
Automatic Generation of Multi-objective ACO
Algorithms for the Bi-objective Knapsack

Leonardo C. T. Bezerra, Manuel López-Ibáñez, and Thomas Stützle

IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium
leonardo@iridia.ulb.ac.be, {manuel.lopez-ibanez, stuetzle}@ulb.ac.be

Abstract. Multi-objective ant colony optimization (MOACO) algo-
rithms have shown promising results for various multi-objective prob-
lems, but they also offer a large number of possible design choices. Often,
exploring all possible configurations is practically infeasible. Recently,
the automatic configuration of a MOACO framework was explored and
was shown to result in new state-of-the-art MOACO algorithms for the
bi-objective traveling salesman problem. In this paper, we apply this ap-
proach to the bi-objective bidimensional knapsack problem (bBKP) to
prove its generality and power. As a first step, we tune and improve the
performance of four MOACO algorithms that have been earlier proposed
for the bBKP. In a second step, we configure the full MOACO frame-
work and show that the automatically configured MOACO framework
outperforms all previous MOACO algorithms for the bBKP as well as
their improved variants.

1 Introduction

Multi-objective ant colony optimization (MOACO) algorithms have been ap-
plied to multi-objective combinatorial optimization problems (MCOPs) since
more than 10 years [7, 3, 1, 10, 12, 9]. The interest in MOACO algorithms may
be explained by the practical relevance of multi-objective problems and by the
positive results that have been achieved with these algorithms. The available
MOACO algorithms provide a large number of different design choices that allow
the instantiation of a huge number of structurally different MOACO algorithms.
Recently, López-Ibáñez and Stützle [13] proposed a MOACO framework that
implements most of those design possibilities. The automatic configuration tool
Iterated F-race (I/F-Race) [2, 11] was used to automatically generate MOACO
algorithms for the bi-objective traveling salesman problem (bTSP). The authors
showed that the automatic configuration of a generic MOACO framework pro-
duced better results than the MOACO algorithms from the literature used to
build the framework. In this paper, we continue the investigation of the effec-
tiveness of this approach by extending the MOACO framework to deal with the
bi-objective bidimensional knapsack problem (bBKP).

The bBKP is a popular benchmark problem in multi-objective optimiza-
tion [16, 14]. Moreover, four different MOACO algorithms have been proposed
for the bBKP [1]. The bBKP has also some properties that make it interesting



for further exploring the possibilities of the automatic design of MOACO algo-
rithms from a flexible framework. In particular, the representation of solutions
is different from the TSP, pheromone information is represented by a vector in-
stead of a matrix, and the structure of the solution space is quite different from
the TSP.

This paper shows that the proposed method for the automatic design of
MOACO algorithms also works for the bBKP. The proposed method is able to
generate, with little effort from the human designer, MOACO algorithms that
are clearly better than those proposed earlier for the bBKP, even after tuning
the ACO settings of the MOACO algorithms from the literature and improving
significantly their performance.

2 The Bi-objective Bidimensional Knapsack Problem

In an MCOP, the quality of solutions is evaluated based on a D-dimensional
objective vector. Given two different candidate solutions x1 and x2 of a maxi-
mization problem, the Pareto dominance relation states that x1 dominates x2 iff
∀d = 1, . . . , D fd(x1) ≥ fd(x2), and ∃j ∈ {1, . . . , D} such that fd(x1) > fd(x2).
The goal in MCOPs that are tackled according to Pareto dominance is to iden-
tify the Pareto-optimal set, i.e., the solutions that are nondominated w.r.t. all
feasible solutions. Since most of such MCOPs are NP-hard, this goal is typically
relaxed towards finding an as good as possible approximation to the Pareto set.

In this paper, we tackle the bBKP, which is a widely used bi-objective bench-
mark problem [16, 14]. The bBKP is a special case of the general multi-objective
multidimensional knapsack problem (moMKP), which is formalized as follows:

max fd(x) =

n∑
i=1

pdi xi d = 1, . . . , D s.t.

n∑
i=1

wjixi ≤Wj j = 1, . . . ,m

where each item i has D profits and m costs, fd is the d-th component of the D-
dimensional objective vector f , n is the number of items, pdi is the d-th profit of

item i, wji is the j-th cost of item i, Wj is the j-th capacity of the knapsack, and
xi is a decision variable in {0, 1} that controls whether item i is included in the
knapsack (xi = 1) or not (xi = 0). The set of feasible solutions is X ⊆ {0, 1}n.
The bBKP is a special case of the moMKP where D = m = 2.

