ARGoS  3
A parallel, multi-engine simulator for swarm robotics
argos Namespace Reference

The namespace containing all the ARGoS related code. More...

Classes

class  CCI_Actuator
 The basic interface for all actuators. More...
class  CCI_Controller
 The basic interface for a robot controller. More...
class  CCI_Sensor
 The basic interface for all sensors. More...
class  CSimulatedActuator
 The basic interface for a simulated actuator. More...
class  CARGoSCommandLineArgParser
 The command line argument parser used by the main ARGoS executable. More...
class  CComposableEntity
 Basic class for an entity that contains other entities. More...
class  CControllableEntity
 An entity that contains a pointer to the user-defined controller. More...
class  CEmbodiedEntity
 This entity is a link to a body in the physics engine. More...
class  CEmbodiedEntityGridUpdater
struct  SEmbodiedEntityIntersectionItem
struct  SEmbodiedEntityIntersectionData
class  CEntity
 The basic entity type. More...
class  CEntityOperation
 The basic operation to be stored in the vtable. More...
class  CFloorColorFromImageFile
class  CFloorColorFromLoopFunctions
class  CSpaceOperationAddCFloorEntity
class  CFloorEntity
class  CPositionalEntity
class  CLoopFunctions
 A set of hook functions to customize an experimental run. More...
class  CMedium
class  CPhysicsEngine
struct  SBoundingBox
class  CPhysicsModel
struct  SQueryResultItem
class  CSimulatedSensor
 The basic interface for a simulated sensor. More...
class  CSimulator
 The core class of ARGOS. More...
class  CGrid
class  CPositionalIndex
 A data structure that contains positional entities. More...
class  CAbstractSpaceHash
 The abstract definition of a space hash. More...
class  CSpaceHashUpdater
 Defines the basic cell updater of the space hash. More...
class  CSpaceHash
 Defines the basic space hash. More...
class  CSpaceHashNative
 A space hash implementation that does not rely on std::map or std::tr1:unordered_map. More...
class  RealNumberGenerator
class  ConstantGenerator
class  UniformGenerator
class  GaussianGenerator
class  GridGenerator
class  CSpace
class  CSpaceOperation
class  CSpaceOperationAddEntity
class  CSpaceOperationRemoveEntity
struct  SCleanupThreadData
class  CSpaceMultiThreadBalanceLength
struct  SCleanupUpdateThreadData
class  CSpaceMultiThreadBalanceQuantity
class  CSpaceNoThreads
class  CVisualization
class  CARGoSException
 The exception that wraps all errors in ARGoS. More...
class  CBaseConfigurableResource
 This class is the base of all XML-configurable ARGoS interface. More...
class  CCommandLineArgParser
 Easy-to-use command line argument parser. More...
class  CMemento
 The interface inherited by all classes whose state must be saved and restored. More...
class  CAny
class  CByteArray
 Byte array utility class. More...
class  CColor
 The basic color type. More...
struct  SSetElement
 The data container of CSet. More...
class  CSetIterator
 The CSet iterator. More...
class  CSet
 Defines a very simple double-linked list that stores unique elements. More...
struct  SLogColor
 Stream modifier to set attribute and color of the subsequent text. More...
class  CARGoSLog
class  CRadians
 It defines the basic type CRadians, used to store an angle value in radians. More...
class  CDegrees
 It defines the basic type CDegrees, used to store an angle value in degrees. More...
class  CMatrix
class  CRotationMatrix2
class  CRotationMatrix3
class  CSquareMatrix
class  CTransformationMatrix2
class  CTransformationMatrix3
class  CPlane
class  CQuaternion
class  CRange
class  CRay2
class  CRay3
class  CRandom
 The ARGoS random number generator. More...
class  CVector2
 A 2D vector class. More...
class  CVector3
 A 3D vector class. More...
class  CDynamicLoading
 Allows users to dynamically load shared libraries. More...
class  CFactory
 Basic factory template. More...
struct  STagCounter
 Holds the value of the last used tag. More...
struct  STagHolder
 Holds the value of the tag associated to DERIVED More...
struct  EnableVTableFor
 Helper to make a class hierarchy vtable-enabled. More...
class  CVTable
 The actual vtable. More...
class  CProfiler
class  CLuaController
class  CLuaUtility
class  CDynamics2DEPuckModel
class  CEPuckEntity
class  CQTOpenGLOperationDrawEPuckNormal
class  CQTOpenGLOperationDrawEPuckSelected
class  CQTOpenGLEPuck
class  CCI_FootBotAccelerometerSensor
class  CCI_FootBotBaseGroundSensor
class  CCI_FootBotCeilingCameraSensor
 This class provides the main interface to the ceiling camera on the FootBot. More...
class  CCI_FootBotDistanceScannerActuator
class  CCI_FootBotDistanceScannerSensor
class  CCI_FootBotEncoderSensor
class  CCI_FootBotGripperActuator
class  CCI_FootBotGripperSensor
class  CCI_FootBotGyroscopicSensor
class  CCI_FootBotLightSensor
class  CCI_FootBotMotorGroundSensor
class  CCI_FootBotOmnidirectionalCameraSensor
 This class provides the main interface to the omnidirectional camera on the FootBot. More...
class  CCI_FootBotProximitySensor
class  CCI_FootBotRangeAndBearingActuator
struct  SRABPacket
 This struct defines a received range and bearing packet. More...
class  CCI_FootBotRangeAndBearingSensor
class  CCI_FootBotTurretActuator
class  CCI_FootBotTurretEncoderSensor
class  CCI_FootBotTurretTorqueSensor
class  CCI_FootBotWheelSpeedSensor
class  CDynamics2DFootBotModel
class  CFootBotBaseGroundRotZOnlySensor
class  CFootBotDistanceScannerDefaultActuator
class  CFootBotDistanceScannerEquippedEntity
class  CFootBotDistanceScannerRotZOnlySensor
class  CFootBotEntity
class  CFootBotGripperDefaultActuator
class  CFootBotLightRotZOnlySensor
class  CFootBotMotorGroundRotZOnlySensor
class  CProximitySensorImpl
class  CFootBotProximityDefaultSensor
class  CFootBotTurretDefaultActuator
class  CFootBotTurretEncoderDefaultSensor
class  CFootBotTurretEntity
class  CQTOpenGLOperationDrawFootBotNormal
class  CQTOpenGLOperationDrawFootBotSelected
class  CQTOpenGLFootBot
class  CCI_ColoredBlobOmnidirectionalCameraSensor
 This class provides the most general interface to a camera. More...
