NSGA-III (Deb and Jain, 2014), and we allow the free hybridization between all three
design paradigms considered. In fact, this is the first work to consider such possibility,
and it is one of the major contributions of our study. Third, we further exploit our uni-
fied definition of populations and archives to demonstrate how metrics that had been
originally proposed as archive truncation techniques can be used as components of our
general preference relations. We take as example the metric proposed for the adaptive
grid archiver of PAES (Knowles and Corne, 2000), and recast it as a diversity compo-
nent that can be used in combination with any of the other preference components
available in our template.

The automatically devised MOEAs produced in this work (dubbed AutoMOEA+
algorithms) present better and/or more robust performance than the state-of-the-art
results identified in Bezerra et al. (2018). Specifically, the AutoMOEA+ algorithms consis-
tently outperform the 9 MOEAs (and their variants) used for that investigation, among
which we highlight NSGA-II (Deb et al., 2002), SPEA2 (Zitzler et al., 2002), IBEA (Zit-
zler and Künzli, 2004), SMS (Beume et al., 2007),1 MOEA/D (Zhang and Li, 2007; Zhang
et al., 2009), MO-CMA-ES (Igel et al., 2007; Voß et al., 2010), HypE (Bader and Zitzler,
2011), and NSGA-III (Deb and Jain, 2014). Interestingly, almost all novel components
implemented in this work appear in the automatically generated designs, and often
in ways that are very different from what human designers would tend to do. These
results further evidence the need for flexible approaches that can be explored in a sys-
tematic, automated, and effective way, as we propose in this paper.

On some many-objective scenarios, the challenge posed by the disagreements be-
tween performance metrics deceives the automatic methodology into selecting designs
that are high-performing according to some metrics, but not according to others. More
precisely, the traditional approaches to automated algorithm design consider a single
performance metric to be optimized, typically runtime or solution quality (Birattari,
2009; Hoos, 2012). The latter is typically assessed through a unary performance metric
when dealing with the automatic design of a multi-objective algorithm (Dubois-Lacoste
et al., 2011; López-Ibáñez and Stützle, 2012; Bezerra et al., 2016). However, when the

1This algorithm is generally referred to as SMS-EMOA in the literature. Here, we dub it SMS for brevity.

3

http://dx.doi.org/10.1162/evco_a_00263

This is a pre-print version of the article: M. López-Ibáñez, and T. Stützle. Evolutionary Computation,
2020. doi:~10.1162/evco_a_00263

number of objectives is large, the disagreements between performance metrics become
strong, and designing with a single metric in mind will inevitably lead to a design
that is well-performing according to some metrics, but poor-performing according to
others (Jiang et al., 2014; Bezerra et al., 2018). To overcome this issue, we propose a
multi-objective formulation of the design process, following a recent research trend on
multi-objective configuration of algorithms (Bezerra et al., 2017). Specifically, instead
of evaluating solution quality through a single performance metric, we consider that
the set of metrics used in the assessment should be jointly optimized during design,
as in a multi-objective problem. Effectively, we propose a multi-objective design of
multi-objective algorithms. Our experimental evaluation, which focuses on the most
challenging experimental scenario, demonstrates the effectiveness of this approach. In
particular, the newly devised algorithm shows robustness and effectiveness for all met-
rics considered.

The main contributions of this paper can be summarized as follows:

1. An augmented framework for instantiating MOEAs, which comprises the most
relevant underlying EAs and design paradigms (dominance-, indicator-, and
decomposition-based).

2. An empirical demonstration that state-of-the-art MOEAs for continuous optimiza-
tion can be automatically designed under different experimental scenarios, and
that these designs combine elements from different MOEAs/design paradigms.

3. The proposal of a multi-objective formulation of the automatic MOEA design
problem, from which one can automatically devise a state-of-the-art MOEA for
MaOPs robust across a set of disagreeing performance metrics.

The remainder of this paper is organized as follows. In Section 2, we review the
original AutoMOEA framework and detail how we augment it in this work. In Section 3,
we automatically design a set of MOEAs that display state-of-the-art performance on
most experimental scenarios considered. Next, Section 4 details the multi-objective
design formulation adopted for specific many-objective scenarios, and presents the ex-
perimental results confirming its effectiveness. We conclude in Section 5.

2 An augmented MOEA template

Automated algorithm design approaches observed in the literature can be broadly
split into two main categories: (i) bottom-up approaches (e.g. hyperheuristics, Ross
(2005)), where heuristics are crafted using little human insights and heavily relying
on automatically-discovered knowledge, and; (ii) top-down approaches, where human
knowledge provides a structural basis (e.g., a template or a grammar) and the auto-
mated design process attempts to design the best possible algorithm based on this
structure. The scope of the former has been traditionally restricted to the design of
heuristics. By contrast, top-down approaches have been increasingly proven effective
whether for designing simple heuristics or complex algorithm portfolios (e.g. ensemble
methods).2

In previous work (Bezerra et al., 2016), we studied the most popular MOEA
designs found in the literature and proposed a template of the general design of a

2Configurable algorithmic frameworks, such as ParadisEO-MOEO (Cahon et al., 2004) and Borg (Hadka
and Reed, 2013), naturally enable top-down approaches. As we later further detail, the experimental assess-
ment conducted in this work has partially relied on the former.

4

http://dx.doi.org/10.1162/evco_a_00263

This is a pre-print version of the article: M. López-Ibáñez, and T. Stützle. Evolutionary Computation,
2020. doi:~10.1162/evco_a_00263

Algorithm 1 AutoMOEA+ template proposed in this work.
1: pop← Initialization ()
2: if type (popext) 6= none
3: popext← pop

4: repeat
5: popnew← UnderlyingEA (pop)
6: popnew← Evaluation (popnew)
7: pop ← Replacement (pop, popnew)
8: if type (popext) = bounded then
9: popext← ReplacementExt (popext, popnew)

10: else if type (popext) = unbounded then
11: popext← popext ∪ pop
12: until termination criteria met
13: if type (popext) = none
14: return pop
15: else
16: return popext

Algorithm 2 UnderlyingEA = GA
Input: pop

1: popnew←∅
2: pool←MatingGA(pop)
3: popnew←VariationGA(pool)
4: return popnew

Algorithm 3 UnderlyingEA = DE
Input: pop

1: popnew←∅
2: for i = 1 to λ do
3: {target, donor} ←MatingDE (pop)
4: trial←VariationDE (target, donor)
5: S←OnlineReplace(pop, target, trial)
6: popnew←popnew ∪ S
7: return popnew

MOEA, shown in Algorithms 1 and 2. Each abstract component of this template rep-
resents a choice between different algorithmic components found in the literature. A
component-wise algorithmic framework that implements this template and provides a
set of options for each abstract component can instantiate diverse MOEAs. Our origi-
nal AutoMOEA framework could instantiate at least six of the most relevant dominance-
and indicator-based MOEAs from the literature (Fonseca and Fleming, 1993; Deb et al.,
2002; Zitzler et al., 2002; Zitzler and Künzli, 2004; Beume et al., 2007; Bader and Zitzler,
2011), in addition to a large number of valid and novel MOEA designs.

In this work, we augment our previously proposed AutoMOEA framework in sev-
eral directions, hereon called AutoMOEA+. First, we distinguish between multi-objective
components and underlying EAs, and allow coupling the same set of MO compo-
nents with different underlying EAs. This enables the AutoMOEA+ framework to in-
stantiate many MOEAs from the literature that are based on differential evolution (Ab-
bass et al., 2001; Abbass, 2002; Madavan, 2002; Robič and Filipič, 2005; Kukkonen and
Lampinen, 2005; Tušar and Filipič, 2007; Tagawa et al., 2011). Second, we incorporate
decomposition-based algorithmic components, and model these components in a man-
ner that allows designers to combine, within a single algorithm, components originally
proposed for dominance-, indicator-, and decomposition-based MOEAs. Finally, we
also recast techniques originally proposed for archive truncation as options available
for our preference components.

2.1 Original template

The main abstract components that characterize a MOEA depicted in Algorithms 1
and 2 are listed in Table 1, where both atomic and composite components are given.

5

http://dx.doi.org/10.1162/evco_a_00263

This is a pre-print version of the article: M. López-Ibáñez, and T. Stützle. Evolutionary Computation,
2020. doi:~10.1162/evco_a_00263

Table 1: Main algorithmic components of AutoMOEA+.
Component Parameters

Preference 〈SetPart, Refinement, Diversity 〉
Mating 〈PreferenceMat, Selection 〉

Replacement 〈PreferenceRep, RemovalRep 〉
ReplacementExt 〈PreferenceExt, RemovalExt 〉

UnderlyingEA∗ 〈Mating, Variation 〉
(*) Novel component implemented in this work.

A composite component such as Mating may comprise composite and/or atomic com-
ponents. Algorithmic components (options for the abstract components) are listed in
Table 2, where we make a distinction between components already available in the
AutoMOEA framework and components implemented in this work for AutoMOEA+. Be-
low we briefly summarize abstract components of the original AutoMOEA framework;
for further details on the original components, we refer to Bezerra et al. (2016).

Preference is a composite component that models general preference relations (Zit-
zler et al., 2010), and comprises a sequence of three atomic components in the follow-
ing order: (1) SetPart partitions solutions into dominance equivalent; (2) Refinement
ranks solutions within each partition, e.g., using quality indicators; and (3) Diversity is a
Pareto-noncompliant metric used to keep the population well-spread across the objec-
tive space. A Preference component can also contain less than three atomic components
since SetPart, Refinement, and/or Diversity can be set to none.

Mating uses traditional Selection operators to select individuals to undergo varia-
tion. In the case of tournaments, solutions are compared based on a preference rela-
tion PreferenceMat.

The Replacement and ReplacementExt components define environmental selection
and external archive truncation (if a bounded external archive is used), respectively.
Both Replacement components ensure elitism, and comprise two other components,
namely, a preference relation used to compare solutions (PreferenceRep and PreferenceExt,
respectively), and a parameter that determines the frequency with which the preference
relation is computed (the removal policies RemovalRep and RemovalExt, respectively):
with one-shot removal, preferences are computed once and replacement takes place;
sequential removal recomputes preferences every time a solution is discarded.

pop and popext are sets of solutions that represent either populations or archives.
pop takes part in the evolutionary process and can be configured as a regular fixed-size
population that may contain dominated solutions or as a bounded-size archive that only
contains nondominated solutions. popext is an optional external archive that does not
participate in the evolutionary process and may be either bounded or unbounded.

Initialization and Variation comprise problem-specific components, namely, the gen-
eration of an initial population and the variation operators that produce new solutions
from existing ones.

2.2 Underlying EAs

Most MOEA proposals either specify the underlying EA as an integral part of a MOEA
design or treat it as an irrelevant detail. However, our recent experimental assessment
has shown that a proper choice of the underlying EA operators is critical to the effec-
tiveness of a MOEA, given the strong interactions between MO-components and EA
operators (Bezerra et al., 2018). Therefore, our augmented AutoMOEA+ framework al-

6

http://dx.doi.org/10.1162/evco_a_00263

This is a pre-print version of the article: M. López-Ibáñez, and T. Stützle. Evolutionary Computation,
2020. doi:~10.1162/evco_a_00263

Table 2: Algorithmic component options available in the AutoMOEA+ framework. The
symbol (*) denotes novel components implemented in this work.

Component Domain

SetPart

none (—)
dominance count
dominance rank
dominance strength
dominance depth
dominance depth-rank (DR)

Refinement

none (—)
binary Iε+
binary I−H
exclusive HV contribution (I1H)
shared HV contribution (IhH)
weighted ranking (w-rank)∗

Diversity

none (—)
niche sharing (σshare)
nearest neighbors (NN)
crowding distance
adaptive grid (AGA)∗

reference lines∗

Component Domain

Selection

deterministic tourn. (DT)
stochastic tourn. (ST)
random

Removal { sequential, one-shot }

type (pop) { fixed-size, bounded }

type (popext) { none, bounded, unbounded }

UnderlyingEA ∗ { GA, DE }

Condition Component Domain

UnderlyingEA
= DE

Online
Replace∗

none,
Pareto,
WeakPareto

Refin.= w-rank
or Diversity
= ref. lines

Λdist
∗

uniform,
dichotomic,
two-layer

Λdist
= two-layer

Λfocus
∗

peripheral,
central,
balanced

lows the combination of MO-components with two different underlying EAs, namely
genetic algorithms (Goldberg, 1989) and differential evolution (Price et al., 2005). We model
the underlying EA as a composite component UnderlyingEA that comprises composite
components Mating and Variation (Table 1), since the choice of EA not only affects vari-
ation operators but also the selection of the individuals that undergo variation. These
two options are further explained next.

Genetic algorithms (GAs) was the only option in our original AutoMOEA framework,
and is described in Algorithm 2. When this underlying EA is chosen (option GA in
Table 2), a mating pool of solutions is built as described by component MatingGA. Com-
ponent VariationGA comprises the sequential application of (domain-specific) crossover
and mutation operators. In this paper, we use the well-known SBX crossover and poly-
nomial mutation operators.