3 ACO Algorithms for the bBKP

When applying ACO to the single-objective multidimensional knapsack problem,
the pheromone information is defined as a vector, where each component τi gives
the desirability of adding item i to the knapsack. Each ant k constructs a solution
by adding, at each step, item i to the knapsack with a probability pi

pi =


ταi ·ηβi∑

j∈Nk τ
α
j ·ηβj

∀i ∈ Nk,

0 otherwise,
(1)



where ηi is a heuristic estimation of the benefit of adding item i, and Nk is
a set of candidate items. After each step, the item added to the current solu-
tion and those items that do not fit anymore in the remaining capacity of the
knapsack are removed from the candidate set. The solution construction stops
when the candidate set is empty. After the constructed solutions are evaluated,
the pheromone information is updated in two steps. First, pheromone values
are evaporated, that is, decreased by a factor ρ. Second, the pheromone values
corresponding to items present in the best solutions are updated by depositing
an amount of pheromone ∆τ , thus increasing the probability that newly con-
structed solutions contain those items. Alaya et al. [1] proposed four different
algorithms that extend the ACO metaheuristic to the bBKP.

mACO1 has one pheromone vector for each objective, that is, τ1 and τ2. Ants
are divided in three groups λ ∈ {0, 0.5, 1} according to the weight λ they use
for aggregating the two pheromone vectors when constructing solutions. The
solution construction uses random aggregation, that is, at each step the phero-
mone information to be used is chosen as τ1 with a probability (1− λ), and as
τ2, otherwise. This means that ants using λ = 0 or λ = 1 use only τ1 or τ2,
respectively. The heuristic information is aggregated by means of weighted sum
aggregation, that is, η = (1 − λ) · η1 + λ · η2, where η1 and η2 are the heuristic
information corresponding to each objective.

The pheromone update method used by mACO1 is a particular case for
λ ∈ {0, 0.5, 1} of a method called best-of-objective-per-weight (BOW) [13]. In
BOW, those solutions generated with the same weight λ are kept in the same list.
For the lists of λ 6∈ {0, 1}, the best solution according to each objective updates
the pheromone vector of the corresponding objective. For the list of λ = 0, only
the best solution according to the first objective updates τ1, whereas for the list
of λ = 1, only the best solution according to the second objective updates τ2.

Finally, mACO1 uses a particular pheromone deposit. Given the best solution
constructed in the current iteration and the best-so-far solution according to
objective d (sdib and sdbf, respectively), the amount of pheromone deposited is
given by ∆τd = 1

1+fd(sdbf)−fd(s
d
ib)

. We refer to this method as fobj-mACO.

mACO2 is identical to mACO1 except for how the multiple pheromone vectors
are aggregated. Instead of a random aggregation, mACO2 uses a weighted sum
aggregation, that is, τ = (1− λ) · τ1 + λ · τ2.

mACO3 uses only a single pheromone vector. The heuristic information is also
a single vector, which is statically computed at the start of the algorithm as
ηi = η1i +η2i . Pheromone information is updated using all nondominated solutions
found since the start of the algorithm, that is, the best-so-far archive. Every
solution component is rewarded a constant ∆τ = 1 only once per iteration,
regardless of how many times it is present on different solutions.

mACO4 follows mACO1: one pheromone vector per objective, which are aggre-
gated by weighted random aggregation; BOW pheromone update, and phero-
mone deposit is fobj-mACO. However, there is only one weight λ = 0.5, and one
heuristic vector defined as in mACO3.