class  CCI_DifferentialSteeringActuator
class  CCI_DifferentialSteeringSensor
class  CCI_GripperActuator
class  CCI_GroundSensor
class  CCI_LEDsActuator
class  CCI_LightSensor
class  CCI_PositioningSensor
class  CCI_ProximitySensor
class  CCI_RangeAndBearingActuator
class  CCI_RangeAndBearingSensor
class  CDifferentialSteeringDefaultActuator
class  CGripperDefaultActuator
class  CLEDsDefaultActuator
class  CRangeAndBearingDefaultActuator
class  CBoxEntity
class  CCylinderEntity
class  CGripperEquippedEntity
 An entity that stores the state of a robot gripper. More...
class  CGroundSensorEquippedEntity
class  CLEDEntity
class  CLEDEntitySpaceHashUpdater
class  CLEDEntityGridUpdater
class  CLEDEquippedEntity
 A container of CLEDEntity. More...
class  CLightEntity
class  CLightSensorEquippedEntity
class  COmnidirectionalCameraEquippedEntity
class  CProximitySensorEquippedEntity
class  CRABEquippedEntity
class  CRABEquippedEntitySpaceHashUpdater
class  CRABEquippedEntityGridCellUpdater
class  CRABEquippedEntityGridEntityUpdater
class  CWheeledEntity
class  CWiFiEquippedEntity
class  CLEDMedium
class  CRABMedium
class  CDynamics2DBoxModel
class  CDynamics2DCylinderModel
class  CDynamics2DDifferentialSteeringControl
struct  SDynamics2DEngineGripperData
class  CDynamics2DEngine
class  CDynamics2DOperation
class  CDynamics2DOperationAddEntity
class  CDynamics2DOperationRemoveEntity
class  CDynamics2DGripper
class  CDynamics2DGrippable
class  CDynamics2DModel
class  CDynamics2DVelocityControl
class  CLEDCheckOperation
class  CColoredBlobOmnidirectionalCameraRotZOnlySensor
class  CDifferentialSteeringDefaultSensor
class  CGroundRotZOnlySensor
class  CLightDefaultSensor
class  CPositioningDefaultSensor
class  CProximityDefaultSensor
class  CRangeAndBearingMediumSensor
class  CQTOpenGLOperationDrawBoxNormal
class  CQTOpenGLOperationDrawBoxSelected
class  CQTOpenGLBox
class  CQTOpenGLOperationDrawCylinderNormal
class  CQTOpenGLOperationDrawCylinderSelected
class  CQTOpenGLCylinder
class  CQTOpenGLOperationDrawLightNormal
class  CQTOpenGLOperationDrawLightSelected
class  CQTOpenGLLight
class  CQTOpenGLApplication
class  CQTOpenGLCamera
class  CQTOpenGLJoystick
class  CQTOpenGLLogStream
class  CQTOpenGLLuaEditor
class  CQTOpenGLLuaFindDialog
class  CQTOpenGLLuaMainWindow
class  CQTOpenGLLuaStateTreeItem
class  CQTOpenGLLuaStateTreeModel
class  CQTOpenGLLuaStateTreeVariableModel
class  CQTOpenGLLuaStateTreeFunctionModel
class  CQTOpenGLLuaSyntaxHighlighter
class  CQTOpenGLLayout
class  CQTOpenGLMainWindow
class  CQTOpenGLRender
class  CQTOpenGLUserFunctions
 The QTOpenGL user functions. More...
class  CQTOpenGLOperationDrawNormal
class  CQTOpenGLOperationDrawSelected
class  CQTOpenGLWidget

Typedefs

typedef std::vector
< CEmbodiedEntity * > 
TEmbodiedEntityVector
typedef std::map< std::string,
CEmbodiedEntity * > 
TEmbodiedEntityMap
typedef CSet< CEmbodiedEntity * > TEmbodiedEntitySet
typedef std::vector
< SQueryResultItem
TQueryResult
typedef ticpp::Element TConfigurationNode
 The ARGoS configuration XML node.
typedef ticpp::Iterator
< ticpp::Element > 
TConfigurationNodeIterator
 The iterator for the ARGoS configuration XML node.

Enumerations

enum  EARGoSLogAttributes {
  ARGOS_LOG_ATTRIBUTE_RESET = 0, ARGOS_LOG_ATTRIBUTE_BRIGHT = 1, ARGOS_LOG_ATTRIBUTE_DIM = 2, ARGOS_LOG_ATTRIBUTE_UNDERSCORE = 3,
  ARGOS_LOG_ATTRIBUTE_BLINK = 5, ARGOS_LOG_ATTRIBUTE_REVERSE = 7, ARGOS_LOG_ATTRIBUTE_HIDDEN = 8
}
 The possible attributes of the logged text. More...
enum  EARGoSLogColors {
  ARGOS_LOG_COLOR_BLACK = 0, ARGOS_LOG_COLOR_RED = 1, ARGOS_LOG_COLOR_GREEN = 2, ARGOS_LOG_COLOR_YELLOW = 3,
  ARGOS_LOG_COLOR_BLUE = 4, ARGOS_LOG_COLOR_MAGENTA = 5, ARGOS_LOG_COLOR_CYAN = 6, ARGOS_LOG_COLOR_WHITE = 7
}
 The possible colors of the logged text. More...