Differential evolution (DE) is detailed in Algorithm 3, which generalizes the structure
of most DE-based MOEAs. Component MatingDE selects target and donor vectors, and
component VariationDE creates a trial vector through differential mutation and bino-
mial crossover. A distinguishing feature of multi-objective DE algorithms is the On-
lineReplacement component (Madavan, 2002; Robič and Filipič, 2005; Kukkonen and
Lampinen, 2005). When this component is active, a newly created trial solution can
immediately replace the target vector if a given acceptance criterion is satisfied. Some
popular DE algorithms differ exactly in this acceptance criterion: DEMO (Robič and
Filipič, 2005) uses Pareto dominance, whereas GDE3 (Kukkonen and Lampinen, 2005)
uses weak Pareto dominance. We have added both options to our AutoMOEA+ frame-
work (Table 2). If the target vector is replaced, then the size of popnew does not increase;

7

http://dx.doi.org/10.1162/evco_a_00263

This is a pre-print version of the article: M. López-Ibáñez, and T. Stützle. Evolutionary Computation,
2020. doi:~10.1162/evco_a_00263

else, if trial and target are nondominated (or if online replacement is not adopted at all),
trial is added to popnew. This is represented in Algorithm 3 by the set S produced by
OnlineReplacement and later added to popnew: if trial replaces target, S is an empty set
and popnew remains unchanged; else, S is a singleton containing only trial, which is
added to popnew. Online replacement would be redundant together with steady state
selection (λ = 1) since it becomes equivalent to Replacement.

Another novelty of our work is the possibility of using multiple DE schemes (Price
et al., 2005). Specifically, so far only the DE/rand/1 scheme has been adopted in the
literature. Here, we also implement a preference-based selection scheme, which is an
adaptation of the DE/target-to-best/1 scheme (TtoB, for short). Concretely, designers may
configure MatingDE to select target and donor vectors using any PreferenceMat and Selec-
tion options, thus increasing the odds of producing a better trial vector. However, this
scheme cannot be adopted in combination with online replacement, since PreferenceMat

is computed before variation starts, and a trial vector replacing a target vector during
variation would lead to an inconsistently evaluated population.3

2.3 Deconstructing decomposition

Decomposition (Hughes, 2003; Zhang and Li, 2007; Zhang et al., 2009; Deb and Jain,
2014) is a search paradigm originally considered by the decision making community
and adapted for MOEA research. The basic principle behind this paradigm is to decom-
pose the original MOP into subproblems and optimize them in parallel. Each subprob-
lem is a single-objective projection of the original MOP, which can be obtained using
several different methods (Zhang and Li, 2007). An analysis of the decomposition-
based MOEA literature reveals that most proposals can be classified as Refinement com-
ponents. Specifically, most decomposition-based algorithms are able to simultaneously
evaluate the convergence of a population (its closeness to the Pareto front) and its
diversity (how well the front is covered), with the latter being ensured by the exis-
tence of multiple subproblems and the former by optimizing each subproblem. More
importantly, decomposition approaches are able to distinguish between dominance-
equivalent solutions, the baseline definition for our Refinement components. One ex-
ception is NSGA-III (Deb and Jain, 2014), which uses decomposition only for diversity
purposes and ensures convergence using the same SetPart component as NSGA-II (Deb
et al., 2002). In this work, we implement two components from decomposition-based
MOEAs:

Weighted ranking was originally proposed in MOPSO (Hughes, 2003). In our frame-
work, it is provided as an option of component Refinement, and works as follows. So-
lutions are ranked according to their performance on each subproblem defined by a
weight vector λ ∈ Λ, where Λ is a given set of weight vectors. The overall quality of a
solution equals its aggregated performance considering the ranks from each subprob-
lem. We use here the algebraic sum to aggregate the performance on the subproblems,
but other aggregation functions are possible.

Reference lines correspond to the method used in NSGA-III to keep the population
spread along the Pareto front. Thus, in our framework, it is an option of component
Diversity. A reference line is the line intersecting the origin of the axes and a reference

3It would also be possible to use a similar modeling to comprehend other underlying EAs, such as CMA-
ES and even particle swarm optimization (PSO, Eberhart and Kennedy (1995)). However, this would require
operators aware of population-related aspects, such as neighborhood topology in PSO. We leave such inves-
tigation for future work.

8

http://dx.doi.org/10.1162/evco_a_00263

This is a pre-print version of the article: M. López-Ibáñez, and T. Stützle. Evolutionary Computation,
2020. doi:~10.1162/evco_a_00263

point defined by a weight vector λ ∈ Λ. When ranking solutions, each solution is first
associated to its nearest reference line in terms of perpendicular distance in the objec-
tive space. Next, niche counts are computed for each reference line considering only
solutions already selected for the next iteration by previous preference components.
For example, when dominance depth is used as SetPart in NSGA-III, the selected so-
lutions are those from the lowest depth fronts that fit in the next population. Finally,
the procedure iteratively selects the reference line with lowest niche count and adds
one of its associated solutions to the next population. Since we did not find a straight-
forward way to differentiate between a one-shot and a sequential Removal policy for
this reference-lines procedure, we only combine it with the one-shot policy.

Two additional parameters are crucial in decomposition-based algorithms: the car-
dinality and the distribution of the generated weight set Λ. In our framework, the car-
dinality of Λ is upper-bounded by Λr · µ, where Λr is a numerical parameter and µ
is the population size. If the number of weights generated by some method exceeds
the upper bound, excessive weights are discarded at random. For the distribution
of Λ, our framework provides methods for generating weights with a uniform distri-
bution (Das and Dennis, 1997), the dichotomic method proposed by Aneja and Nair
(1979) for bi-objective problems, and the two-layer method of NSGA-III (Deb and Jain,
2014) for many-objective problems. This latter method uses two numerical parameters
H1 and H2 to determine how many weights will be generated using a uniform distri-
bution in the outer and inner layers, respectively.4 However, the effective goal of these
parameters is to determine the search focus a designer wants to use, i.e., the proportion
between weight vectors in the two layers. Rather than configuring these parameters
independently, we provide a set of options Λfocus, as follows:

Peripheral focus favors the outer layer by setting H1 to the maximum value feasible so
that there exists an H2 value for which |Λ| ≤ Λr · µ.

Central focus favors the inner layer by setting H2 to the maximum value feasible so
that there exists an H1 value for which |Λ| ≤ Λr · µ.

Balanced tries to balance the importance of both layers. Concretely, H1 and H2 are set
to a maximum feasible value h so that |Λ| ≤ Λr · µ. If, however, it is still possible to
increase either H1 or H2, that parameter is increased to prevent wasting weights.

2.4 Archive truncation techniques

Many different archive truncation techniques, or archivers, for short, have been pro-
posed in the literature, as reviewed by López-Ibáñez et al. (2011), who consider that
metrics proposed for environmental selection and metrics specifically proposed to keep
an external archive bounded both serve the same purpose, and should altogether be
considered archivers. In the original AutoMOEA framework we have followed this for-
mulation and, if configured as bounded-size archives, the archiving of both pop and
popext are commonly defined by Replacement components. In Bezerra et al. (2016),
we have demonstrated the benefits of this formulation by recasting metrics originally
proposed for environmental selection into archivers.

In this work, we further demonstrate the benefits from this formulation by re-
casting metrics originally proposed to keep external archives bounded into Preference

4A weight vector belongs to the outer layer if at least one of its components equals zero; otherwise it
belongs to the inner layer.

9

http://dx.doi.org/10.1162/evco_a_00263

This is a pre-print version of the article: M. López-Ibáñez, and T. Stützle. Evolutionary Computation,
2020. doi:~10.1162/evco_a_00263

components that can be used for any preference-based selection. In addition, this for-
mulation allows the free hybridization of archivers with other metrics. We take as ex-
ample the adaptive grid archiver (AGA) from PAES (Knowles and Corne, 2000), which
discretizes the objective space into grid cells that are dynamically computed as a func-
tion of the extreme solutions found during the run, and of a numerical parameter that
specifies the number of cells per objective. Solutions are compared based on the crowd-
edness of the grid cell to which they belong, with less crowded regions being favored.
In our framework, we model the adaptive grid approach as a Diversity component. As
part of a Preference component, it can be used as the selection criterion for building
the mating pool, as the replacement strategy of pop or as an archive truncation tech-
nique. For example, one could configure Mating to use a Preference relation that com-
bines the decomposition-based weighted ranking as Refinement component with the
adaptive grid approach as a Diversity component. Indeed, this is an improvement over
the original applications of the AGA (Knowles and Corne, 2000), which had already
been considered for mating selection, but in a more simplified Preference component.

The extensions detailed above over the original AutoMOEA framework greatly im-
prove the flexibility of the resulting AutoMOEA+ framework, enabling us to automat-
ically design state-of-the-art MOEAs for multi- and many-objective continuous opti-
mization, as we discuss next.

3 Automatically designing effective MOEAs

In this section, we automatically design MOEAs by configuring our AutoMOEA+ frame-
work using irace (López-Ibáñez et al., 2016), an automatic algorithm configuration
tool. Our experimental analysis of the automatically designed MOEAs (hereon called
AutoMOEA+ algorithms) has three main goals. First, we analyze to what extent the
AutoMOEA+ algorithms match what human designers would choose as effective com-
ponents, and whether the new components added to the framework appear in the
AutoMOEA+ algorithms. Second, we assess whether the AutoMOEA+ algorithms can out-
perform the ones generated from our previous AutoMOEA framework (Bezerra et al.,
2016), and how they differ. Third, we assess whether the AutoMOEA+ algorithms are
able to outperform the state-of-the-art MOEAs identified in Bezerra et al. (2018)5.

3.1 Parameter space of AutoMOEA+

The parameter space of the AutoMOEA+ framework contains, besides numerical MOEA
parameters such as population size (µ) and number of offspring (λ) shown in Table 3,
parameters for selecting options for abstract algorithmic components that define the
MOEA design (Tables 1 and 2), and conditional parameters that need to be set if par-
ticular options are selected. Conditional parameters are listed in Table 2, already ex-
plained in the previous section, and in Table 3, which we detail next. A first group
of parameters concerns archives. When pop is configured as a bounded-size archive
instead of a fixed-size population, µ is interpreted as its maximum capacity and the ini-
tial number of solutions is given by µ0 = µr · µ. When a bounded-size external archive

5We have empirically verified that the performance of the implementations used in this work match what
has been reported in the original papers. Specifically, we primarily adopt MOEA implementations from well-
established frameworks such as ParadisEO-MOEO (Cahon et al., 2004), Shark (Igel et al., 2008), PaGMO (Bis-
cani et al., 2010), and PISA (Bleuler et al., 2003). When unavailable from those sources, we adopt either
official implementations (Zhang, 2007) or implement MOEAs ourselves reusing available code (DE-based
and NSGA-III). In the case of NSGA-III, the core implementation is provided by Chiang (2014), from which
we fixed existing issues.

10

http://dx.doi.org/10.1162/evco_a_00263

This is a pre-print version of the article: M. López-Ibáñez, and T. Stützle. Evolutionary Computation,
2020. doi:~10.1162/evco_a_00263

Table 3: Parameter space for tuning parameters of the AutoMOEA template.
Parameter Domain

µ = |pop| {10, 20, . . . , 100}
λ = |popnew| 1 or λr · µ

λr [0.1, 2]

Condition Add. param. Domain

type (pop) = bounded µ0 µr · µ
µr [0.1, 1]

type (popext) Next {100, 300, 500}
= bounded

UnderlyingEA = GA pc, pm [0, 1]
ηc, ηm {1, . . . , 50}

MutScheme {bitwise, fixed}

MutScheme = bitwise pv 1/nvar

MutScheme = fixed pv [0.01, 1]

Condition Add. param. Domain

UnderlyingEA = DE CR [0.01, 1]
F [0.1, 2]

Scheme {rand, TtoB}

Selection = ST γ [0.6, 0.9]

Diversity = sharing σshare [0.1, 1]

Diversity Mat = NN kmethod {default, k}
k {1, . . . , 9}

Diversity = AGA l {1, . . . , 4}
Refine = weighted rank. Λr [0.5, 2]
or Diversity = ref. lines

popext is used, its capacity is given by Next. The next group of parameters concerns the
underlying EA. When GA is selected, pm and pc give the probability of applying poly-
nomial mutation and SBX crossover, respectively, for each individual or pair thereof.
These operators have associated distribution indices ηm and ηc that must be config-
ured. Our framework implements two different mutation schemes for real-parameter
optimization (Deb and Deb, 2014): bitwise sets the mutation probability per variable pv
to 1/nvar; fixed leaves pv as a parameter to be configured. When the underlying EA
is set to DE, only two parameters must be set, namely, the crossover probability (CR)
and the scaling factor (F) of the DE operators. Whatever the underlying EA, when the
Selection component of Mating is set to deterministic tournament (DT), then TournamSize
controls the tournament size; if it is set to stochastic tournament (ST), then γ controls
the probability of selecting the best contestant as the winner of a binary tournament.
The last group of conditional parameters concerns Preference components. When the
sharing diversity metric is selected, the radius of the niches (σshare) must be configured.
When the diversity metric is based on nearest neighbors (NN), mating considers the
distance to the k-th nearest one, whereas replacement behaves as a nearest neighbor
density estimation (see Bezerra et al. (2016) for details). When the AGA diversity met-
ric is adopted, the number of grid cells is computed as a function of a discretization
parameter l. Finally, if a decomposition-based preference component is selected, the
upper bound size for the weight set Λ is a function of a numerical parameter Λr.