Algorithm 1 MOACO framework

1: for each colony c ∈ {1, . . . , Ncol} do
2: InitializePheromoneInformation()
3: Λc := MultiColonyWeights()
4: InitializeHeuristicInformation()
5: Abf := ∅
6: iter := 0
7: while not termination criteria met do
8: Aiter := ∅
9: for each colony c ∈ {1, . . . , Ncol} do

10: for each ant k ∈ {1, . . . , Na} do
11: λ := NextWeight(Λc, k, iter)

12: τ :=

{
Aggregation(λ, {τ1

c , τ
2
c }) if multiple [τ ]

τc if single [τ ]

13: η :=

{
Aggregation(λ, {η1, η2}) if multiple [η]

η if single [η]

14: s := ConstructSolution(τ, η)
15: Aiter := RemoveDominated(Aiter ∪ {s})
16: Abf := RemoveDominated(Abf ∪Aiter)
17: Aupd := ChooseUpdateSet(Aiter, Abf)
18: for each colony c ∈ {1, . . . , Ncol} do
19: Aupd

c := MultiColonyUpdate(Aupd)
20: PheromoneUpdate(Aupd

c , Nupd)
21: iter := iter + 1
22: Output: Abf

The mACO algorithms can be instantiated as described above by our MOACO
framework [13]. We have confirmed this approach is equivalent to the original [1].

4 A Flexible MOACO Framework for the bBKP

In this paper, we extend the flexible MOACO framework proposed for the
bTSP by López-Ibáñez and Stützle [13] to also tackle the bBKP and we auto-
matically instantiate MOACO algorithms. The MOACO framework is able to
replicate most MOACO designs proposed in the literature and can generate new
MOACO designs by combining components in novel ways. However, its applica-
tion to the bBKP requires extending it concerning the solution representation
and other problem-specific features. Here, we briefly summarize the high-level
structure of the framework and its components (see [13] for further details).

The high-level algorithmic scheme of the MOACO framework is given in
Algorithm 1. The MOACO framework is a multi-colony algorithm, where each
colony c of ants has its own pheromone information and its own set of weights
Λc for possibly aggregating information. The assignment of weights to colonies
is defined by MOACO component MultiColonyWeights. Within each colony, each
ant constructs a solution according to pheromone information τ and heuristic



information η. Either τ or η may be the result of aggregation. That is, if the
pheromone information consists of multiple pheromone vectors, one for each
objective, these are aggregated into a single pheromone vector τ by means of
MOACO component Aggregation (line 12), using a particular weight λ. If mul-
tiple heuristic vectors are used, they are aggregated in a similar way. Which
weight is used by each ant may depend on the set of weights of each colony,
the particular ant, and the particular iteration. The different possibilities are
encapsulated by MOACO component NextWeight (line 11). Once all ants have
constructed a solution, the resulting iteration-best archive of nondominated so-
lutions (Aiter) is merged into the best-so-far archive (Abf) (line 16). After this
step, the pheromone information of each colony is updated in two steps. First,
the set of solutions for update (either Aiter or Abf), is partitioned among colonies
according to component MultiColonyUpdate (line 19). Next, a number of solu-
tions from each set is used to update the pheromone information of each colony
in a way defined by component PheromoneUpdate (line 20). The algorithm stops
when a termination criterion is met, typically a maximum number of iterations
or a time limit, and returns the best-so-far archive.

The flexibility of the MOACO framework is given by the alternative defini-
tions of the algorithmic components that specify the key steps in the algorithm.
Defining these components in particular ways allows the framework to replicate
most of the MOACO algorithms in the literature. A summary of the available
alternatives is given in Table 1. The complete description of all components and
their alternatives can be found in the original publication [13]. For brevity, we
restrict ourselves here to the new extensions implemented for the bBKP.

Following [13], we use MAX -MIN Ant System (MMAS) [15] as the un-
derlying ACO algorithm that defines details such as the pheromone deposit ∆τ ,
and maximum and minimum pheromone levels (τmax and τmin). Here, we have
adapted MMAS to the bBKP, but making more flexible the definition of ∆τ ,
τmax and τmin to be able to replicate faithfully the original mACO algorithms
for the bBKP. The alternatives implemented for the definition of the pheromone
deposit (∆τ) are:

fobj, that is, ∆τd = fd(s), where τd is the pheromone information correspond-
ing to objective d. If only one pheromone vector is used instead of multiple,
then∆τ = f1(s)+f2(s). This method is the one used in the originalMMAS.

constant, that is, ∆τd = 1 − rd(s)−1
Nupd , where rd(s) is the rank of solution s

ordered according to objective d and Nupd is the number of solutions used
to update τd. This method is inspired by rank-based ant system [5].

fobj-mACO, this is the method used in mACO1, mACO2 and mACO4.
MACS, that is, ∆τ = f1(s) · f2(s), which is adapted from MACS [3].