enum  EPUCK_WHEELS { EPUCK_LEFT_WHEEL = 0, EPUCK_RIGHT_WHEEL = 1 }
enum  FOOTBOT_WHEELS { FOOTBOT_LEFT_WHEEL = 0, FOOTBOT_RIGHT_WHEEL = 1 }
enum  ETurretModes { MODE_OFF, MODE_PASSIVE, MODE_SPEED_CONTROL, MODE_POSITION_CONTROL }

Functions

 REGISTER_STANDARD_SPACE_OPERATIONS_ON_COMPOSABLE (CComposableEntity)
bool GetClosestEmbodiedEntityIntersectedByRay (SEmbodiedEntityIntersectionItem &s_item, const CRay3 &c_ray)
bool GetClosestEmbodiedEntityIntersectedByRay (SEmbodiedEntityIntersectionItem &s_item, const CRay3 &c_ray, CEmbodiedEntity &c_entity)
 INIT_VTABLE_FOR (CEntity)
 REGISTER_STANDARD_SPACE_OPERATIONS_ON_ENTITY (CEntity)
template<typename LABEL , typename PLUGIN , typename RETURN_VALUE >
RETURN_VALUE CallEntityOperation (PLUGIN &t_plugin, CEntity &c_entity)
 Calls the operation corresponding to the given context and operand Skips the function call if the operation is missing in the vtable.
 REGISTER_ENTITY (CFloorEntity,"floor","Carlo Pinciroli [ilpincy@gmail.com]","1.0","It contains the properties of the arena floor.","The floor entity contains the properties of the arena floor. In the current\n""implementation, it contains only the color of the floor. The floor color is\n""detected by the robots' ground sensors.\n\n""REQUIRED XML CONFIGURATION\n\n"" <arena ...>\n"" ...\n"" <floor id=\"floor\"\n"" source=\"SOURCE\" />\n"" ...\n"" </arena>\n\n""The 'id' attribute is necessary and must be unique among the entities. If two\n""entities share the same id, initialization aborts.\n""The 'source' attribute specifies where to get the color of the floor from. Its\n""value, here denoted as SOURCE, can assume the following values:\n\n"" image The color is calculated from the passed image file\n"" loop_functions The color is calculated calling the loop functions\n\n""When 'source' is set to 'image', as showed in the following example, you have\n""to specify the image path in the additional attribute 'path':\n\n"" <arena ...>\n"" ...\n"" <floor id=\"floor\"\n"" source=\"image\"\n"" path=\"/path/to/imagefile.ext\" />\n"" ...\n"" </arena>\n\n""Many image formats are available, such as PNG, JPG, BMP, GIF and many more.\n""Refer to the FreeImage webpage for a complete list of supported image formats\n""(http://freeimage.sourceforge.net/features.html).\n\n""When 'source' is set to 'loop_functions', as showed in the following example,\n""an image is implicitly created to be used as texture for graphical\n""visualizations. The algorithm that creates the texture needs to convert from\n""meters (in the arena) to pixels (of the texture). You control how many pixels\n""per meter are used with the attribute 'pixels_per_meter'. Clearly, the higher\n""value, the higher the quality, but also the slower the algorithm and the bigger\n""the texture. The algorithm is called only once at init time, so the fact that\n""it is slow is not so important. However, the image size is limited by OpenGL.\n""Every implementation has its own limit, and you should check yours if any\n""texture-related problem arises. Now for the example:\n\n"" <arena ...>\n"" ...\n"" <floor id=\"floor\"\n"" source=\"loop_functions\"\n"" pixels_per_meter=\"100\" />\n"" ...\n"" </arena>\n\n""OPTIONAL XML CONFIGURATION\n\n""None for the time being.\n","Usable")
 REGISTER_SPACE_OPERATION (CSpaceOperationAddEntity, CSpaceOperationAddCFloorEntity, CFloorEntity)
 REGISTER_STANDARD_SPACE_OPERATION_REMOVE_ENTITY (CFloorEntity)
 REGISTER_STANDARD_SPACE_OPERATIONS_ON_ENTITY (CPositionalEntity)
void QueryShowPluginDescription (const std::string &str_query)
void QueryPlugins (const std::string &str_query)
template<class TYPE >
void QuerySearchPlugins (const std::string &str_query, TQueryResult &t_result)
template<class TYPE >
void QueryShowList (const std::string &str_header)
RealNumberGeneratorCreateGenerator (TConfigurationNode &t_tree)
void * LaunchThreadBalanceLength (void *p_data)
void * LaunchUpdateThreadBalanceQuantity (void *p_data)
CRange< size_t > CalculatePluginRangeForThread (size_t un_id, size_t un_tot_plugins)
bool NodeExists (TConfigurationNode &t_node, const std::string &str_tag) throw ()
 Given a tree root node, returns true if one of its child nodes has the wanted name.
TConfigurationNodeGetNode (TConfigurationNode &t_node, const std::string &str_tag)
 Given a tree root node, returns the first of its child nodes with the wanted name.
void AddChildNode (TConfigurationNode &t_parent_node, TConfigurationNode &t_child_node)
 Adds an XML node as child of another XML node.
template<typename T >
void GetNodeText (TConfigurationNode &t_node, T &t_buffer)
 Returns the text of the passed XML node A node text is as follows:
template<typename T >
void GetNodeTextOrDefault (TConfigurationNode &t_node, T &t_buffer, const T &t_default)
 Returns the text of the passed XML node, or the passed default value.
bool NodeAttributeExists (TConfigurationNode &t_node, const std::string &str_attribute)
 Returns true if the specified attribute of a node exists.
template<typename T >
void GetNodeAttribute (TConfigurationNode &t_node, const std::string &str_attribute, T &t_buffer)
 Returns the value of a node's attribute.
void GetNodeAttribute (TConfigurationNode &t_node, const std::string &str_attribute, bool &b_buffer)
 Returns the value of a node's attribute.
void GetNodeAttribute (TConfigurationNode &t_node, const std::string &str_attribute, UInt8 &un_buffer)
 Returns the value of a node's attribute.
void GetNodeAttribute (TConfigurationNode &t_node, const std::string &str_attribute, SInt8 &n_buffer)
 Returns the value of a node's attribute.
template<typename T >
void GetNodeAttributeOrDefault (TConfigurationNode &t_node, const std::string &str_attribute, T &t_buffer, const T &t_default)
 Returns the value of a node's attribute, or the passed default value.