We remark that the parameter space used to configure the AutoMOEA+ algorithms
ensures fairness in the comparisons to the original AutoMOEAs and also to the state-of-
the-art MOEAs. Specifically, the domains we adopt in this work are reused from the
original proposal of the AutoMOEA framework when the given component was already
available in that work (Bezerra et al., 2016). In addition, MOEAs in the state-of-the-art
assessment were given the same underlying EA choice and their associated parameters
were configured using the same domains also adopted here (Bezerra et al., 2018).

11

http://dx.doi.org/10.1162/evco_a_00263

This is a pre-print version of the article: M. López-Ibáñez, and T. Stützle. Evolutionary Computation,
2020. doi:~10.1162/evco_a_00263

Table 4: Experimental setup used for the design of the AutoMOEA+ algorithms. The
differences in setup w.r.t. to the design of the original AutoMOEAs are underlined.

Factor Details

Problems DTLZ{2, 4–7} and WFG1–9

M {2, 3, 5, 10}

nvar {20, 21, . . . , 60}
FEmax {2 500, 10 000, 40 000}

ntesting {30, 40, 50}

ntuning nvar \ ntesting

tmax 1h (FEmax = 2 500)
10min (otherwise)

Factor Details

Configurator irace

Configuration budget 20 000 MOEA runs

Configuration metric Iε+ (M = 10), Ird
H (otherwise)

Test metrics Ird
H , Iε+, IIGD

Test repetitions 25

Upper bound (u)

[10]M , if M ∈ {2, 3}
[15]5, if M = 5

[25]10, if M = 10

Reference point (r) 1.1 · u

3.2 Automatic design setup

The idea of automatic MOEA design by coupling a component-wise MOEA framework
with an automatic configuration tool was originally proposed in Bezerra et al. (2016);
thus, we refer to the original publication for the general details of the proposal. Here,
we focus on the setup used in the present paper, and later we briefly highlight rele-
vant differences between the setups used for configuring AutoMOEA and AutoMOEA+.
Several elements are needed to set up an automatic design scenario: the benchmark
problems, the stopping criteria for the MOEAs, the parameters of the automatic config-
urator, and the unary performance metric that guides the configurator. Since we wish
to compare with the state-of-the-art MOEAs from the literature previously identified
in Bezerra et al. (2018), we use the same setup we adopted for tuning MOEAs in that
work, summarized in Table 4 and detailed below. The values of M and FEmax and the
IIGD metric that had not been considered for the design of the original AutoMOEAs are
underlined.

Benchmark problems. We consider the box-constrained WFG (Huband et al., 2006)
and most DTLZ (Deb et al., 2005) benchmark problems (Problems DTLZ1 and DTLZ3
are excluded due to ceiling effects (Bezerra et al., 2018)) with M ∈ {2, 3, 5, 10} objec-
tives and nvar ∈ {20, 21, . . . , 60} variables. We reserve sizes ntesting ∈ {30, 40, 50} for
comparing algorithms and only use sizes nvar \ ntesting for the automatic design process
to separate between training and testing sets.

Stopping criterion of MOEAs. Each MOEA run is stopped after using a max-
imum of FEmax function evaluations. Here, we evaluate several values of
FEmax ∈ {2 500, 10 000, 40 000}. In addition, we set a maximum time limit per run to
prevent very long runs making the automatic design process infeasible. The time limit
is long (tmax = 1 hour) for FEmax = 2 500 assuming that such value represents an expen-
sive evaluation scenario. Otherwise, the maximum time limit is tmax = 10 minutes.

Configurator setup. We use irace (López-Ibáñez et al., 2016) as configurator. Given a
set of training benchmark functions and a parameter space description, irace searches
for good parameter configurations by evaluating configurations of the target algorithm
(in our case, instantiations of the AutoMOEA+ framework) on the benchmark functions
according to a given unary quality metric. Describing irace in detail is outside the scope

12

http://dx.doi.org/10.1162/evco_a_00263

This is a pre-print version of the article: M. López-Ibáñez, and T. Stützle. Evolutionary Computation,
2020. doi:~10.1162/evco_a_00263

of the paper and more details can be found in López-Ibáñez et al. (2016). We run irace
with its default settings and each run of irace has a budget of 20 000 MOEA runs.

Unary quality metrics. Since irace is a single-objective optimizer, it uses unary quality
metrics to evaluate the performance of a MOEA run. In particular, we use the unary
ε-metric (Iε+) for large number of objectives (M = 10) and the relative deviation from
an approximation of the optimal hypervolume (Ird

H) otherwise.6 Before computing a
metric, we discard objective vectors that exceed the bounds (u) given in Table 4 to avoid
strong outliers that would skew results. Finally, the nadir point in the computation of
the Ird

H is r = 1.1 · u to ensure extreme solutions contribute to the hypervolume.

With the above setup, we run irace once for each combination of M and FEmax,
resulting in 12 different AutoMOEA+ algorithms. For brevity, we refer to a particular
scenario using the 〈M,FEmax〉 notation, e.g, 〈2, 10k〉 refers to a scenario where prob-
lems present two objectives and MOEAs are allowed to use 10 000 FEs. In order to
assess their quality, we run each AutoMOEA+ algorithm on each of the benchmark func-
tions with sizes ntesting. We perform 25 repetitions of each run and compute the mean
value for each quality metric Iε+, Ird

H , and inverted generational distance (IIGD).7 All
experiments are run on a single core of Intel Xeon E5410 CPUs @ 2.33GHz with 6MB
cache size under Cluster Rocks Linux version 6.2/CentOS 6.2.

3.3 Trends from the generated AutoMOEA+ algorithms

The designs of the automatically designed AutoMOEA+ algorithms are given in Table 5.
Although it is not possible to tell whether a particular component significantly con-
tributes to the performance of a MOEA design without a component-by-component
analysis (Fawcett and Hoos, 2016) and possibly various repetitions of the configuration
process for each scenario, some trends appear in the designs that have been obtained
for the 12 different scenarios.

We first focus on the general trends among the AutoMOEA+ designs for scenarios
with a number of objectives M ∈ {2, 3, 5} (top three blocks of Table 5, with a grey
background), as these designs share a number of similarities. First, the underlying
EA choice differs from what human designers have typically adopted in the litera-
ture, as DE was always selected instead of GA. Even concerning the multi-objective
DE literature we see a contrast to the traditional designs, since irace always chooses the
preference-based scheme (i.e., DE/target-to-best/1, which we propose here) and, as a
consequence, never the online replacement. However, it is difficult to find an overall
pattern for Mating, though deterministic tournaments are used more often than stochas-
tic ones. Second, in contrast to PreferenceMat, patterns are clear for component Replace-
ment, where hypervolume-based Refinement is almost always used, and scenarios are
nearly evenly split between using steady-state selection or sequential replacement. Fi-
nally, external archives are more frequently used for lower M values, and the same
pattern is observed for Refinement components in ReplacementExt.8

6 All metrics considered in this work and also in our state-of-the-art assessment (Bezerra et al., 2018)
are unary formulations of binary metrics, using reference fronts for a common comparison. We adopt this
formulation to avoid the total number of comparisons that truly binary metrics would require. For further
details on the metrics and reference fronts used for their computation, see Bezerra et al. (2018).

7We are aware that IGD is not Pareto-compliant under some conditions. Yet, we use it to reproduce the
setup used in a major share of the literature on many-objective EAs and also in our state-of-the-art assess-
ment (Bezerra et al., 2018).

8One may assume that using an external archive is always better than not using it when function eval-
uations are used as stopping criterion, but the time-constrained setups we adopt help explain the cases in
which no external archive is used.

13

http://dx.doi.org/10.1162/evco_a_00263

This
is

a
pre-print

version
of

the
article:

M
.López-Ibáñez,

and
T.Stützle.

Evolutionary
C

om
putation,

2020.doi:~10.1162/evco_a_00263

Table 5: Configurations of the AutoMOEA+ framework selected by irace for each 〈M, FEmax〉 design scenario. Each row describes a
different AutoMOEA+ design. The complete set of parameters is provided as supplementary material (Bezerra et al., 2019). Notice that
λ = 1 indicates steady-state selection.

Mating Replacement ReplacementExt pop MatingDE
〈M, FEmaxk〉 Selection SetPart Refine Diversity SetPart Refine Diversity Removal Next Refine Diversity Removal type µ µr λ Scheme

〈2, 2.5k〉 DT(8) strength Iε+ — — IhH — — 300 IhH NN 1-shot fixed-size 60 — 1 TtoB

〈2, 10k〉 DT(4) depth I1H NN DR IhH — — — — — — bounded 100 0.44 1 TtoB

〈2, 40k〉 ST(0.79) — — sharing — Iε+ sharing seq. 500 IhH crowd. 1-shot bounded 60 0.84 λr TtoB

〈3, 2.5k〉 DT(8) DR I1H crowding rank I1H NN — 500 IhH ref. linesa 1-shot fixed-size 60 — 1 TtoB

〈3, 10k〉 ST(0.77) — I1H AGA (1) — I1H AGA(2) seq. 500 — AGA(3) seq. fixed-size 40 — λr TtoB

〈3, 40k〉 DT(2) — I1H — — I1H — seq. 500 — sharing seq. bounded 90 0.76 λr TtoB

〈5, 2.5k〉 DT(4) depth w-rankb crowd. rank I1H crowd. — 300 — AGA(2) 1-shot fixed-size 30 — 1 TtoB

〈5, 10k〉 DT(4) DR w-rankc AGA(1) depth I1H sharing — — — — — fixed-size 70 — 1 TtoB

〈5, 40k〉 ST(0.82) — I1H NN(8) — I1H crowd. seq. — — — — fixed-size 60 — λr TtoB

〈10, 2.5k〉 random — — — — Iε+ NN — 500 w-rank ref. lines 1-shot fixed-size 50 — 1 rand

〈10, 10k〉 random — — — rank Iε+ sharing — 500 IhH ref. lines 1-shot fixed-size 90 — λr —

〈10, 40k〉 ST(0.84) count — sharing DR — ref. lines — — — — — fixed-size 20 — 1 —

a with Λr = 1.15, Λdist = uniform; b with Λr = 1.54, Λdist = two-layer, Λfocus = peripheral; c with Λr = 0.98, Λdist = uniform

14

http://dx.doi.org/10.1162/evco_a_00263

This is a pre-print version of the article: M. López-Ibáñez, and T. Stützle. Evolutionary Computation,
2020. doi:~10.1162/evco_a_00263

We next discuss the similarities and differences in the structure of the AutoMOEA+
algorithms focusing on the experimental factors that constitute scenarios:

M : First, while all M < 10 designs use UnderlyingEA = DE, two of three M = 10
designs adopt UnderlyingEA = GA. A second affected component is Refinement. The
IhH component is clearly frequent in bi-objective scenarios, whereas the I1H indica-
tor is chosen more frequently when M ∈ {3, 5}. Likely, this is explained by the
computational overhead of the IhH indicator since, when M = 3, no Refinement com-
ponent is used for the external archives except for the scenario with a larger cutoff
time. When M = 10, Iε+ becomes the standard refinement option for PreferenceRep,
but further investigation would be required to determine if this is a consequence of
changing the performance metric for irace when M = 10. Finally, the occurrences
of decomposition-based components increases as M grows: component weighted
rank is the most selected Refinement option for mating selection when M = 5, and all
algorithms for M = 10 use at least one decomposition-based component.

FEmax: The most evident insight we observe is that external archives tend to be-
come prohibitive when this budget is increased but the maximum runtime is
kept constrained. This is initially observed for scenarios with M = 3, where
only Diversity components are used when FEmax ∈ {10 000, 40 000}, and made worse
on scenarios with M = 5, where external archives are not used at all when
FEmax ∈ {10 000, 40 000}. The extreme situation is observed for AutoMOEA+〈10, 40k〉,
where no refinement metrics nor external archives are used. An exception to this
pattern is AutoMOEA+〈10, 10k〉, which uses an external archive with hypervolume esti-
mation.9 Yet, this AutoMOEA+ is the only algorithm for M = 10 scenarios that does
not use steady-state selection, so the adoption of a more costly external archive may
be a design compromise between expensive components.