For the definition of the pheromone levels we consider two possibilities. The

first is the default setting of MMAS, which uses τmax = maxiter(∆τ)
ρ , where

maxiter(∆τ) is the maximum amount of pheromone deposited at iteration iter
for a single pheromone component, and τmin = τmax

ν·n , where ν ∈ R+ is a param-
eter (ν = 2 in MMAS). The second is the value setting, where τmax and τmin



Table 1: Algorithmic components of the MOACO framework

Component Domain Description

[τ ] { single, multiple } Num. pheromone vectors

[η] { single, multiple } Num. heuristic vectors

Nweights N+ Number of weights

Aggregation


weighted sum,

weighted product,

random

How weights are used to aggregate mul-
tiple [τ ] or [η]

NextWeight

{
one weight per iteration (1wpi),

all weights per iteration (awpi)
How weights are used at each iteration

PheromoneUpdate


nondominated solutions (ND),

best-of-objective (BO),

best-of-objective-per-weight (BOW)

Which solutions are selected to update
the pheromone information

Nupd N+ Num. solutions that update each [τ ]

ChooseUpdateSet


best-so-far (BSF),

iteration-best (IB),

mixed

Whether the solutions used for update
are taken from Abf, Aiter or using both
alternately

The following components have an effect only when using multiple colonies.

Ncol N+ Number of colonies

MultiColonyWeights


same (∩100%),

overlapping (∩50%),

disjoint (∩0%

Whether colonies share all, 50% or no
weights.

MultiColonyUpdate { origin, region } How solutions are assigned to colonies

New components added in this work for the bBKP.

τmax method { default, value } Method for calculating τmax

τmin method { default, value } Method for calculating τmin

∆τ { constant, fobj-mACO, fobj, MACS } Method for calculating ∆τ

ηi { profit
cost

,
∑

profits
cost

, profit∑
costs

} Heuristic information used

are set to two different constant values τmax > τmin. A value setting is used in
all mACO algorithms.

In addition, we have implemented three alternatives for the heuristic informa-
tion. For a given objective d and item i, the heuristic information can be either
profit divided by cost (η1di ), which is the one used in the mACO algorithms [1],
sum profits divided by cost (η2di ), or profit divided by sum costs (η3di ) [14], that
is,

η1di =
pdi
wdi

η2di =

∑D
k=1 p

k
i

wdi
η3di =

pdi∑m
l=1 w

l
i

(2)



Table 2: Termination criteria used in our experiments.

TIME 1 TIME 2 TIME 3 TIME 4

Time (s) 0.00001 · n2 0.00003 · n2 0.0001 · n2 0.001 · n2

Equivalent to 9000 solutions 3000 solutions 30000 solutions 300000 solutions
of mACO2 of mACO1 of mACO3 of mACO4

5 Experimental Setup

Our experiments are divided in two stages. In a first stage, we automatically
configure the ACO settings of the mACO algorithms and compare the resulting
configurations with the original settings. This is done to avoid a bias by possibly
poor ACO parameter settings of the mACO algorithms. In the second stage, we
compare the best configurations with an algorithm automatically instantiated
from the MOACO framework.

As the automatic algorithm configuration tool, we use I/F-Race [2, 11]. The
input of I/F-Race is a definition of the parameter space, which may contain cat-
egorical and numerical parameters, and a set of training instances. I/F-Race was
originally designed for single-objective algorithms, but it has been extended to
handle the multi-objective case by using the hypervolume quality measure [13]
(IH). The hypervolume is a well-known quality measure in multi-objective op-
timization [17]. It computes for each approximation set, the volume in the ob-
jective space weakly dominated by the approximation set and bounded by a
reference point; hence, the larger the hypervolume the better. We use the hy-
pervolume (concretely, the implementation provided by Fonseca et al. [8]) not
only in combination with I/F-Race, but also to compare the various MOACO
algorithms.