void GetNodeAttributeOrDefault (TConfigurationNode &t_node, const std::string &str_attribute, bool &b_buffer, const bool b_default)
 Returns the value of a node's attribute, or the passed default value.
void GetNodeAttributeOrDefault (TConfigurationNode &t_node, const std::string &str_attribute, UInt8 &un_buffer, const UInt8 un_default)
 Returns the value of a node's attribute, or the passed default value.
void GetNodeAttributeOrDefault (TConfigurationNode &t_node, const std::string &str_attribute, SInt8 &n_buffer, const SInt8 n_default)
 Returns the value of a node's attribute, or the passed default value.
template<typename T >
void SetNodeAttribute (TConfigurationNode &t_node, const std::string &str_attribute, const T &t_value)
 Sets the value of the wanted node's attribute.
void SetNodeAttribute (TConfigurationNode &t_node, const std::string &str_attribute, const bool b_value)
 Sets the value of the wanted node's attribute.
void SetNodeAttribute (TConfigurationNode &t_node, const std::string &str_attribute, const SInt8 n_value)
 Sets the value of the wanted node's attribute.
void SetNodeAttribute (TConfigurationNode &t_node, const std::string &str_attribute, const UInt8 un_value)
 Sets the value of the wanted node's attribute.
template<typename T >
T * any_cast (CAny *pc_any)
 Performs a cast on the any type to the desired type, when the any type is passed by non-const pointer.
template<typename T >
const T * any_cast (const CAny *pc_any)
 Performs a cast on the any type to the desired type, when the any type is passed by const pointer.
template<typename T >
const T & any_cast (const CAny &c_any)
 Performs a cast on the any type to the desired type, when the any type is passed by const reference.
template<typename T >
T & any_cast (CAny &c_any)
 Performs a cast on the any type to the desired type, when the any type is passed by non-const reference.
std::ostream & operator<< (std::ostream &c_os, const CByteArray &c_byte_array)
std::ostream & operator<< (std::ostream &c_os, const SLogColor &s_log_color)
 Stream operator that accepts the stream modifier.
 DEFINE_ARGOS_STREAM_COLOR_HELPER (red, RED)
 Bright red text modifier.
 DEFINE_ARGOS_STREAM_COLOR_HELPER (green, GREEN)
 Bright green text modifier.
 DEFINE_ARGOS_STREAM_COLOR_HELPER (yellow, YELLOW)
 Bright yellow text modifier.
 DEFINE_ARGOS_STREAM_COLOR_HELPER (blue, BLUE)
 Bright blue text modifier.
 DEFINE_ARGOS_STREAM_COLOR_HELPER (magenta, MAGENTA)
 Bright magenta text modifier.
 DEFINE_ARGOS_STREAM_COLOR_HELPER (cyan, CYAN)
 Bright cyan text modifier.
 DEFINE_ARGOS_STREAM_COLOR_HELPER (white, WHITE)
 Bright white text modifier.
std::ostream & reset (std::ostream &c_os)
 Resets the text to the default settings.
CDegrees ToDegrees (const CRadians &c_radians)
 Converts CRadians to CDegrees.
CRadians ToRadians (const CDegrees &c_degrees)
 Converts CDegrees to CRadians.
Real Sin (const CRadians &c_radians)
 Computes the sine of the passed value in radians.
Real Cos (const CRadians &c_radians)
 Computes the cosine of the passed value in radians.
Real Tan (const CRadians &c_radians)
 Computes the tangent of the passed value in radians.
CRadians ASin (Real f_value)
 Computes the arcsine of the passed value.
CRadians ACos (Real f_value)
 Computes the arccosine of the passed value.
CRadians ATan2 (const Real f_y, const Real f_x)
 Computes the arctangent of the passed values.
template<typename T >
Abs (const T &t_v)
 Returns the absolute value of the passed argument.
SInt32 Abs (SInt32 t_v)
 Returns the absolute value of the passed argument.
Real Abs (Real t_v)
 Returns the absolute value of the passed argument.
template<typename T >
Min (const T &t_v1, const T &t_v2)
 Returns the smaller of the two passed arguments.
template<typename T >
T & Min (T &t_v1, T &t_v2)
 Returns the smaller of the two passed arguments.
template<typename T >
Max (const T &t_v1, const T &t_v2)
 Returns the bigger of the two passed arguments.
template<typename T >
T & Max (T &t_v1, T &t_v2)
 Returns the bigger of the two passed arguments.
template<typename T >
SInt32 Sign (const T &t_v)
 Returns the sign of the value of the passed argument.
template<typename T >
Square (const T &t_v)
 Returns the square of the value of the passed argument.
SInt32 Floor (Real f_value)
 Rounds the passed floating-point value to the closest lower integer.
SInt32 Ceil (Real f_value)
 Rounds the passed floating-point value to the closest higher integer.
SInt32 Round (Real f_value)
 Rounds the passed floating-point value to the closest integer.
SInt32 RoundClosestToZero (Real f_value)
 Rounds the passed floating-point value to the integer closest to zero.
bool DoubleEqAbsolute (Real f_value1, Real f_value2, Real f_epsilon)
 Tests whether a floating-point value is lower than another.
bool DoubleEq (Real f_value1, Real f_value2)
 Tests whether a floating-point value is lower than another.
Real Interpolate (Real f_x, const std::vector< std::pair< Real, Real > > &c_points)
 Return the value of the linear interpolation.
Real SquareDistance (const CVector2 &c_v1, const CVector2 &c_v2)
 Computes the square distance between the passed vectors.
Real Distance (const CVector2 &c_v1, const CVector2 &c_v2)
 Computes the distance between the passed vectors.
Real SquareDistance (const CVector3 &c_v1, const CVector3 &c_v2)
 Computes the square distance between the passed vectors.