Finally, we observe that the design of AutoMOEA+〈10, 40k〉 differs the most from all
other AutoMOEA+ designs. Specifically, this algorithm resembles NSGA-III in its ran-
domized mating selection, absence of refinement metrics, and use of GA. However,
given that no external archive is used, the population size is rather small for a many-
objective scenario. As we will discuss later, this design conducts a search that is too
restricted in the objective space, and yet it performs well according to the Iε+ indicator.

3.4 Comparison between designs from AutoMOEA+ and AutoMOEA

To assess the improvements provided by the extensions proposed in this work, we
first compare the AutoMOEA+ algorithms to the AutoMOEAs designed in Bezerra et al.
(2016). In particular, the AutoMOEAs were created for scenarios with FEmax = 10 000 and
M ∈ {2, 3, 5}, and we therefore only compare the algorithms on these scenarios; that is,
in Table 5, only the rows 〈2, 10k〉, 〈3, 10k〉, and 〈5, 10k〉 are considered in the follow-
ing discussion. The AutoMOEAs have been tuned separately for the DTLZ and WFG
benchmarks, while AutoMOEA+ is tuned across the two benchmark sets. Hence, the
AutoMOEAs benefit potentially stronger from tuning than the AutoMOEA+ algorithms (or
the state-of-the-art MOEAs, which use the same setup as the AutoMOEA+ algorithms).
Thus, the results in favor of the AutoMOEA+ algorithms are even more remarkable.

We start with a structural comparison of the AutoMOEA and AutoMOEA+ designs. To
aid this analysis we show in Table 6 the structure of the AutoMOEAs from Bezerra et al.
(2016). The main trends are the following. As previously discussed, DE is always used

9When M > 3, component IhH uses a Monte Carlo estimation instead of an exact computation.

15

http://dx.doi.org/10.1162/evco_a_00263

This is a pre-print version of the article: M. López-Ibáñez, and T. Stützle. Evolutionary Computation,
2020. doi:~10.1162/evco_a_00263

Table 6: Structure of the AutoMOEAs automatically designed in Bezerra et al.
(2016). Each row represents an AutoMOEA version, designed for a specific bench-
mark (D: DTLZ; W: WFG), M ∈ {2, 3, 5}, and FEmax = 10 000.

Mating Replacement ReplacementExt Num.

Selection SetPart Quality Diversity SetPart Quality Diversity Removal Quality Diversity Removal µ

D2 DT (8) — — crowd. DR Iε+ sharing — — crowd. seq. 100

D3 DT (8) DR Iε+ NN rank I1H sharing — I1H — seq. 80

D5 DT (8) rank I1H crowd. depth I1H — — Iε+ crowd. 1-shot 40

W2 DT (8) rank — crowd. DR I1H — — IhH crowd. 1-shot 20

W3 DT (4) count I1H crowd. strength I1H sharing seq. I1H NN seq. 10

W5 DT (8) count IhH crowd. — I1H — seq. IhH crowd. 1-shot 30

(All AutoMOEAs use Next = 500, except AutoW2 which uses Next = 300. In addition, all but AutoD2 and
AutoD3 use type (pop) = fixed-size, and all but AutoW3 and AutoW5 use steady-state replacement (λ = 1))

in the AutoMOEA+ algorithms. This design choice highlights the importance of pro-
viding different underlying EAs for a component-wise design, as for the AutoMOEAs
only the GA operators have been available. Selection approaches are similar between
AutoMOEA and AutoMOEA+ designs, as tournaments are always used. However, the
tournaments from the original AutoMOEAs are deterministic and enforce greater con-
vergence pressure due to the choice of four-ary (once) and eight-ary (five times) tour-
naments. This design difference is likely explained by the different underlying EAs
used. While environmental selection is similar in all designs, they differ in the usage of
external archives, which AutoMOEAs select more often.

We proceed to a performance comparison, and to this end a rank sum analysis is
given in Table 7 for all FEmax = 10 000 scenarios. The analysis in this section focuses on
the first three scenarios, for which the AutoMOEAs were originally designed. Moreover,
for a particular scenario, the entry labeled as Auto represents an aggregation of results
from the AutoMOEAs designed for each benchmark on that scenario. For instance, the
rank sum entry labeled as Auto on scenario 〈2, 10k〉 considers runs from AutoMOEAD2

on the DTLZ benchmark and from AutoMOEAW2 on the WFG benchmark. Thus, the
AutoMOEAs have the advantage of being two separate MOEAs tuned for each specific
benchmark, while the AutoMOEA+ algorithms are a single design that must generalise
over both benchmark sets.

Nevertheles, as seen in Table 7, the rank sums achieved by the AutoMOEA+ al-
gorithms are statistically significantly better than the sums achieved by the original
AutoMOEAs when M ∈ {2, 3}, whichever the metric considered. When M = 5, all
automatically designed MOEAs reach statistically equivalent results, but the original
AutoMOEAs achieve the lowest rank sums for the Iε+ and IIGD metrics. Two factors
can help explain this result. First, the disagreements between performance metrics are
known to increase with the increase in M (Jiang et al., 2014). Second, the AutoMOEAs
were custom-designed for each of the benchmarks. With the increase in M , it is nat-
ural that the difficulty posed by the benchmarks also increases (Bezerra et al., 2018).
Given that each benchmark comprises problems with different characteristics, it seems
natural that the need for specialized algorithmic components become stronger.

16

http://dx.doi.org/10.1162/evco_a_00263

This
is

a
pre-print

version
of

the
article:

M
.López-Ibáñez,

and
T.Stützle.

Evolutionary
C

om
putation,

2020.doi:~10.1162/evco_a_00263

Table 7: Rank sum difference (in parenthesis) between the given MOEA and the lowest ranked for different scenarios. MOEAs high-
lighted in boldface present rank sums statistically significantly lower than the others according to Friedman’s test. Notice that results
for scenario 〈10, 10k〉 do not include an AutoMOEA, since this scenario was not considered in the original proposal of the AutoMOEA
framework (Bezerra et al., 2016). Moreover, state-of-the-art MOEAs are run as configured in Bezerra et al. (2018); for details on the
selected underlying EA for a given MOEA on a given scenario, we refer to that work.

Scenario 〈2, 10k〉

I rd
H Auto+ IBEA (37) SMS (56) Auto (92) SPEA2 (99) NSGA-II (113) CMA (193) HypE (194) MOEA/D (196) NSGA-III (237)

Iε+ Auto+ SMS (59) IBEA (64) SPEA2 (99) NSGA-II (129) Auto (141) HypE (186) CMA (210) MOEA/D (220) NSGA-III (248)

IIGD Auto+ SMS (48) SPEA2 (75) IBEA (104) HypE (139) NSGA-II (157) Auto (160) CMA (268) NSGA-III (268) MOEA/D (277)

Scenario 〈3, 10k〉

I rd
H Auto+ SMS (34) IBEA (75) Auto (79) SPEA2 (143) HypE (158) MOEA/D (159) CMA (204) NSGA-II (248) NSGA-III (253)

Iε+ Auto+ SMS (70) IBEA (96) Auto (166) SPEA2 (177) CMA (208) HypE (223) MOEA/D (252) NSGA-III (267) NSGA-II (293)

IIGD Auto+ IBEA (88) SMS (118) Auto (129) SPEA2 (139) MOEA/D (187) HypE (213) NSGA-II (252) CMA (278) NSGA-III (280)

Scenario 〈5, 10k〉

I rd
H Auto+ SMS (3) Auto (26) MOEA/D (99) IBEA (109) CMA (165) SPEA2 (172) NSGA-II (201) NSGA-III (218) HypE (267)

Iε+ Auto Auto+ (10) SMS (31) IBEA (104) MOEA/D (138) CMA (146) NSGA-II (209) NSGA-III (231) SPEA2 (241) HypE (283)

IIGD Auto Auto+ (17) SMS (65) IBEA (146) NSGA-II (163) MOEA/D (167) CMA (177) SPEA2 (225) HypE (280) NSGA-III (300)

Scenario 〈10, 10k〉

I rd
H IBEA SMS (13) Auto+ (39) CMA (63) SPEA2 (123) NSGA-III (124) NSGA-II (164) MOEA/D (230) HypE (234)

Iε+ MOEA/D Auto+ (39) IBEA (67) SMS (148) CMA (150) NSGA-III (158) NSGA-II (176) SPEA2 (206) HypE (244)

IIGD Auto+ NSGA-III (65) IBEA (67) SPEA2 (96) CMA (140) NSGA-II (140) SMS (142) HypE (173) MOEA/D (230)

17

http://dx.doi.org/10.1162/evco_a_00263

This is a pre-print version of the article: M. López-Ibáñez, and T. Stützle. Evolutionary Computation,
2020. doi:~10.1162/evco_a_00263

3.5 State-of-the-art comparison

To assess whether the performance of the AutoMOEA+ algorithms can match that of the
state-of-the-art algorithms identified in Bezerra et al. (2018), we start with the aggrega-
tive analysis depicted by the rank sums given in Table 7, focusing on the comparison
of AutoMOEA+ algorithms to the best-performing MOEAs from the literature.

Results shown in Table 7 lead to different conclusions depending on the given per-
formance metric. In general, the AutoMOEA+ algorithms are either the top-ranking al-
gorithms or at least statistically equivalent to the best-performing manually-designed
MOEA, which may vary according to the scenario and/or metric. Differences in fa-
vor of the AutoMOEA+ algorithms are always statistically significant according to IIGD,
only for M ∈ {2, 3} scenarios according to Iε+, and never according to Ird

H . Indeed,
it never happens that an AutoMOEA+ algorithm is statistically significantly better than
the best-performing manually-designed MOEA according to the metric used for tun-
ing (Ird

H when M < 10; Iε+, otherwise). Overall, these results lead to two important
conclusions. First, they effectively mean that a single MOEA, automatically designed
for a given scenario, is able to perform at least as well as, and in many cases better
than, the best manually-designed MOEAs, even after their parameters have been prop-
erly tuned. Second, we see that the disagreements between metrics like Ird

H and IIGD
can be overcome to some extent by the automatic design process given that, even if dif-
ferences in performance according to Ird

H are not statistically significant, differences for
IIGD are. Altogether, the results confirm that the AutoMOEA+ algorithms present either
the most effective or the most robust performance for the scenarios considered so far.

We proceed to a more fine-grained analysis of the results to better visualize the
effects of problem characteristics. Figures 1–3 show boxplots depicting the performance
of these algorithms on selected problems from both benchmark sets and increasing
M . Specifically, problems DTLZ2 and WFG4 represent concave problems, although
the difficulty posed by the WFG concave problems tends to be higher than that of the
DTLZ ones. Concerning the remaining DTLZ problems, DTLZ6 represents problems
with a strong presence of local Pareto fronts, whereas DTLZ7 represents problems with
disconnected Pareto fronts. Regarding non-concave WFG problems, we take WFG1 as
illustrative. In general, the boxplots evidence the effects of problem characteristics and
performance metric disagreements, which become ever stronger with the increase in
M . Next, we discuss results from each scenario.

〈2, 10k〉: Figure 1 (top) depicts Ird
H results, with which the remaning metrics agree.

Effects from problem characteristics are seen in the differences between the relative
performance of the algorithms when optimizing DTLZ or WFG problems. In more
detail, for the DTLZ benchmark, the best-performing MOEAs present equivalent per-
formance. Conversely, on the WFG set the AutoMOEA+ algorithm clearly achieves better
and more consistent results for the non-concave problems represented by WFG1, and
competitive performance on the concave ones, illustrated by WFG4. In addition, for
no problem the original AutoMOEAs are able to outperform AutoMOEA+〈2, 10k〉, whereas
the opposite often happens. We also remark the rather different performances of both
automatically designed algorithms in DTLZ6. In previous works, we have demon-
strated that GA-based MOEAs struggle to solve this problem for a moderate number
of variables, whereas DE-based ones can solve it far more easily (Bezerra et al., 2016,
2018); these considerations illustrate the importance of allowing configuration of the
underlying EA and/or the variation operators.

18

http://dx.doi.org/10.1162/evco_a_00263

This is a pre-print version of the article: M. López-Ibáñez, and T. Stützle. Evolutionary Computation,
2020. doi:~10.1162/evco_a_00263

Hypervolume RPD

AutoMOEA+
AutoMOEA

MO−CMA−ES
HypE
IBEA

MOEA/D−DRA
NSGA−II

NSGA−III
SMS−EMOA

SPEA2

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●●

●●●●●

●

●●

●●

●●

DTLZ2.2.40

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●

●

●●●

●●●●●

●

●

●●●●●

DTLZ6.2.40

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●

●

●●

●●●●●●

●●●●

●●

● ●● ●

●●●●

●●●●

DTLZ7.2.40

Hypervolume RPD

AutoMOEA+
MO−CMA−ES

HypE
IBEA

MOEA/D−DRA
NSGA−II

NSGA−III
SMS−EMOA

SPEA2

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●

●●

●●●

●

●●

●●

WFG1.2.40

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●

●●

●●●

●●

●

●

●

●

●

WFG4.2.40

Hypervolume RPD

AutoMOEA+
AutoMOEA

MO−CMA−ES
HypE
IBEA

MOEA/D−DRA
NSGA−II

NSGA−III
SMS−EMOA

SPEA2

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●

●

●●

●●●

●●●●●

●●

●●

●●

DTLZ2.3.40

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●●●●●●

●●●

●●●

●

●

●

●●●●●

DTLZ6.3.40

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●

●

●●●●

●●●●●

●

●

●●●●

●●●● ●●

● ●

DTLZ7.3.40

Hypervolume RPD

AutoMOEA+
MO−CMA−ES

HypE
IBEA

MOEA/D−DRA
NSGA−II

NSGA−III
SMS−EMOA

SPEA2

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●

●●●

●●●●

●●

●

●

WFG1.3.40

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

WFG4.3.40

Figure 1: Performances of MOEAs given 10 000 FEs on selected problems with two (top)
and three (bottom) objectives and 40 variables according to the Ird

H .

