Advanced ACO Algorithms

Leonardo Bezerra leonardo@iridia.ulb.ac.be Leslie Pérez-Cáceres Iperez@iridia.ulb.ac.be

whmphumumphumpu

The Ant System Algorithm
For \#iterations
For each ant
Choose a random starting city
While tour is not complete
Select next city using random
proportional transition rule
End While
End for
Update pheromone information
End for

MAX-MIN Ant System (MMAS)

- Only iteration best or best-so-far ants update pheromone

$$
\begin{aligned}
& \tau_{i j} \leftarrow(1-\rho) \cdot \tau_{i j} \\
& \tau_{i j} \leftarrow \tau_{i j}+\Delta \tau_{i j}^{\text {best }}
\end{aligned} \quad \forall(i, j) .
$$

- Pheromone is also updated while building solution
- Only iteration best or best-so-far ants update pheromone

MAX-MIN Ant System (MMAS)

- Pheromone trails are reinitialized:
- When the algorithm converges;
- When no improved solutions has been generated for a certain number of consecutive iterations.

Ant Colony System (ACS)

- Three main ideas:

D Different state transition rule;
D Different global pheromone update rule;

- New local pheromone update rule

ACS - Global Update Rule

- Pheromone modified only on edges of the best tour so far

$$
\begin{aligned}
\tau_{i j} \leftarrow(1-\rho) \cdot \tau_{i j} & \forall(i, j) \in T^{b s} \\
\tau_{i j} \leftarrow \tau_{i j}+\rho \cdot \Delta \tau_{i j}^{b s} & \forall(i, j) \in T^{b s} \\
\text { where } & \Delta \tau_{i j}^{b s}=\frac{1}{L^{b s}}
\end{aligned}
$$

ACS - Pseudocode
Loop

```
Randomly select starting cities
For step=1 to \#cities
For \(k=1\) to \#ants
Apply the state transition rule
Apply the online trail updating rule End-for
End-for
Apply the offline trail updating rule Until End_condition
    Randomly select starting cities
    For step=1 to #cities
        or k=1 to #ants
            the state transition rule
            End-for
    til End_condition
```


ACS - Local Update Rule

- Whíle building a solution each ants updates pheromone on visited edges:

$$
\tau_{i j} \leftarrow(1-\rho) \cdot \tau_{i j}+\rho \cdot \tau_{0}
$$

- This update rule introduces diversification