Real Distance (const CVector3 &c_v1, const CVector3 &c_v2)
 Computes the distance between the passed vectors.
template<typename DERIVED , typename BASE >
size_t GetTag ()
 Returns the value of the tag associated to DERIVED
template<typename CONTEXT , typename BASE , typename FUNCTION >
CVTable< CONTEXT, BASE,
FUNCTION > & 
GetVTable ()
 Function that returns a reference to the static vtable.
void DumpResourceUsageHumanReadable (std::ostream &c_os, const ::rusage &t_resources)
void DumpResourceUsageAsTableRow (std::ostream &c_os, const ::rusage &t_resources)
::rusage operator- (const ::rusage &t_resource1, const ::rusage &t_resource2)
void Tokenize (const std::string &str_string, std::vector< std::string > &vec_tokens, const std::string &str_delimiters=" ")
 Tokenizes the given string according to the wanted delimiters (by default just a " ").
std::string StringToUpperCase (const std::string &str_string)
 Converts a string to upper case.
std::string StringToLowerCase (const std::string &str_string)
 Converts a string to lower case.
void Replace (std::string &str_buffer, const std::string &str_original, const std::string &str_new)
 Searches into str_buffer for occurrences of str_original and substitutes them with str_new.
bool MatchPattern (const std::string &str_input, const std::string str_pattern)
 Returns true if str_pattern is matched by str_input.
std::string & ExpandEnvVariables (std::string &str_buffer)
 Searches into str_buffer for occurrences of an environment variable of the form $VAR and substitutes them with the value of the variable.
template<typename T >
std::string ToString (const T &t_value)
 Converts the given parameter to a std::string.
template<typename T >
FromString (const std::string &str_value)
 Converts the given std::string parameter to the wanted type.
template<typename T >
void ParseValues (std::istream &str_input, UInt32 un_num_fields, T *pt_field_buffer, const char ch_delimiter= '\n')
template<typename T >
void ParseValues (const std::string &str_input, const UInt32 un_num_fields, T *pt_field_buffer, const char ch_delimiter= '\n')
 REGISTER_CONTROLLER (CLuaController,"lua_controller")
int LuaRNGBernoulli (lua_State *pt_state)
int LuaRNGUniform (lua_State *pt_state)
int LuaRNGUniformInt (lua_State *pt_state)
int LuaRNGExponential (lua_State *pt_state)
int LuaRNGGaussian (lua_State *pt_state)
void PrintStackEntry (CARGoSLog &c_log, lua_State *pt_state, SInt32 n_index)
void RecursivePrintGlobals (CARGoSLog &c_log, lua_State *pt_state, size_t un_depth)
 REGISTER_STANDARD_DYNAMICS2D_OPERATIONS_ON_ENTITY (CEPuckEntity, CDynamics2DEPuckModel)
 REGISTER_ENTITY (CEPuckEntity,"e-puck","Carlo Pinciroli [ilpincy@gmail.com]","1.0","The e-puck robot.","The e-puck is a open-hardware, extensible robot intended for education. In its\n""simplest form, it is a two-wheeled robot equipped with proximity sensors,\n""ground sensors, light sensors, a microphone, a frontal camera, and a ring of\n""red LEDs. More information is available at http://www.epuck.org\n\n""REQUIRED XML CONFIGURATION\n\n"" <arena ...>\n"" ...\n"" <e-puck id=\"fb0\">\n"" <body position=\"0.4,2.3,0.25\" orientation=\"45,90,0\" />\n"" <controller config=\"mycntrl\" />\n"" </e-puck>\n"" ...\n"" </arena>\n\n""The 'id' attribute is necessary and must be unique among the entities. If two\n""entities share the same id, initialization aborts.\n""The 'body/position' attribute specifies the position of the pucktom point of the\n""e-puck in the arena. When the robot is untranslated and unrotated, the\n""pucktom point is in the origin and it is defined as the middle point between\n""the two wheels on the XY plane and the lowest point of the robot on the Z\n""axis, that is the point where the wheels touch the floor. The attribute values\n""are in the X,Y,Z order.\n""The 'body/orientation' attribute specifies the orientation of the e-puck. All\n""rotations are performed with respect to the pucktom point. The order of the\n""angles is Z,Y,X, which means that the first number corresponds to the rotation\n""around the Z axis, the second around Y and the last around X. This reflects\n""the internal convention used in ARGoS, in which rotations are performed in\n""that order. Angles are expressed in degrees. When the robot is unrotated, it\n""is oriented along the X axis.\n""The 'controller/config' attribute is used to assign a controller to the\n""e-puck. The value of the attribute must be set to the id of a previously\n""defined controller. Controllers are defined in the <controllers> XML subtree.\n\n""OPTIONAL XML CONFIGURATION\n\n""None for the time being.\n","Under development")
 REGISTER_STANDARD_SPACE_OPERATIONS_ON_COMPOSABLE (CEPuckEntity)
 REGISTER_QTOPENGL_ENTITY_OPERATION (CQTOpenGLOperationDrawNormal, CQTOpenGLOperationDrawEPuckNormal, CEPuckEntity)
 REGISTER_QTOPENGL_ENTITY_OPERATION (CQTOpenGLOperationDrawSelected, CQTOpenGLOperationDrawEPuckSelected, CEPuckEntity)
std::ostream & operator<< (std::ostream &c_os, const CCI_FootBotBaseGroundSensor::SReading &s_reading)
std::ostream & operator<< (std::ostream &c_os, const CCI_FootBotBaseGroundSensor::TReadings &t_readings)
std::ostream & operator<< (std::ostream &c_os, const CCI_FootBotLightSensor::SReading &s_reading)
std::ostream & operator<< (std::ostream &c_os, const CCI_FootBotMotorGroundSensor::SReading &s_reading)
std::ostream & operator<< (std::ostream &c_os, const CCI_FootBotProximitySensor::SReading &s_reading)
 REGISTER_STANDARD_DYNAMICS2D_OPERATIONS_ON_ENTITY (CFootBotEntity, CDynamics2DFootBotModel)
 REGISTER_SENSOR (CFootBotBaseGroundRotZOnlySensor,"footbot_base_ground","rot_z_only","Carlo Pinciroli [ilpincy@gmail.com]","1.0","The foot-bot base ground sensor.","This sensor accesses the foot-bot base ground sensor. For a complete description\n""of its usage, refer to the ci_footbot_base_ground_sensor.h interface. For the XML\n""configuration, refer to the default ground sensor.\n","Usable")