〈3, 10k〉: A similar pattern is observed on this scenario, given on Figure 1 (bottom),
where results from Ird

H are depicted. The performances on problems DTLZ2 and WFG1
repeat the pattern discussed for the previous scenario. Yet, results for remaining
problems become more spread, providing an indication that few algorithms such as
AutoMOEA+〈3, 10k〉 perform better and more consistently than the remaining MOEAs.
Once again, the AutoMOEA+ algorithm outperforms the AutoMOEAs for all problems.

〈5, 10k〉: Figure 2 shows results from Ird
H (top), Iε+ (middle), and IIGD (bottom), where

one observes two different situations on DTLZ problems. For the problem character-
istics represented by DTLZ2 and DTLZ6, we notice that some state-of-the-art MOEAs
are able to present performance equivalent to AutoMOEA+〈5, 10k〉, but the latter stands out
according to IIGD. By contrast, on DTLZ7 AutoMOEA+〈5, 10k〉 performs much worse than
the best-performing MOEAs. This drawback is understandable when one observes
that the automatic design methodology considers benchmarks as a whole, and specific
functions may constitute exceptions to a broader picture. Regarding WFG problems,
we see that performance metrics strongly disagree. For instance, the performance of
AutoMOEA+〈5, 10k〉 on WFG1 is remarkable according to Ird

H , the metric used for tuning,
but it is surpassed by SMS according to IIGD and also by other MOEAs according to
Iε+. As for the concave WFG problems, the AutoMOEA+ algorithm is always the best-
performing, but the gap w.r.t. other MOEAs is very different depending on the metric
considered. Finally, we see that AutoMOEA+〈5, 10k〉 improves over the original AutoMOEA
for all problems except DTLZ7 according to all metrics.

〈10, 10k〉: As previously reported in Bezerra et al. (2018), the performance from
MOEAs is quite different from the remaining scenarios, in that metric ranges for given
problems become much more spread. For this reason, our scaling is unable to fit results
from many MOEAs; yet, if boxplots were to render all results visible, the differences be-
tween the best-performing algorithms would become difficult to distinguish, conceal-
ing the most important part of our analysis. In general, no single MOEA is considered
consistent across all problems and metrics. AutoMOEA+〈10, 10k〉, for instance, performs

19

http://dx.doi.org/10.1162/evco_a_00263

This is a pre-print version of the article: M. López-Ibáñez, and T. Stützle. Evolutionary Computation,
2020. doi:~10.1162/evco_a_00263

Hypervolume RPD

AutoMOEA+
AutoMOEA

MO−CMA−ES
HypE
IBEA

MOEA/D−DRA
NSGA−II

NSGA−III
SMS−EMOA

SPEA2

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●

●

●●●

●●

●●

●

●

●

●●●

●●●●

●●

●

DTLZ2.5.40

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●

DTLZ6.5.40

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●

●

●●●●

●

● ●●●●

DTLZ7.5.40

Hypervolume RPD

AutoMOEA+
MO−CMA−ES

HypE
IBEA

MOEA/D−DRA
NSGA−II

NSGA−III
SMS−EMOA

SPEA2

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

● ●●

●

WFG1.5.40

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●

●●●●●●●

●●

●

●●●

●

WFG4.5.40

Additive Epsilon Indicator

AutoMOEA+
AutoMOEA

MO−CMA−ES
HypE
IBEA

MOEA/D−DRA
NSGA−II

NSGA−III
SMS−EMOA

SPEA2

0 1 2 3 4

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●●

●●●

●

DTLZ2.5.40

0 1 2 3 4

●

●

●

●

●

●

●

●

● ●●

DTLZ6.5.40

0 1 2 3 4

●

●

●

●

●

●

●

●

●

●

● ●●●

DTLZ7.5.40

Additive Epsilon Indicator

AutoMOEA+
MO−CMA−ES

HypE
IBEA

MOEA/D−DRA
NSGA−II

NSGA−III
SMS−EMOA

SPEA2

0 1 2 3 4

●

●

●

●

●

●

●

●

●

●

●●

●●●

●●

●

WFG1.5.40

0 1 2 3 4

●

●

●

●

●

●

●

●

●

●

●●● ●●

●●

●●

WFG4.5.40

Inverted Generational Distance

AutoMOEA+
AutoMOEA

MO−CMA−ES
HypE
IBEA

MOEA/D−DRA
NSGA−II

NSGA−III
SMS−EMOA

SPEA2

0 1 2 3 4

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●●

●

●

DTLZ2.5.40

0 1 2 3 4

●

●

●

●

●

●

●

●●●

DTLZ6.5.40

0 1 2 3 4

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

● ● ●

●●●●

●

●

●

●●

DTLZ7.5.40

Inverted Generational Distance

AutoMOEA+
MO−CMA−ES

HypE
IBEA

MOEA/D−DRA
NSGA−II

NSGA−III
SMS−EMOA

SPEA2

0 1 2 3 4

●

●

●

●

●

●

●

●

●

●●

●

●●

WFG1.5.40

0 1 2 3 4

●

●

●

●

●

●

●

●

●

●

●●

WFG4.5.40

Figure 2: Performances of MOEAs on the scenario with M = 5 and FEmax = 10 000 for
selected problems with nvar = 40. From top to bottom, Ird

H , Iε+, and IIGD.

poorly on DTLZ6 and DTLZ7. The extreme situations are observed for IIGD results: a
poor relative performance on non-concave problems, contrasting to a very good rela-
tive performance on concave problems. Altogether, in comparison to other MOEAs,
we see a generally competitive performance from AutoMOEA+〈10, 10k〉.

3.6 Stopping criteria effects

The analysis above has only focused on scenarios with FEmax = 10 000, for which
we have identified two factors that appear critical for the trends observed in the re-
sults: (i) the heterogeneity of the problem characteristics that comprise the benchmark
sets, and (ii) the disagreements between performance metrics, which become stronger
with increasing number of objectives. We next further investigate this latter factor, with
a focus on the role played by the stopping criterion in this interaction.

A summary of the rank sum analyses conducted on all scenarios is given in Ta-
ble 8. Each entry summarizes the result of the statistical tests applied to the rank
sums produced by each metric, respectively Ird

H , Iε+, and IIGD, and denotes that the
given AutoMOEA+ algorithm was considered better than (+), equivalent to (=), or worse
than (-) the best state-of-the-art MOEA. In addition, if a MOEA is considered better than
or equivalent to the AutoMOEA+ algorithm for all metrics, it is indicated in parenthesis.
Results are provided in full as supplementary material, for brevity (Bezerra et al., 2019).

A few important patterns are noticeable from Table 8. First, the AutoMOEA+ algo-
rithms are generally able to match or improve over the performance of the state-of-the-

20

http://dx.doi.org/10.1162/evco_a_00263

This is a pre-print version of the article: M. López-Ibáñez, and T. Stützle. Evolutionary Computation,
2020. doi:~10.1162/evco_a_00263

Hypervolume RPD

AutoMOEA+
MO−CMA−ES

HypE
IBEA

MOEA/D−DRA
NSGA−II

NSGA−III
SMS−EMOA

SPEA2

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●

●

●●●●●●

●●●●●

●●

●●

●●●

●●

●●●

DTLZ2.10.41

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●

●●

●

● ●

●●●●

●

DTLZ6.10.41

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

● ●

DTLZ7.10.41

Hypervolume RPD

AutoMOEA+
MO−CMA−ES

HypE
IBEA

MOEA/D−DRA
NSGA−II

NSGA−III
SMS−EMOA

SPEA2

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●

●

●●

●●

●

WFG1.10.41

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●

●

●

● ●

●●●

WFG4.10.41

Additive Epsilon Indicator

AutoMOEA+
MO−CMA−ES

HypE
IBEA

MOEA/D−DRA
NSGA−II

NSGA−III
SMS−EMOA

SPEA2

0 1 2 3 4

●

●

●

●

●

●

●

●

●

●

●

DTLZ2.10.41

0 1 2 3 4

●

●

●

●

●●●

DTLZ6.10.41

0 1 2 3 4

●

●

●

DTLZ7.10.41

Additive Epsilon Indicator

AutoMOEA+
MO−CMA−ES

HypE
IBEA

MOEA/D−DRA
NSGA−II

NSGA−III
SMS−EMOA

SPEA2

0 1 2 3 4

●

●

●

●

●

●

●

●

●

●

●

●●

WFG1.10.41

0 1 2 3 4

●

●

●

●

●

●

●

●

● ●●● ●

●●

●●●

●●●

●●

WFG4.10.41

Inverted Generational Distance

AutoMOEA+
MO−CMA−ES

HypE
IBEA

MOEA/D−DRA
NSGA−II

NSGA−III
SMS−EMOA

SPEA2

0 2 4 6 8 10

●

●

●

●

●

●

●

●

●

●

●

●●

DTLZ2.10.41

0 2 4 6 8 10

●

●

●

●

●

●

●

●

●

●● ● ●

●

DTLZ6.10.41

0 2 4 6 8 10

●

●

●

●

●

●

DTLZ7.10.41

Inverted Generational Distance

AutoMOEA+
MO−CMA−ES

HypE
IBEA

MOEA/D−DRA
NSGA−II

NSGA−III
SMS−EMOA

SPEA2

0 2 4 6 8 10

●

●

●

●

●

●

●

●

●

●

●●

●●

●●●●

●●●

●

●●

WFG1.10.41

0 2 4 6 8 10

●

●

●

●

●

●

●

●

●

●●

●

●

●

WFG4.10.41

Figure 3: Performances of MOEAs on the 〈10, 10k〉 scenario for selected problems with
40 variables. From top to bottom, Ird

H , Iε+, and IIGD.

art MOEAs for each scenario. Specifically, improvements are often observed on IIGD
analyses, and eventually on Iε+ ones, whereas equivalence is far more often observed
on Ird

H analyses. Second, in more than half of the scenarios the AutoMOEA+ algorithms
improve over the state-of-the-art according to at least one metric, and rarely they do not
match the performance of the state-of-the-art MOEAs for all metrics at the same time.
Indeed, the only scenarios where this latter situation occurs are 〈5, 40k〉 and 〈10, 40k〉,
both scenarios with a larger FEmax value. Third, it is far more likely that an AutoMOEA+
algorithm improve over the state-of-the-art according to a given metric whenM and/or
FEmax are low – the only exception to this pattern is scenario 〈2, 2.5k〉. Finally, only two
manually-designed MOEAs are able to either match or outperform a given AutoMOEA+
algorithm according to all metrics at the same time: (i) SMS, which matches the perfor-
mance of AutoMOEA+〈2, 2.5k〉, and; (ii) IBEA, which outperforms AutoMOEA+〈10, 40k〉. We
next further discuss results grouped by FEmax.

2 500 FEs: When only a limited number of FEs is given to MOEAs, the differences
between the best-performing algorithms are reduced. In fact, in many scenarios it is
not possible to identify statistically significant differences between the performances
of the AutoMOEA+ algorithms, SMS, and IBEA according to Friedman’s test. Yet, only
once we observe that a single manually-designed MOEA is able to match the perfor-
mance of an AutoMOEA+ algorithm for all metrics at the same time, namely SMS when
M = 2. Indeed, for all remainingM values we observe that the IIGD performance of the

21

http://dx.doi.org/10.1162/evco_a_00263

This is a pre-print version of the article: M. López-Ibáñez, and T. Stützle. Evolutionary Computation,
2020. doi:~10.1162/evco_a_00263

Table 8: Summary of the statistical test results from each metric (respectively, Ird
H , Iε+,

IIGD) per scenario (rows: FEmax; columns: M). The given AutoMOEA+ algorithm may
have been considered better than (+), equivalent to (=), or worse than (-) the best-
performing MOEA(s) for the given scenario. MOEAs that match or outperform an
AutoMOEA+ according to all metrics are indicated in parenthesis.