For the application of I/F-Race, we create a training set of 100 randomly
generated instances of the bBKP, following the method proposed by Zitzler and
Thiele [16]. These instances have random sizes in the range n ∈ {100, . . . , 750}.
For comparing the algorithms, we generate a different test set of 50 bBKP in-
stances for each size n ∈ {100, 250, 500, 750}. We include in our test set also the
four instances by Zitzler and Thiele [16] of sizes n ∈ {100, 250, 500, 750}, called
ZTZ instances. All algorithms are implemented in C and all experiments are run
on a single core of Intel Xeon E5410 CPUs, running at 2.33GHz with 6MB of
cache size under Cluster Rocks Linux version 4.2.1/CentOS 4.

The mACO algorithms were originally run with different termination criteria,
that is, a different number of iterations, for each variant [1]. To replicate the
original mACO experiments, we consider four different computation time limits
in our experiments, which correspond to the mean time taken by each of the four
mACO variants measured across 25 independent runs on the four ZTZ instances
using the corresponding number of iterations (see Table 2). Then, we compute a
formula that approximates the computation time obtained for each termination
criterion. The four resulting termination criteria are given in Table 2, sorted
from the shortest to the longest time.



Table 3: Parameter space for tuning the ACO settings of the mACO algorithms.

Parameter α β ρ q0 af τmax method τmin method

Domain {0, . . . , 10} {0, . . . , 15} [0.01, 1] [0, 0.99] {1, . . . , 30} {default, value} {default, value}
value ∈ [6, 100] value ∈ [0.01, 6]

ν ∈ [1.5, 15]

Comparisons are conducted using empirical attainment functions (EAFs),
boxplots of the hypervolume (IH) and the unary additive epsilon (Iε+) indi-
cators [17], and the Friedman non-parametrical test. In the paper, only few
representative results are given; for the complete set of results and the test and
training instances we generated, we refer to the supplementary material [4].

6 Experimental Analysis

6.1 Improving the ACO settings of the mACO algorithms

In the first stage of our analysis, we automatically configure the ACO settings
of the four mACO variants. The parameter space given to I/F-Race is shown
in Table 3. Parameter af is a surrogate parameter of the total number of ants,
which is given by Na = af · (0.12 · n+ 36). Na is rounded to the closest smaller
number divisible by three, because mACO1 and mACO2 divide the ants into
three groups. We apply I/F-Race with a budget of 5 000 independent runs in
the tuning phase for each mACO algorithm and for each termination criterion
TIME i. Here, the mACO algorithms use their original heuristic information
η1 [1]. The resulting 16 configurations of mACO are provided as supplementary
material [4]. Here, we focus on the configurations obtained when using TIME 4,
which are shown in Table 4.

We compare all algorithms (original and tuned versions) in terms of the hy-
pervolume. We run all algorithms for all four termination criteria 10 independent
times on each of the 200 randomly generated bBKP instances (50 instances per
instance size n ∈ {100, 250, 500, 750}). We normalize the objective values per in-
stance to the interval [1, 2], with 1 corresponding to the maximum value and 2 to
the minimum, and compute the hypervolume using the reference point (2.1, 2.1).
To analyze the results, we apply the Friedman test, and its associated post-hoc
test for multiple comparisons [6], using the median hypervolume obtained by
each algorithm on each instance as values, the instances as the blocking factor
and the different mACO algorithms as the treatment factor. In all cases, the
Friedman test rejects the null hypothesis of equal performance at a significance
level of 0.05. Those algorithms whose ranks differ by more than the critical
difference are considered to be significantly different. Table 5 summarizes the
results of applying this statistical analysis for each termination criterion. Ranks
obtained by each algorithm are shown in parenthesis. The minimum significant
rank difference is displayed between parenthesis on the header of each column.



Table 4: Settings chosen by irace for mACOi-tuned under TIME 4.