 REGISTER_ACTUATOR (CFootBotDistanceScannerDefaultActuator,"footbot_distance_scanner","default","Carlo Pinciroli [ilpincy@gmail.com]","1.0","The foot-bot distance scanner actuator.","This actuator controls the foot-bot distance scanner. For a complete\n""description of its usage, refer to the ci_footbot_distance_scanner_actuator\n""file.\n\n""REQUIRED XML CONFIGURATION\n\n"" <controllers>\n"" ...\n"" <my_controller ...>\n"" ...\n"" <actuators>\n"" ...\n"" <footbot_distance_scanner implementation=\"default\" />\n"" ...\n"" </actuators>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""OPTIONAL XML CONFIGURATION\n\n""None for the time being.\n","Usable")
 REGISTER_STANDARD_SPACE_OPERATIONS_ON_ENTITY (CFootBotDistanceScannerEquippedEntity)
 REGISTER_SENSOR (CFootBotDistanceScannerRotZOnlySensor,"footbot_distance_scanner","rot_z_only","Carlo Pinciroli [ilpincy@gmail.com]","1.0","The foot-bot distance scanner sensor (optimized for 2D).","This sensor accesses the foot-bot distance scanner sensor. For a complete\n""description of its usage, refer to the common interface.\n""In this implementation, the readings are calculated under the assumption that\n""the foot-bot is always parallel to the XY plane, i.e., it rotates only around\n""the Z axis. This implementation is faster than a 3D one and should be used\n""only when the assumption about the foot-bot rotation holds.\n\n""REQUIRED XML CONFIGURATION\n\n"" <controllers>\n"" ...\n"" <my_controller ...>\n"" ...\n"" <sensors>\n"" ...\n"" <footbot_distance_scanner implementation=\"rot_z_only\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""OPTIONAL XML CONFIGURATION\n\n""It is possible to draw the rays shot by the distance scanner in the OpenGL\n""visualization. This can be useful for sensor debugging but also to understand\n""what's wrong in your controller. In OpenGL, the rays are drawn in cyan when\n""they are not obstructed and in purple when they are. In case a ray is\n""obstructed, a black dot is drawn where the intersection occurred.\n""To turn this functionality on, add the attribute 'show_rays=\"true\"' in the\n""XML as in this example:\n\n"" <controllers>\n"" ...\n"" <my_controller ...>\n"" ...\n"" <sensors>\n"" ...\n"" <footbot_distance_scanner implementation=\"rot_z_only\"\n"" show_rays=\"true\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n","Usable")
 REGISTER_ENTITY (CFootBotEntity,"foot-bot","Carlo Pinciroli [ilpincy@gmail.com]","1.0","The foot-bot robot, developed in the Swarmanoid project.","The foot-bot is a wheeled robot developed in the Swarmanoid Project. It is a\n""modular robot with a rich set of sensors and actuators. For more information,\n""refer to the dedicated web page\n""(http://www.swarmanoid.org/swarmanoid_hardware.php).\n\n""REQUIRED XML CONFIGURATION\n\n"" <arena ...>\n"" ...\n"" <foot-bot id=\"fb0\">\n"" <body position=\"0.4,2.3,0.25\" orientation=\"45,0,0\" />\n"" <controller config=\"mycntrl\" />\n"" </foot-bot>\n"" ...\n"" </arena>\n\n""The 'id' attribute is necessary and must be unique among the entities. If two\n""entities share the same id, initialization aborts.\n""The 'body/position' attribute specifies the position of the bottom point of the\n""foot-bot in the arena. When the robot is untranslated and unrotated, the\n""bottom point is in the origin and it is defined as the middle point between\n""the two wheels on the XY plane and the lowest point of the robot on the Z\n""axis, that is the point where the wheels touch the floor. The attribute values\n""are in the X,Y,Z order.\n""The 'body/orientation' attribute specifies the orientation of the foot-bot. All\n""rotations are performed with respect to the bottom point. The order of the\n""angles is Z,Y,X, which means that the first number corresponds to the rotation\n""around the Z axis, the second around Y and the last around X. This reflects\n""the internal convention used in ARGoS, in which rotations are performed in\n""that order. Angles are expressed in degrees. When the robot is unrotated, it\n""is oriented along the X axis.\n""The 'controller/config' attribute is used to assign a controller to the\n""foot-bot. The value of the attribute must be set to the id of a previously\n""defined controller. Controllers are defined in the <controllers> XML subtree.\n\n""OPTIONAL XML CONFIGURATION\n\n""You can set the emission range of the range-and-bearing system. By default, a\n""message sent by a foot-bot can be received up to 3m. By using the 'rab_range'\n""attribute, you can change it to, i.e., 4m as follows:\n\n"" <arena ...>\n"" ...\n"" <foot-bot id=\"fb0\" rab_range=\"4\">\n"" <body position=\"0.4,2.3,0.25\" orientation=\"45,0,0\" />\n"" <controller config=\"mycntrl\" />\n"" </foot-bot>\n"" ...\n"" </arena>\n\n""You can also change the aperture of the omnidirectional camera. The aperture is\n""set to 70 degrees by default. The tip of the omnidirectional camera is placed on\n""top of the robot (h=0.289), and with an aperture of 70 degrees the range on the\n""ground is r=h*tan(aperture)=0.289*tan(70)=0.794m. To change the aperture to 80\n""degrees, use the 'omnidirectional_camera_aperture' as follows:\n\n"" <arena ...>\n"" ...\n"" <foot-bot id=\"fb0\" omnidirectional_camera_aperture=\"80\">\n"" <body position=\"0.4,2.3,0.25\" orientation=\"45,0,0\" />\n"" <controller config=\"mycntrl\" />\n"" </foot-bot>\n"" ...\n"" </arena>\n\n","Under development")
 REGISTER_STANDARD_SPACE_OPERATIONS_ON_COMPOSABLE (CFootBotEntity)