2 3 5 10

2 500 === ==+ ==+ ==+
(SMS)

10 000 =++ =++ === ===
(AutoMOEA)

40 000 +++ ==+ ==- - - -
(IBEA)

AutoMOEA+ algorithms is considered statistically significantly better than that of the re-
maining MOEAs. Altogether, these results indicate that it is possible to design MOEAs
that obtain good results according to all metrics at the same time even for scenarios
where few FEs are available.

40 000 FEs: When a larger FE budget is considered, the best-performing MOEAs are
able to approximate well the Pareto front for most bi-objective problems. Nonethe-
less, the rank sum analysis demonstrates that the performance of AutoMOEA+〈2, 40k〉 is
statistically significantly better than that of the state-of-the-art MOEAs for all metrics.
For M = 3, only the results according to IIGD are statistically significantly in favor of
AutoMOEA+〈3, 40k〉. Differences in conclusions in dependence of the metrics used be-
come stronger for even larger numbers of objectives, as shown in Tables 8 and 9. When
M = 5, we see a different set of best-performing MOEAs depending on the metric con-
sidered. AutoMOEA+〈5, 40k〉 is either the best ranking (for Ird

H) or statistically not signifi-
cantly different from the top-ranking MOEA (for Iε+). This is different for IIGD, where
it ranks fourth. Finally, for M = 10 the AutoMOEA+ algorithm is unable to outperform
or even match the overall performance of the best-performing MOEAs for any of the
metrics. In fact, the performance of AutoMOEA+〈10, 40k〉 resembles the performance pre-
viously reported for MOEA/D on this scenario (Bezerra et al., 2018), being considered
good only according to Iε+, even if not competitive with the best-performing MOEAs.
A surprising result from this scenario is that IBEA displays very good performance ac-
cording to all metrics. Considering, however, that the tuning of IBEA and the design of
the AutoMOEA+ are given the same budget and the tuning of AutoMOEA+ does not use
any initial configurations, the much larger configuration space of AutoMOEA+ may lead
to the fact that a design such as IBEA is not (yet) found by irace. Yet, this is the only sce-
nario in which having a smaller configuration space translates into a clear advantage
for the manually-designed MOEAs.

From a more general perspective, the automatic MOEA design is strongly affected
by the disagreements between metrics, and this challenge grows not only as a function
of M , but also of FEmax. More precisely, when MOEAs are given more resources, it is
natural that their search converges to the region of interest of the performance metric
used to guide tuning or the implicit preferences from the algorithm designer. In other
words, due to the known disagreements of the metrics, further optimizing the metric
that guides the automatic tuning by increasing FEmax leads to worse results on the other

22

http://dx.doi.org/10.1162/evco_a_00263

This is a pre-print version of the article: M. López-Ibáñez, and T. Stützle. Evolutionary Computation,
2020. doi:~10.1162/evco_a_00263

Table 9: Rank sum difference (in parenthesis) between the given MOEA and the low-
est ranked for different scenarios. MOEAs in boldface present rank sums statistically
significantly lower than the others according to Friedman’s test.

Scenario 〈5, 40k〉

I rd
H Auto+ (0) SMS (1) IBEA (50) MOEA/D (95) SPEA2 (122) CMA (125)

Iε+ SMS (0) IBEA (5) Auto+ (21) CMA (89) MOEA/D (94) SPEA2 (156)

IIGD IBEA (0) MOEA/D (19) SMS (25) Auto+ (53) SPEA2 (84) CMA (105)

Scenario 〈10, 40k〉

I rd
H IBEA (0) SMS (63) SPEA2 (66) CMA (92) Auto+ (97) NSGA-III (110)

Iε+ MOEA/D (0) IBEA (7) Auto+ (55) NSGA-III (97) SMS (114) NSGA-II (130)

IIGD IBEA (0) NSGA-III (37) SPEA2 (48) NSGA-II (118) HypE (131) CMA (167)

Table 10: Parameters selected by irace for AutoMOEA+ 〈5,40k,Iε+〉.
Mating Replacement ReplacementExt pop

Selection SetPart Refine Diversity SetPart Refine Removal Refine Diversity Removal type µ λ

DT(2) depth I1H NN strength I1H seq. Iε+ ref. lines 1-shot fixed 80 λr

(UnderEA = DE (TtoB); Next = 500; Ref. lines: Λdist = two-layer, Λfocus = balanced, Λr = 0.74.)

metrics. From the rank sum analyses, we see that the automatic design is sensitive to
this issue.

3.7 Tuning metric effects on single-objective MOEA design

The disagreements between performance metrics have evidenced the importance of
the tuning metric for the effectiveness of the automatically designed algorithms. We
next investigate the effects of designing an AutoMOEA+ algorithm for scenario 〈5, 40k〉,
optimizing Iε+ instead of Ird

H . The structure of this AutoMOEA+ algorithm (hereon
called AutoMOEA+ 〈5,40k,Iε+〉) is given in Table 10. The most significant structural
change w.r.t. AutoMOEA+〈5, 40k〉 depicted in Table 5 concerns the adoption of an external
archive with a PreferenceExt, which comprises an indicator-based Refinement (Iε+) and a
decomposition-based Diversity (reference lines). This preference relation is complemen-
tary to PreferenceMat and PreferenceRep, which both use as Refinement component the I1H
indicator. This change in the design seems to reflect the change in tuning metric, as
AutoMOEA+〈5, 40k〉 was heavily I1H -based, whereas the search of AutoMOEA+ 〈5,40k,Iε+〉 is
more balanced w.r.t metrics; however, more repetitions of the design process would be
required to corroborate this hypothesis.

The rank sum analysis given in Table 11 shows the results from a comparison
that includes all MOEAs considered so far. (For brevity, AutoMOEA+ 〈5,40k,Iε+〉 is ab-
breviated as Auto-ε in the Table, and only the top-performing MOEAs are given). The
performance of AutoMOEA+ 〈5,40k,Iε+〉 reflects the balance between metrics discussed
above. Specifically, its performance is considered statistically significantly better than
the state-of-the-art MOEAs according to IIGD, and equivalent to the best MOEA ac-
cording to the remaining metrics. In fact, the results according to Ird

H are remarkable,
given that the performance of AutoMOEA+ 〈5,40k,Iε+〉 is considered equivalent to that
of AutoMOEA+〈5, 40k〉, which was configured for Ird

H . More importantly, results from
AutoMOEA+ 〈5,40k,Iε+〉 evidence that the challenge posed by metric disagreements can

23

http://dx.doi.org/10.1162/evco_a_00263

This is a pre-print version of the article: M. López-Ibáñez, and T. Stützle. Evolutionary Computation,
2020. doi:~10.1162/evco_a_00263

Table 11: Rank sum difference (in parenthesis) between the given MOEA and the low-
est ranked (FEmax = 40 000). MOEAs in boldface present rank sums statistically sig-
nificantly lower than the others according to Friedman’s test. For brevity, only the six
best-performing MOEAs from each scenario are shown, and AutoMOEA+ 〈5,40k,Iε+〉 is
abbreviated as Auto-ε.

Scenario 〈5, 40k〉

I rd
H Auto+ (0) SMS (1) Auto-ε (31) IBEA (58) MOEA/D (103) SPEA2 (138)

Iε+ Auto-ε (0) SMS (39) IBEA (44) Auto+ (61) CMA (129) MOEA/D (134)

IIGD Auto-ε (0) IBEA (89) MOEA/D (106) SMS (113) Auto+ (142) SPEA2 (173)

be alleviated even for larger FEmax values, at least for a moderate number of objectives.

4 A multi-objective formulation to automatic MOEA design

The disagreement between performance metrics is most evident in the many-objective
scenarios, where the best-ranked manually-designed MOEA strongly depends on the
metric used to measure quality. One possible way to overcome this disagreement is
to optimize all metrics simultaneously during the automatic design process. In this
section, we propose such a multi-objective formulation, following related work on
multi-objective configuration of algorithms (Dréo, 2009; Bezerra et al., 2017). First, we
briefly define the concept of multi-objective configuration and detail our proposal. We
then present an experimental investigation to evaluate this formulation on scenario
〈10, 40k〉, the most challenging scenario we have identified so far.

4.1 Multi-objective MOEA design

The fields of automatic algorithm configuration and multi-objective optimization in-
tersect in two main ways (Bezerra et al., 2017). The first one concerns the automatic
configuration of multi-objective algorithms (López-Ibáñez and Stützle, 2012; Dubois-
Lacoste et al., 2011; Bezerra et al., 2016), that is, the target algorithm tackles multi-
objective problems and, hence, returns a set of mutually nondominated solutions. This
is the context of the work presented so far in this paper. The second one concerns
multi-objective configuration of algorithms (Dréo, 2009; Blot et al., 2016), that is, the
configuration of algorithms according to several metrics simultaneously.

In this section, we consider the multi-objective design of MOEAs, where the configu-
rator searches for a MOEA design that optimizes multiple performance metrics simul-
taneously. In particular, we propose to aggregate the various performance metrics that
we have used before to evaluate the performance of the MOEAs, that is, we consider
an aggregation of the metrics C = {Ird

H , Iε+, IIGD}. For this aggregation we use the hy-
pervolume (IH) metric (Zitzler et al., 2002) to make the multi-objective nature of the
configuration problem transparent to irace. Concretely, candidate evaluation is done in
two stages. First, each metric in C is computed, following the same setup described in
the previous section. Second, the IH of the subspace dominated by the objective vec-
tor representing the performance of the candidate in the metric space is computed. To
ensure each metric is equally assessed by the IH metric, we use a two-stage normaliza-
tion approach, as follows. First, we discard points outside the upper bounds defined
for each metric,10 to avoid strong outliers. Next, we normalize each metric value to
the [1, 2] interval. The IH metric is computed using point 2.2 as reference.

10For Iε+ and IIGD, the bound is set to 100. For the Ird
H , the bound is set to 1.0.

24

http://dx.doi.org/10.1162/evco_a_00263

This is a pre-print version of the article: M. López-Ibáñez, and T. Stützle. Evolutionary Computation,
2020. doi:~10.1162/evco_a_00263

Table 12: Parameters selected by irace for AutoMOEA+ 〈10,40k,MO〉.
Mating Replacement ReplacementExt pop

Selection SetPart Refine Diversity SetPart Refine Removal Refine Diversity Removal type µ λ

DT(4) count Iε+ crowd. rank Iε+ 1-shot Iε+ NN seq. bound. 90 λr

(UnderlyingEA = DE (TtoB) and Next = 500.)

Table 13: Rank sum difference (in parenthesis) between the given MOEA and the low-
est ranked (FEmax = 40 000). MOEAs in boldface present rank sums statistically sig-
nificantly lower than the others according to Friedman’s test. For brevity, only the six
best-performing MOEAs from each scenario are shown.

Scenario 〈10, 40k〉

I rd
H Auto-MO (0) IBEA (48) SMS (104) SPEA2 (114) CMA (143) Auto+ (143)

Iε+ Auto-MO (0) MOEA/D (40) IBEA (55) Auto+ (98) NSGA-III (149) SMS (163)

IIGD Auto-MO (0) IBEA (67) NSGA-III (103) SPEA2 (115) NSGA-II (185) HypE (201)

We use an aggregation for two main reasons. First, to simplify the choice
of the final AutoMOEA+ to be compared to other MOEAs from several, possibly
mutually non-dominated AutoMOEA+ designs (non-dominated w.r.t. the metrics in
C = {Ird

H , Iε+, IIGD}). Second, to be able to directly use the irace configurator that ex-
pects configurations to be evaluated w.r.t. a single metric. Given the large configuration
space, we believe that this approach also helps to better direct the search of irace to very
high-performing AutoMOEA+ designs.

4.2 Empirical assessment

The experimental setup we adopt to evaluate our approach is similar to the setup
adopted in the previous section. The only differences are (i) the number of scenar-
ios, as only scenario 〈10, 40k〉 is considered, and, (ii), the way candidate configurations
are evaluated, as we adopt the multi-objective formulation described above.

The structure of the AutoMOEA+ algorithm designed using the proposed multi-
objective formulation (hereon called AutoMOEA+ 〈10,40k,MO〉) is given in Table 12. Com-
pared to the structure of AutoMOEA+〈10, 40k〉 given in Table 5, designed to optimize the
Iε+, we notice significant structural differences. In fact, the only component in com-
mon between both algorithms is dominance count for PreferenceMat. We also remark
how interesting it is that a configuration designed to optimize multiple metrics selects
the Iε+ as Refinement component for every Preference relation adopted, when this com-
ponent had not been used at all on the algorithm meant to optimize the Iε+ metric. In
addition, it is surprising that a large size external archive using NN as Diversity and se-
quential removal gets selected in a runtime-constrained setup. Yet, the computationally
most expensive component of AutoMOEA+〈10, 40k〉, steady-state selection, is not present
in AutoMOEA+ 〈10,40k,MO〉. Finally, DE is selected in place of GA as underlying EA. Al-
together, one can understand these structural changes as a trade-off between compu-
tationally demanding components, with irace favoring the combination of refinement
metrics and an external archive over steady-state replacement.