Variant
α

{0, ..., 10}
β

{0, ..., 15}
ρ

[0.01, 1]
q0

[0, 0.99]

τmax method
{default,
value}

τmin method
{default, value}

af
{1, ..., 30}

mACO1-tuned 8 1 0.03 0.03 value = 65 value = 0.33 27

mACO2-tuned 3 1 0.07 0.10 default default, ν = 6 26

mACO3-tuned 3 1 0.08 0.18 value = 49 value = 0.34 2

mACO4-tuned 2 1 0.19 0.19 default default, ν = 8 5

Table 5: Friedman test results for IH obtained by the mACO algorithms.
Rank IH TIME 1 (32.957) IH TIME 2 (31.793) IH TIME 3 (35.433) IH TIME 4 (40.745)

1 mACO2-tuned (293) mACO2-tuned (208) mACO2-tuned (220) mACO2-tuned (227)

2 mACO1-tuned (319) mACO1-tuned (402) mACO1-tuned (380) mACO1-tuned (373)

3 mACO2 (591) mACO2 (610) mACO2 (644) mACO3-tuned (757)

4 mACO4-tuned (958) mACO3-tuned (973) mACO1 (987) mACO2 (779)

5 mACO3-tuned (1005) mACO1 (1036) mACO3-tuned (1040) mACO4-tuned (1076)

6 mACO3 (1202) mACO4-tuned (1087) mACO4-tuned (1073) mACO1 (1238)

7 mACO1 (1268) mACO3 (1301) mACO3 (1287) mACO3 (1282)

8 mACO4 (1564) mACO4 (1583) mACO4 (1569) mACO4 (1468)

The best algorithm and those that are not significantly different from the best
are marked in boldface.

From Table 5, we observe that mACO2-tuned is the best performing algo-
rithm for all different TIMEi, whereas mACO4 performs the worst. This seems
to contradict the results reported by Alaya et al. [1], which considered mACO4

as the best performing variant. The different results are explained because, in
their case, mACO4 constructed 100 times more solutions than mACO2, which
roughly requires 100 times more computational time (Table 2). By contrast, we
compare algorithms using the same computation time limit.

The main conclusion we take from these results is that each tuned mACO
algorithm clearly outperforms its corresponding original version for each stop-
ping criterion. Hence, we use these tuned variants for comparing against the
automatically generated MOACO algorithm in the next section.

6.2 Automatically Generating MOACO Algorithms for the bBKP

In this second stage of our analysis, we automatically configure all parameters
of the MOACO framework. In particular, for the parameters specific to the un-
derlying ACO algorithms, we use the same parameter space as for the mACO
algorithms (Table 3). For the multi-objective components, we consider all al-
ternatives described in Table 1, plus the following ranges: N col ∈ {1, 2, 5} and
Nupd ∈ {1, . . . , 10}. Since Na, the number of ants, has to be divisible by N col,
and the result be divisible by Nweights (when awpi is used), Na was always
rounded to the largest smaller number divisible by 10. The weights are defined
as, Nweights ∈ {0.2, 5, Na}, when N col = 2, and Nweights ∈ {0.5, 2, Na}, when
N col = 5. For single colony versions, only two values were allowed: 0.2 and 0.5.



Table 6: Parameter settings chosen by I/F-Race for AutoMOACO: TIME4.

Parameter α β ρ q0 af τmax τmin N
col Nweights MCWeights NextWeight MCUpdate

Value 1 12 0.12 0.57 8 83 2.49 5 Na ∩50% awpi origin

Parameter Nupd Selection Ref. ∆τ [τ ] [η] [τ ]-Aggreg. [η]-Aggreg. Heuristic

Value 10 BO BSF constant multiple multiple product sum η3

Hypervolume

AutoMOACO

mACO2−tuned−heu

mACO2−tuned

mACO2

0.7 0.8 0.9 1.0

●

●

●

●

●●●●●

●●

ZTZ.100

0.7 0.8 0.9 1.0

●

●

●

●

●●

ZTZ.250

0.7 0.8 0.9 1.0

●

●

●

●

●●●

ZTZ.500

0.7 0.8 0.9 1.0

●

●

●

●

●●●

ZTZ.750

Fig. 1: Boxplots of the IH indicator for several MOACO algorithms with TIME4.