 REGISTER_SENSOR (CFootBotLightRotZOnlySensor,"footbot_light","rot_z_only","Carlo Pinciroli [ilpincy@gmail.com]","1.0","The foot-bot light sensor (optimized for 2D).","This sensor accesses a set of light sensors. The sensors all return a value\n""between 0 and 1, where 0 means nothing within range and 1 means the perceived\n""light saturates the sensor. Values between 0 and 1 depend on the distance of\n""the perceived light. Each reading R is calculated with R=(I/x)^2, where x is the\n""distance between a sensor and the light, and I is the reference intensity of the\n""perceived light. The reference intensity corresponds to the minimum distance at\n""which the light saturates a sensor. The reference intensity depends on the\n""individual light, and it is set with the \"intensity\" attribute of the light\n""entity. In case multiple lights are present in the environment, each sensor\n""reading is calculated as the sum of the individual readings due to each light.\n""In other words, light wave interference is not taken into account. In\n""controllers, you must include the ci_light_sensor.h header.\n\n""REQUIRED XML CONFIGURATION\n\n"" <controllers>\n"" ...\n"" <my_controller ...>\n"" ...\n"" <sensors>\n"" ...\n"" <light implementation=\"rot_z_only\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""OPTIONAL XML CONFIGURATION\n\n""It is possible to draw the rays shot by the light sensor in the OpenGL\n""visualization. This can be useful for sensor debugging but also to understand\n""what's wrong in your controller. In OpenGL, the rays are drawn in cyan when\n""they are not obstructed and in purple when they are. In case a ray is\n""obstructed, a black dot is drawn where the intersection occurred.\n""To turn this functionality on, add the attribute \"show_rays\" as in this\n""example:\n\n"" <controllers>\n"" ...\n"" <my_controller ...>\n"" ...\n"" <sensors>\n"" ...\n"" <light implementation=\"rot_z_only\"\n"" show_rays=\"true\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""It is possible to add uniform noise to the sensors, thus matching the\n""characteristics of a real robot better. This can be done with the attribute\n""\"noise_level\", whose allowed range is in [-1,1] and is added to the calculated\n""reading. The final sensor reading is always normalized in the [0-1] range.\n\n"" <controllers>\n"" ...\n"" <my_controller ...>\n"" ...\n"" <sensors>\n"" ...\n"" <light implementation=\"rot_z_only\"\n"" noise_level=\"0.1\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""OPTIONAL XML CONFIGURATION\n\n""None.\n","Usable")
 REGISTER_SENSOR (CFootBotMotorGroundRotZOnlySensor,"footbot_motor_ground","rot_z_only","Carlo Pinciroli [ilpincy@gmail.com]","1.0","The foot-bot motor ground sensor.","This sensor accesses the foot-bot motor ground sensor. For a complete description\n""of its usage, refer to the ci_footbot_motor_ground_sensor.h interface. For the XML\n""configuration, refer to the default ground sensor.\n","Usable")
 REGISTER_SENSOR (CFootBotProximityDefaultSensor,"footbot_proximity","default","Carlo Pinciroli [ilpincy@gmail.com]","1.0","The foot-bot proximity sensor.","This sensor accesses the foot-bot proximity sensor. For a complete description\n""of its usage, refer to the ci_footbot_proximity_sensor.h interface. For the XML\n""configuration, refer to the default proximity sensor.\n","Usable")
 REGISTER_ACTUATOR (CFootBotTurretDefaultActuator,"footbot_turret","default","Carlo Pinciroli [ilpincy@gmail.com]","1.0","The foot-bot turret actuator.","This actuator controls the foot-bot turret. For a complete\n""description of its usage, refer to the ci_footbot_turret_actuator\n""file.\n\n""REQUIRED XML CONFIGURATION\n\n"" <controllers>\n"" ...\n"" <my_controller ...>\n"" ...\n"" <actuators>\n"" ...\n"" <footbot_turret implementation=\"default\" />\n"" ...\n"" </actuators>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""OPTIONAL XML CONFIGURATION\n\n""None for the time being.\n","Usable")
 REGISTER_SENSOR (CFootBotTurretEncoderDefaultSensor,"footbot_turret_encoder","default","Carlo Pinciroli [ilpincy@gmail.com]","1.0","The foot-bot turret encoder sensor.","This sensor accesses the foot-bot turret encoder. For a complete\n""description of its usage, refer to the ci_footbot_turret_encoder_sensor\n""file.\n\n""REQUIRED XML CONFIGURATION\n\n"" <controllers>\n"" ...\n"" <my_controller ...>\n"" ...\n"" <sensors>\n"" ...\n"" <footbot_turret implementation=\"default\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""OPTIONAL XML CONFIGURATION\n\n""None for the time being.\n","Usable")
 REGISTER_STANDARD_SPACE_OPERATIONS_ON_ENTITY (CFootBotTurretEntity)
 REGISTER_QTOPENGL_ENTITY_OPERATION (CQTOpenGLOperationDrawNormal, CQTOpenGLOperationDrawFootBotNormal, CFootBotEntity)
 REGISTER_QTOPENGL_ENTITY_OPERATION (CQTOpenGLOperationDrawSelected, CQTOpenGLOperationDrawFootBotSelected, CFootBotEntity)
 REGISTER_ACTUATOR (CRangeAndBearingDefaultActuator,"range_and_bearing","default","Carlo Pinciroli [ilpincy@gmail.com]","1.0","The range and bearing actuator.","This actuator allows robots to perform situated communication, i.e., a form of\n""wireless communication whereby the receiver also knows the location of the\n""sender with respect to its own frame of reference.\n""This actuator allows a robot to send messages. To receive messages, you need\n""the range-and-bearing sensor.\n""To use this actuator, in controllers you must include the\n""ci_range_and_bearing_actuator.h header.\n\n""REQUIRED XML CONFIGURATION\n\n"" <controllers>\n"" ...\n"" <my_controller ...>\n"" ...\n"" <actuators>\n"" ...\n"" <range_and_bearing implementation=\"default\" />\n"" ...\n"" </actuators>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""OPTIONAL XML CONFIGURATION\n\n""None for the time being.\n","Usable")