The rank sum analysis in Table 13 shows that this change in structure leads to a
remarkable performance. Not only AutoMOEA+ 〈10,40k,MO〉 ranks first according to all
metrics, it is also considered statistically significantly better than all MOEAs accord-

25

http://dx.doi.org/10.1162/evco_a_00263

This is a pre-print version of the article: M. López-Ibáñez, and T. Stützle. Evolutionary Computation,
2020. doi:~10.1162/evco_a_00263

Hypervolume RPD

AutoMOEA+
Auto−MO

IBEA
MOEA/D−DRA

NSGA−III
SMS−EMOA

SPEA2

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●●●●●

●●

●●

●

●●●

DTLZ2.10.41

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●●

●●●

●

●●●● ●

●

DTLZ6.10.41

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

DTLZ7.10.41

Hypervolume RPD

AutoMOEA+
Auto−MO

IBEA
MOEA/D−DRA

NSGA−III
SMS−EMOA

SPEA2

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●●●●●●

●●●

WFG1.10.41

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●●●●

●● ●●●

WFG4.10.41

Additive Epsilon Indicator

AutoMOEA+
Auto−MO

IBEA
MOEA/D−DRA

NSGA−III
SMS−EMOA

SPEA2

0 1 2 3 4

●

●

●

●

●

●

●

●●

●●●

●●

●●●

DTLZ2.10.41

0 1 2 3 4

●

●

●

●

●

● ●

●●●●●

●●●●●●

●

DTLZ6.10.41

0 1 2 3 4

●

●

●

●●●●

DTLZ7.10.41

Additive Epsilon Indicator

AutoMOEA+
Auto−MO

IBEA
MOEA/D−DRA

NSGA−III
SMS−EMOA

SPEA2

0 1 2 3 4

●

●

●

●

●

●

●●●●●●

●●●

WFG1.10.41

0 1 2 3 4

●

●

●

●

●

●

●

●●●

●

●●

●●

WFG4.10.41

Inverted Generational Distance

AutoMOEA+
Auto−MO

IBEA
MOEA/D−DRA

NSGA−III
SMS−EMOA

SPEA2

0 2 4 6 8 10

●

●

●

●

●

●

●

●●

●

●

●

●

DTLZ2.10.41

0 2 4 6 8 10

●

●

●

●

●

●

●

DTLZ6.10.41

0 2 4 6 8 10

●

●

●

●

●

●●

●

●

DTLZ7.10.41

Inverted Generational Distance

AutoMOEA+
Auto−MO

IBEA
MOEA/D−DRA

NSGA−III
SMS−EMOA

SPEA2

0 2 4 6 8 10

●

●

●

●

●

●

●●●●● ●

●●●●

●●

●●●

●

WFG1.10.41

0 2 4 6 8 10

●

●

●

●

●

●

●

●●

●●

WFG4.10.41

Figure 4: Performances of MOEAs on the 〈10, 40k〉 scenario for selected problems with
40 variables. From top to bottom, Ird

H , Iε+, and IIGD.

ing to IIGD. This achievement is made yet more important in light of what had been
observed in the state-of-the-art assessment conducted in Bezerra et al. (2018), and also
in Section 3. Specifically, some algorithms are able to excel according to given metrics
at the cost of others, such as NSGA-III for IIGD (interestingly, the metric used in the
original article to evaluate NSGA-III performance). Still, AutoMOEA+ 〈10,40k,MO〉 is an
algorithm that is able to excel according to all metrics, even outperforming NSGA-III
for IIGD. In fact, the only manually-designed MOEA that is able to achieve a balanced,
yet effective performance on this scenario is IBEA. Yet, AutoMOEA+ 〈10,40k,MO〉 is con-
sidered statistically significantly better than IBEA for all metrics but Ird

H . Finally, it is
interesting to observe the large difference in rank sums between AutoMOEA+ 〈10,40k,MO〉
and AutoMOEA+〈10, 40k〉: the single-objective design guided by Iε+ produces an algo-
rithm that is unable to excel for the very metric for which it was created to optimize.
By contrast, the multi-objective formulation leads to an algorithm that is balanced, yet
effective for all metrics.

We conclude with a problem-wise assessment, using the boxplots depicted in Fig-
ure 4. For clarity, only MOEAs that rank up to fourth according to any of the met-
rics in the rank sum analyses are included in the comparison. The only problem for
which all metrics agree is DTLZ2; for all others, at least one metric strongly disagrees
with the remaining ones. This pattern also applies to AutoMOEA+ 〈10,40k,MO〉, which is
never outperformed by other MOEAs according to all metrics at the same time. The
largest gaps between AutoMOEA+ 〈10,40k,MO〉 and the remaining MOEAs are seen for

26

http://dx.doi.org/10.1162/evco_a_00263

This is a pre-print version of the article: M. López-Ibáñez, and T. Stützle. Evolutionary Computation,
2020. doi:~10.1162/evco_a_00263

IIGD, whereas the smallest are observed for Ird
H . Indeed, the contrasting results between

Ird
H and IIGD further corroborate the need for algorithm engineering approaches that

simultaneously consider multiple metrics, specially given that IIGD has been so widely
employed in the design and assessment of many-objective MOEAs. Finally, even when
comparing according to Iε+, the AutoMOEA+ designed to optimize Iε+ only outperforms
AutoMOEA+ 〈10,40k,MO〉 on a few functions, confirming that a design which balances the
importance of different metrics can lead to a better overall performance.

5 Conclusion

In this work, we have automatically designed state-of-the-art multi- and many-
objective evolutionary algorithms (MOEAs) for box-constrained continuous optimiza-
tion problems. Specifically, we have considered a range of experimental factors such as
benchmark problems, number of variables and objectives, stopping criteria, and perfor-
mance metrics. The AutoMOEA+ algorithms designed in this work have demonstrated
a remarkably robust performance to all of these factors, specially the latter three. In
particular, these results were only made possible through a series of investigations
upon which this paper builds, namely our proposal of the automatic MOEA design
methodology (Bezerra et al., 2016), our review of multi-objective algorithm configu-
ration (Bezerra et al., 2017), and our assessment of the state-of-the-art in MOEAs for
box-constrained continuous optimization (Bezerra et al., 2018).

The convergence of the insights obtained from those studies were translated into
two major proposals in this work. The first is the AutoMOEA+ framework, which
comprises the most relevant MOEA design paradigms (dominance-, indicator-, and
decomposition-based), underlying evolutionary algorithms (genetic algorithms and
differential evolution), and archive truncation techniques. From this framework, we
have automatically designed state-of-the-art MOEAs for all experimental scenarios
considered in multi-objective optimization, and for nearly all scenarios considered in
many-objective optimization. Many of the design choices present in the AutoMOEA+ al-
gorithms differ considerably from what human designers have so far considered; some
designs couple components from entirely different design paradigms to produce high-
performing MOEA designs. Indeed, all novel components implemented in this paper
have been used in one or more automatically designed MOEAs, except for the online
replacement component. Performance improvements from the AutoMOEA+ algorithms
over the AutoMOEAs produced from the original framework corroborate the benefits of
the extensions we propose in this work.

The second proposal focused on many-objective scenarios, and consists in a multi-
objective formulation of the automatic MOEA design. Using this formulation, one can
automatically design MOEAs which simultaneously optimize a set of relevant, yet dis-
agreeing metrics (Ird

H , Iε+, and IIGD). Perhaps surprisingly, we have shown that an
algorithm designed to optimize a set of metrics can even outperform algorithms cre-
ated with a single metric in mind according to that metric. Overall, the performance of
the resulting AutoMOEA+ 〈10,40k,MO〉 algorithm is remarkable for several reasons: (1) it
ranks first according to all metrics in rank sum analyses; (2) it is considered statisti-
cally significantly better than the state-of-the-art MOEAs according to IIGD, and; (3) it
is considered statistically significantly better than IBEA for all but the Ird

H metric, the
best-performing MOEA for this scenario according to all metrics.

The implications of this work are many and its applications are numerous. First,
although we have produced a number of novel state-of-the-art algorithms for the main
application domain of MOEAs, our actual contribution is the empirical demonstration

27

http://dx.doi.org/10.1162/evco_a_00263

This is a pre-print version of the article: M. López-Ibáñez, and T. Stützle. Evolutionary Computation,
2020. doi:~10.1162/evco_a_00263

that this task is likely feasible for any application domain. The only imperative require-
ment is the a priori identification of effective domain-specific components, to which the
automatic design approach is flexible enough to adapt. Second, our multi-objective for-
mulation of MOEA design is an elegant solution to the disagreement between Pareto-
compliant performance metrics, and yet its major contribution is the empirical demon-
stration that a MOEA should not be engineered with a single metric in mind, regardless
of the scenario considered. In addition, our multi-objective formulation of MOEA de-
sign has only been tested so far for solution quality assessment. Yet, it seems imperative
to account also for runtime in search for algorithms with better anytime behavior.

A final implication of our work concerns the limitations of MOEAs that our ap-
proach did not propose to solve, but to put in evidence. Specifically, our previous
investigation on manually-designed state-of-the-art MOEAs had indicated that a few
factors pose challenges that MOEAs are yet to overcome: (i) having too little function
evaluations available; (ii) accounting for very heterogeneous problem characteristics,
and (iii) scaling to deal with a significant number of variables and/or objectives. In
all of these scenarios, the automatically designed MOEAs match or surpass the perfor-
mance of the manually-designed state-of-the-art MOEAs. Still, it becomes evident that
the MOEA research community needs to keep pushing in these directions if effective
algorithms are to be designed, either manually or automatically.

Acknowledgments. The research presented in this paper has received funding from the
COMEX project (P7/36) within the IAP Programme of BelSPO. Thomas Stützle acknowledges
support from the Belgian F.R.S.-FNRS, of which he is a research director.

References
Abbass, H. A. (2002). The self-adaptive Pareto differential evolution algorithm. In Proceedings of the 2002

Congress on Evolutionary Computation (CEC’02), pages 831–836, Piscataway, NJ. IEEE Press.

Abbass, H. A., Sarker, R., and Newton, C. (2001). PDE: a Pareto-frontier differential evolution approach
for multi-objective optimization problems. In Proceedings of the 2001 Congress on Evolutionary Computation
(CEC’01), pages 971–978, Piscataway, NJ. IEEE Press.

Aneja, Y. P. and Nair, K. P. K. (1979). Bicriteria transportation problem. Management Science, 25(1):73–78.

Bader, J. and Zitzler, E. (2011). HypE: An algorithm for fast hypervolume-based many-objective optimization.
Evolutionary Computation, 19(1):45–76.

Beume, N., Naujoks, B., and Emmerich, M. T. M. (2007). SMS-EMOA: Multiobjective selection based on
dominated hypervolume. European Journal of Operational Research, 181(3):1653–1669.

Bezerra, L. C. T., López-Ibáñez, M., and Stützle, T. (2016). Automatic component-wise design of multi-
objective evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 20(3):403–417.

Bezerra, L. C. T., López-Ibáñez, M., and Stützle, T. (2017). Automatic configuration of multi-objective op-
timizers and multi-objective configuration. Technical Report TR/IRIDIA/2017-011, IRIDIA, Université
Libre de Bruxelles, Belgium. Published as (Bezerra et al., 2020).

Bezerra, L. C. T., López-Ibáñez, M., and Stützle, T. (2018). A large-scale experimental evaluation of high-
performing multi- and many-objective evolutionary algorithms. Evolutionary Computation, 26(4):621–656.

Bezerra, L. C. T., López-Ibáñez, M., and Stützle, T. (2019). Automatically designing state-of-the-art
multi- and many-objective evolutionary algorithms: Supplementary material. http://iridia.ulb.ac.be/supp/
IridiaSupp2016-004/.

Bezerra, L. C. T., López-Ibáñez, M., and Stützle, T. (2020). Automatic configuration of multi-objective opti-
mizers and multi-objective configuration. In Bartz-Beielstein, T., Filipič, B., Korošec, P., and Talbi, E.-G.,
editors, High-Performance Simulation-Based Optimization, pages 69–92. Springer International Publishing,
Cham, Switzerland.

28

http://dx.doi.org/10.1162/evco_a_00263
http://iridia.ulb.ac.be/supp/IridiaSupp2016-004/
http://iridia.ulb.ac.be/supp/IridiaSupp2016-004/

This is a pre-print version of the article: M. López-Ibáñez, and T. Stützle. Evolutionary Computation,
2020. doi:~10.1162/evco_a_00263

Birattari, M. (2009). Tuning Metaheuristics: A Machine Learning Perspective, volume 197 of Studies in Computa-
tional Intelligence. Springer, Berlin, Heidelberg.

Biscani, F., Izzo, D., and Yam, C. H. (2010). A global optimisation toolbox for massively parallel engineering
optimisation. In Astrodynamics Tools and Techniques (ICATT 2010), 4th International Conference on.