As in the previous section, we apply I/F-Race four times, once for each stop-
ping criterion. The budget of each run of I/F-Race is 5 000 runs of the MOACO
framework. The four resulting configurations are given as supplementary mate-
rial [4]. Here, we focus on the configuration obtained for TIME4 (Table 6).

The analysis of the AutoMOACO configurations shows several commonali-
ties. First, heuristic η3 is always chosen, which is different from the one used in
the mACO algorithms. Second, the parameter β is always close to the maximum
value allowed, thus giving very high importance to the heuristic information.
Third, the parameter value of q0 is also high. This together with the high value
of the parameter β implies that most of the items are chosen greedily. Fourth,
the number of ants is always very large. For example, 1000 ants are used for
instance size 750. As a result, the number of iterations executed by the MOACO
algorithm in the given time limits is rather small. It reaches from at most two
iterations for the shortest time limits (TIME1 and TIME2) to about 60 to 85
iterations for the larger time limit (TIME4). In the first case, if very few it-
erations are executed, the algorithm actually behaves as a greedy construction
procedure that performs multiple scalarizations of the bi-objective problem. For
the longer time limits, we confirmed that excluding the pheromone information
(that is, setting α = 0) makes the performance become significantly worse (see
supplementary material [4]). This implies that for the larger computation time
limits, despite the low number of iterations, the ACO component is effective.

Finally, we compare the performance obtained by the automatically config-
ured MOACO algorithms and the mACO algorithms. Given the high impact of
using heuristic information η3, we repeated the tuning of each of the mACO
variants as described above, but this time leaving open also the choice of the
heuristic information. In the following comparison, we consider only the original
and the two tuned variants of mACO2, which are the best mACO variants for



Table 7: Friedman test results for IH for various MOACO algorithms.
Rank IH TIME 1 (14.74) IH TIME 2 (11.416) IH TIME 3 (7.635) IH TIME 4 (5.987)

1 AutoMOACO (236) AutoMOACO (228) AutoMOACO (212) AutoMOACO (204)

2 mACO2-tuned-heu (365) mACO2-tuned-heu (373) mACO2-tuned-heu (388) mACO2-tuned-heu (399)

3 mACO2-tuned (611) mACO2-tuned (599) mACO2-tuned (600) mACO2-tuned (597)

4 mACO2 (688) mACO2 (800) mACO2 (800) mACO2 (800)

each of the time limits. In Fig. 1 we show boxplots of the hypervolume distribu-
tion for the algorithm automatically instantiated from the MOACO framework
(AutoMOACO), the original mACO2, mACO2 tuned with η1 and mACO2 tuned
leaving open the choice of the heuristic information (mACO2-tuned-heu). The
instances shown are the four ZTZ instances. Finally, Table 7 gives the results of
the Friedman test, which is applied as described in Section 6.1. Clearly, the Au-
toMOACO algorithm is the top performer, outperforming significantly the other
variants. For complete results, we again refer to the supplementary material [4].

7 Conclusions and Future Work

We have extended the MOACO framework [13] to the bBKP and automati-
cally generated MOACO algorithms. The results reported here for the bBKP
confirm the previous conclusions obtained in the bTSP, that is, the automati-
cally configured MOACO algorithms outperform the MOACO algorithms from
the literature, even after the ACO parameters of the latter have been tuned
with the same effort. Interestingly, the MOACO algorithm tuned for very short
time limit is rather a repeated stochastic greedy construction procedure than
an ACO algorithm. Although this result may seem counter-intuitive at first, it
is, however, a strength of automatic configuration procedures, because they are
not biased towards our expectations. The fact that the resulting algorithm is
better than the MOACO algorithms proposed in the literature, indicates that
the automatic design works as desired, that is, it provides a high-performing al-
gorithm for the given termination criterion. For higher computation time limits,
the ACO component of the finally configured algorithm works and contributes
to its high performance.

Future work should extend the MOACO framework, and apply the proposed
automatic design method, to new problems in order to further confirm the above
conclusions. The method is not restricted to MOACO algorithms, and, hence,
extensions to other metaheuristics are possible.