Bleuler, S., Laumanns, M., Thiele, L., and Zitzler, E. (2003). PISA – a platform and programming language
independent interface for search algorithms. In Fonseca, C. M., Fleming, P. J., Zitzler, E., Deb, K., and
Thiele, L., editors, Evolutionary Multi-criterion Optimization, EMO 2003, volume 2632 of Lecture Notes in
Computer Science, pages 494–508. Springer, Heidelberg, Germany.

Blot, A., Hoos, H. H., Jourdan, L., Kessaci-Marmion, M.-E., and Trautmann, H. (2016). MO-ParamILS: A
multi-objective automatic algorithm configuration framework. In Festa, P., Sellmann, M., and Vanschoren,
J., editors, Learning and Intelligent Optimization, 10th International Conference, LION 10, volume 10079 of
Lecture Notes in Computer Science, pages 32–47. Springer, Cham, Switzerland.

Cahon, S., Melab, N., and Talbi, E.-G. (2004). ParadisEO: A framework for the reusable design of parallel and
distributed metaheuristics. Journal of Heuristics, 10(3):357–380.

Chand, S. and Wagner, M. (2015). Evolutionary many-objective optimization: A quick-start guide. Surveys in
Operations Research and Management Science, 20(2):35–42.

Chiang, T.-C. (2014). nsga3cpp: A C++ implementation of NSGA-III. http://web.ntnu.edu.tw/~tcchiang/
publications/nsga3cpp/nsga3cpp.htm.

Coello Coello, C. A., Lamont, G. B., and Van Veldhuizen, D. A. (2007). Evolutionary Algorithms for Solving
Multi-Objective Problems. Springer, New York, NY.

Das, I. and Dennis, J. E. (1997). A closer look at drawbacks of minimizing weighted sums of objectives for
Pareto set generation in multicriteria optimization problems. Structural Optimization, 14(1):63–69.

Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, Chichester, UK.

Deb, K. and Deb, D. (2014). Analysing mutation schemes for real-parameter genetic algorithms. International
Journal of Artificial Intelligence and Soft Computing, 4(1):1–28.

Deb, K. and Jain, S. (2014). An evolutionary many-objective optimization algorithm using reference-point-
based nondominated sorting approach, part I: Solving problems with box constraints. IEEE Transactions
on Evolutionary Computation, 18(4):577–601.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multi-objective genetic algorithm:
NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197.

Deb, K., Thiele, L., Laumanns, M., and Zitzler, E. (2005). Scalable test problems for evolutionary multi-
objective optimization. In Abraham, A., Jain, L., and Goldberg, R., editors, Evolutionary Multiobjective
Optimization, Advanced Information and Knowledge Processing, pages 105–145. Springer, London, UK.

Dréo, J. (2009). Using performance fronts for parameter setting of stochastic metaheuristics. In Rothlauf, F.,
editor, GECCO (Companion), pages 2197–2200. ACM Press, New York, NY.

Dubois-Lacoste, J., López-Ibáñez, M., and Stützle, T. (2011). Automatic configuration of state-of-the-art multi-
objective optimizers using the TP+PLS framework. In Krasnogor, N. and Lanzi, P. L., editors, Proceedings
of the Genetic and Evolutionary Computation Conference, GECCO 2011, pages 2019–2026. ACM Press, New
York, NY.

Eberhart, R. and Kennedy, J. (1995). A new optimizer using particle swarm theory. In Proceedings of the Sixth
International Symposium on Micro Machine and Human Science, pages 39–43.

Ehrgott, M. and Gandibleux, X. (2004). Approximative solution methods for combinatorial multicriteria
optimization. TOP, 12(1):1–88.

Fawcett, C. and Hoos, H. H. (2016). Analysing differences between algorithm configurations through abla-
tion. Journal of Heuristics, 22(4):431–458.

Fleming, P. J., Purshouse, R. C., and Lygoe, R. J. (2005). Many-objective optimization: An engineering design
perspective. In Coello Coello, C. A., Aguirre, A. H., and Zitzler, E., editors, Evolutionary Multi-criterion Op-
timization, EMO 2005, volume 3410 of Lecture Notes in Computer Science, pages 14–32. Springer, Heidelberg,
Germany.

29

http://dx.doi.org/10.1162/evco_a_00263
http://web.ntnu.edu.tw/~tcchiang/publications/nsga3cpp/nsga3cpp.htm
http://web.ntnu.edu.tw/~tcchiang/publications/nsga3cpp/nsga3cpp.htm

This is a pre-print version of the article: M. López-Ibáñez, and T. Stützle. Evolutionary Computation,
2020. doi:~10.1162/evco_a_00263

Fonseca, C. M. and Fleming, P. J. (1993). Genetic algorithms for multiobjective optimization: Formulation,
discussion and generalization. In Forrest, S., editor, ICGA, pages 416–423. Morgan Kaufmann Publishers.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley,
Boston, MA, USA.

Hadka, D. and Reed, P. M. (2013). Borg: An auto-adaptive many-objective evolutionary computing frame-
work. Evolutionary Computation, 21(2):231–259.

Hoos, H. H. (2012). Automated algorithm configuration and parameter tuning. In Hamadi, Y., Monfroy, E.,
and Saubion, F., editors, Autonomous Search, pages 37–71. Springer, Berlin, Germany.

Huband, S., Hingston, P., Barone, L., and While, L. (2006). A review of multiobjective test problems and a
scalable test problem toolkit. IEEE Transactions on Evolutionary Computation, 10(5):477–506.

Hughes, E. J. (2003). Multiple single objective Pareto sampling. In Proceedings of the 2003 Congress on Evolu-
tionary Computation (CEC 2003), volume 4, pages 2678–2684, Piscataway, NJ. IEEE Press.

Igel, C., Hansen, N., and Roth, S. (2007). Covariance matrix adaptation for multi-objective optimization.
Evolutionary Computation, 15(1):1–28.

Igel, C., Heidrich-Meisner, V., and Glasmachers, T. (2008). Shark. Journal of Machine Learning Research, 9:993–
996.

Jiang, S., Ong, Y. S., Zhang, J., and Feng, L. (2014). Consistencies and contradictions of performance metrics
in multiobjective optimization. IEEE Transactions on Cybernetics, 44(12):2391–2404.

KhudaBukhsh, A. R., Xu, L., Hoos, H. H., and Leyton-Brown, K. (2009). SATenstein: Automatically building
local search SAT solvers from components. In Boutilier, C., editor, Proceedings of the Twenty-First Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-09), pages 517–524. AAAI Press, Menlo Park, CA.

Knowles, J. D. and Corne, D. (2000). Approximating the nondominated front using the Pareto archived
evolution strategy. Evolutionary Computation, 8(2):149–172.

Kukkonen, S. and Lampinen, J. (2005). GDE3: the third evolution step of generalized differential evolution.
In Proceedings of the 2005 Congress on Evolutionary Computation (CEC 2005), pages 443–450. IEEE Press,
Piscataway, NJ.

Li, B., Li, J., Tang, K., and Yao, X. (2015). Many-objective evolutionary algorithms: A survey. ACM Computing
Surveys, 48(1):1–35.

López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Stützle, T., and Birattari, M. (2016). The irace package:
Iterated racing for automatic algorithm configuration. Operations Research Perspectives, 3:43–58.

López-Ibáñez, M., Knowles, J. D., and Laumanns, M. (2011). On sequential online archiving of objective
vectors. In Takahashi, R. H. C. et al., editors, Evolutionary Multi-criterion Optimization, EMO 2011, volume
6576 of Lecture Notes in Computer Science, pages 46–60. Springer, Heidelberg, Germany.

López-Ibáñez, M. and Stützle, T. (2012). The automatic design of multi-objective ant colony optimization
algorithms. IEEE Transactions on Evolutionary Computation, 16(6):861–875.

Madavan, N. K. (2002). Multiobjective optimization using a Pareto differential evolution approach. In Fogel,
D. B. et al., editors, Proceedings of the 2002 World Congress on Computational Intelligence (WCCI 2002), pages
1145–1150, Piscataway, NJ. IEEE Press.

Mezura-Montes, E., Reyes-Sierra, M., and Coello Coello, C. A. (2008). Multi-objective optimization using
differential evolution: a survey of the state-of-the-art. In Chakraborty, U. K., editor, Advances in differential
evolution, pages 173–196. Springer, Heidelberg, Germany.

Paquete, L. and Stützle, T. (2007). Stochastic local search algorithms for multiobjective combinatorial opti-
mization: A review. In Gonzalez, T. F., editor, Handbook of Approximation Algorithms and Metaheuristics,
pages 29–1—29–15. Chapman & Hall/CRC, Boca Raton, FL.

Price, K., Storn, R. M., and Lampinen, J. A. (2005). Differential Evolution: A Practical Approach to Global Opti-
mization. Springer, New York, NY.

Robič, T. and Filipič, B. (2005). DEMO: Differential evolution for multiobjective optimization. In Coello
Coello, C. A., Aguirre, A. H., and Zitzler, E., editors, Evolutionary Multi-criterion Optimization, EMO 2005,
volume 3410 of Lecture Notes in Computer Science, pages 520–533. Springer, Heidelberg, Germany.

30

http://dx.doi.org/10.1162/evco_a_00263

This is a pre-print version of the article: M. López-Ibáñez, and T. Stützle. Evolutionary Computation,
2020. doi:~10.1162/evco_a_00263

Ross, P. (2005). Hyper-heuristics. In Burke, E. K. and Kendall, G., editors, Search Methologies, pages 529–556.
Springer, Boston, MA.

Schütze, O., Lara, A., and Coello Coello, C. A. (2011). On the influence of the number of objectives on
the hardness of a multiobjective optimization problem. IEEE Transactions on Evolutionary Computation,
15(4):444–455.

Tagawa, K., Shimizu, H., and Nakamura, H. (2011). Indicator-based differential evolution using exclusive
hypervolume approximation and parallelization for multi-core processors. In Krasnogor, N. and Lanzi,
P. L., editors, Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2011, pages 657–
664. ACM Press, New York, NY.

Tanabe, R., Ishibuchi, H., and Oyama, A. (2017). Benchmarking multi- and many-objective evolutionary
algorithms under two optimization scenarios. IEEE Access, 5:19597–19619.

Tušar, T. and Filipič, B. (2007). Differential evolution versus genetic algorithms in multiobjective optimization.
In Obayashi, S. et al., editors, Evolutionary Multi-criterion Optimization, EMO 2007, volume 4403 of Lecture
Notes in Computer Science, pages 257–271. Springer, Heidelberg, Germany.

Voß, T., Hansen, N., and Igel, C. (2010). Improved step size adaptation for the MO-CMA-ES. In Pelikan,
M. and Branke, J., editors, Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2010,
pages 487–494. ACM Press, New York, NY.

Zhang, Q. (2007). MOEA/D homepage. https://dces.essex.ac.uk/staff/zhang/webofmoead.htm.

Zhang, Q. and Li, H. (2007). MOEA/D: A multiobjective evolutionary algorithm based on decomposition.
IEEE Transactions on Evolutionary Computation, 11(6):712–731.

Zhang, Q., Liu, W., and Li, H. (2009). The performance of a new version of MOEA/D on CEC09 uncon-
strained MOP test instances. In Proceedings of the 2009 Congress on Evolutionary Computation (CEC 2009),
pages 203–208, Piscataway, NJ. IEEE Press.

Zitzler, E. and Künzli, S. (2004). Indicator-based selection in multiobjective search. In Yao, X. et al., editors,
Proceedings of PPSN-VIII, Eigth International Conference on Parallel Problem Solving from Nature, volume 3242
of Lecture Notes in Computer Science, pages 832–842. Springer, Heidelberg, Germany.

Zitzler, E., Laumanns, M., and Thiele, L. (2002). SPEA2: Improving the strength Pareto evolutionary algo-
rithm for multiobjective optimization. In Giannakoglou, K. C., Tsahalis, D. T., Periaux, J., Papaliliou, K. D.,
and Fogarty, T., editors, Evolutionary Methods for Design, Optimisation and Control, pages 95–100. CIMNE,
Barcelona, Spain.

Zitzler, E., Thiele, L., and Bader, J. (2010). On set-based multiobjective optimization. IEEE Transactions on
Evolutionary Computation, 14(1):58–79.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., and Grunert da Fonseca, V. (2003). Performance assess-
ment of multiobjective optimizers: an analysis and review. IEEE Transactions on Evolutionary Computation,
7(2):117–132.

31

http://dx.doi.org/10.1162/evco_a_00263
https://dces.essex.ac.uk/staff/zhang/webofmoead.htm

	Introduction
	An augmented MOEA template
	Original template
	Underlying EAs
	Deconstructing decomposition
	Archive truncation techniques

	Automatically designing effective MOEAs
	Parameter space of AutoMOEA+
	Automatic design setup
	Trends from the generated AutoMOEA+ algorithms
	Comparison between designs from AutoMOEA+ and AutoMOEA
	State-of-the-art comparison
	Stopping criteria effects
	Tuning metric effects on single-objective MOEA design

	A multi-objective formulation to automatic MOEA design
	Multi-objective MOEA design
	Empirical assessment

	Conclusion