Acknowledgments. The research leading to the results presented in this paper has

received funding from the European Research Council under the European Union’s

Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no 246939,

and from the Meta-X project from the Scientific Research Directorate of the French

Community of Belgium. Leonardo C. T. Bezerra, Manuel López-Ibáñez and Thomas

Stützle acknowledge support from the Belgian F.R.S.-FNRS, of which they are a FRIA

doctoral fellow, a postdoctoral researcher and a research associate, respectively.



References

1. Alaya, I., Solnon, C., Ghédira, K.: Ant colony optimization for multi-objective op-
timization problems. In: ICTAI 2007, vol. 1, pp. 450–457. IEEE Computer Society
Press, Los Alamitos, CA (2007)

2. Balaprakash, P., Birattari, M., Stützle, T.: Improvement strategies for the F-race
algorithm: Sampling design and iterative refinement. In: Bartz-Beielstein, T., et
al. (eds.) Hybrid Metaheuristics, LNCS, vol. 4771, pp. 108–122. Springer (2007)

3. Barán, B., Schaerer, M.: A multiobjective ant colony system for vehicle routing
problem with time windows. In: Proceedings of the Twenty-first IASTED Intern.
Conf. on Appl. Informat.. pp. 97–102. Insbruck, Austria (2003)

4. Bezerra, L.C.T., López-Ibáñez, M., Stützle, T.: Automatic Generation of MOACO
Algorithms for the Biobjective Bidimensional Knapsack Problem: Supplementary
material. http://iridia.ulb.ac.be/supp/IridiaSupp2012-008/ (2012)

5. Bullnheimer, B., Hartl, R., Strauss, C.: A new rank-based version of the Ant Sys-
tem: A computational study. Cen. Eur. J. for Oper. Res. and Econ. 7(1), 25–38
(1999)

6. Conover, W.J.: Practical Nonparametric Statistics. John Wiley & Sons, New York,
NY, third edn. (1999)

7. Doerner, K.F., Hartl, R.F., Reimann, M.: Are COMPETants more competent for
problem solving? The case of a multiple objective transportation problem. Cen.
Eur. J. for Oper. Res. and Econ. 11(2), 115–141 (2003)

8. Fonseca, C.M., Paquete, L., López-Ibáñez, M.: An improved dimension-sweep al-
gorithm for the hypervolume indicator. In: CEC 2006, pp. 1157–1163. IEEE Press,
Piscataway, NJ (Jul 2006)

9. Garćıa-Mart́ınez, C., Cordón, O., Herrera, F.: A taxonomy and an empirical analy-
sis of multiple objective ant colony optimization algorithms for the bi-criteria TSP.
Eur. J. of Oper. Res. 180(1), 116–148 (2007)

10. Iredi, S., Merkle, D., Middendorf, M.: Bi-criterion optimization with multi colony
ant algorithms. In: Zitzler, E., et al. (eds.) EMO 2001, LNCS, vol. 1993, pp. 359–
372. Springer (2001)

11. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package,
iterated race for automatic algorithm configuration. Tech. Rep. TR/IRIDIA/2011-
004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)

12. López-Ibáñez, M., Stützle, T.: The impact of design choices of multi-objective ant
colony optimization algorithms on performance: An experimental study on the
biobjective TSP. In: Pelikan, M., Branke, J. (eds.) GECCO 2010, pp. 71–78. ACM
press, New York, NY (2010)

13. López-Ibáñez, M., Stützle, T.: The automatic design of multi-objective ant colony
optimization algorithms. IEEE Trans. on Evol. Comput. (2012), in press

14. Lust, T., Teghem, J.: The multiobjective multidimensional knapsack problem: a
survey and a new approach. Arxiv preprint arXiv:1007.4063 (2010)

15. Stützle, T., Hoos, H.H.:MAX -MIN Ant System. Future Generat. Comput. Sys-
tems 16(8), 889–914 (2000)

16. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case
study and the strength Pareto evolutionary algorithm. IEEE Trans. on Evol. Com-
put. 3(4), 257–271 (1999)

17. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.:
Performance assessment of multiobjective optimizers: an analysis and review. IEEE
Trans. on Evol. Comput. 7(2), 117–132 (2003)