 REGISTER_ENTITY (CBoxEntity,"box","Carlo Pinciroli [ilpincy@gmail.com]","1.0","A stretchable 3D box.","The box entity can be used to model walls, obstacles or box-shaped grippable\n""objects. It can be movable or not. A movable object can be pushed and gripped.\n""An unmovable object is pretty much like a wall.\n\n""REQUIRED XML CONFIGURATION\n\n""To declare an unmovable object (i.e., a wall) you need the following:\n\n"" <arena ...>\n"" ...\n"" <box id=\"box1\" size=\"0.75,0.1,0.5\" movable=\"false\">\n"" <body position=\"0.4,2.3,0\" orientation=\"45,0,0\" />\n"" </box>\n"" ...\n"" </arena>\n\n""To declare a movable object you need the following:\n\n"" <arena ...>\n"" ...\n"" <box id=\"box1\" size=\"0.75,0.1,0.5\" movable=\"true\" mass=\"2.5\">\n"" <body position=\"0.4,2.3,0\" orientation=\"45,0,0\" />\n"" </box>\n"" ...\n"" </arena>\n\n""The 'id' attribute is necessary and must be unique among the entities. If two\n""entities share the same id, initialization aborts.\n""The 'size' attribute specifies the size of the box along the three axes, in\n""the X,Y,Z order. When you add a box, imagine it initially unrotated and\n""centered in the origin. The size, then, corresponds to the extent along the X,\n""Y and Z axes.\n""The 'movable' attribute specifies whether or not the object is movable. When\n""set to 'false', the object is unmovable: if another object pushes against it,\n""the box won't move. When the attribute is set to 'true', the box is movable\n""upon pushing or gripping. When an object is movable, the 'mass' attribute is\n""required.\n""The 'mass' attribute quantifies the mass of the box in kg.\n""The 'body/position' attribute specifies the position of the base of the box in\n""the arena. The three values are in the X,Y,Z order.\n""The 'body/orientation' attribute specifies the orientation of the 3D box. All\n""rotations are performed with respect to the center of mass. The order of the\n""angles is Z,Y,X, which means that the first number corresponds to the rotation\n""around the Z axis, the second around Y and the last around X. This reflects\n""the internal convention used in ARGoS, in which rotations are performed in\n""that order. Angles are expressed in degrees.\n\n""OPTIONAL XML CONFIGURATION\n\n""It is possible to add any number of colored LEDs to the box. In this way,\n""the box is visible with a robot camera. The position and color of the\n""LEDs is specified with the following syntax:\n\n"" <arena ...>\n"" ...\n"" <box id=\"box1\" size=\"0.75,0.1,0.5\" movable=\"true\" mass=\"2.5\">\n"" <body position=\"0.4,2.3,0\" orientation=\"45,0,0\" />\n"" <leds>\n"" <led position=\" 0.15, 0.15,0.15\" color=\"white\" />\n"" <led position=\"-0.15, 0.15,0\" color=\"red\" />\n"" <led position=\" 0.15, 0.15,0\" color=\"blue\" />\n"" <led position=\" 0.15,-0.15,0\" color=\"green\" />\n"" </leds>\n"" </box>\n"" ...\n"" </arena>\n\n""In the example, four LEDs are added to the box. The LEDs have\n""different colors and are located one on the top and three\n""around the box.\n","Usable")
 REGISTER_STANDARD_SPACE_OPERATIONS_ON_COMPOSABLE (CBoxEntity)
 REGISTER_ENTITY (CCylinderEntity,"cylinder","Carlo Pinciroli [ilpincy@gmail.com]","1.0","A stretchable cylinder.","The cylinder entity can be used to model obstacles or cylinder-shaped\n""grippable objects. The cylinder has a red LED on the center of one\n""of the circular surfaces, that allows perception using the cameras.\n""The cylinder can be movable or not. A movable object can be pushed\n""and gripped. An unmovable object is pretty much like a column.\n\n""REQUIRED XML CONFIGURATION\n\n""To declare an unmovable object (i.e., a column) you need the following:\n\n"" <arena ...>\n"" ...\n"" <cylinder id=\"cyl1\" radius=\"0.8\" height=\"0.5\" movable=\"false\">\n"" <body position=\"0.4,2.3,0\" orientation=\"45,0,0\" />\n"" </cylinder>\n"" ...\n"" </arena>\n\n""To declare a movable object you need the following:\n\n"" <arena ...>\n"" ...\n"" <cylinder id=\"cyl1\" radius=\"0.8\" height=\"0.5\"\n"" movable=\"true\" mass=\"2.5\">\n"" <body position=\"0.4,2.3,0\" orientation=\"45,0,0\" />\n"" </cylinder>\n"" ...\n"" </arena>\n\n""The 'id' attribute is necessary and must be unique among the entities. If two\n""entities share the same id, initialization aborts.\n""The 'radius' and 'height' attributes specify the size of the cylinder. When\n""you add a cylinder, imagine it initially unrotated and centered in the origin.\n""The base of the cylinder, then, is parallel to the XY plane and its height\n""goes with the Z axis.\n""The 'movable' attribute specifies whether or not the object is movable. When\n""set to 'false', the object is unmovable: if another object pushes against it,\n""the cylinder won't move. When the attribute is set to 'true', the cylinder is\n""movable upon pushing or gripping. When an object is movable, the 'mass'\n""attribute is required.\n""The 'mass' attribute quantifies the mass of the cylinder in kg.\n""The 'body/position' attribute specifies the position of the base of the\n""cylinder in the arena. The three values are in the X,Y,Z order.\n""The 'body/orientation' attribute specifies the orientation of the cylinder. All\n""rotations are performed with respect to the center of mass. The order of the\n""angles is Z,Y,X, which means that the first number corresponds to the rotation\n""around the Z axis, the second around Y and the last around X. This reflects\n""the internal convention used in ARGoS, in which rotations are performed in\n""that order. Angles are expressed in degrees.\n\n""OPTIONAL XML CONFIGURATION\n\n""It is possible to add any number of colored LEDs to the cylinder. In this way,\n""the cylinder is visible with a robot camera. The position and color of the\n""LEDs is specified with the following syntax:\n\n"" <arena ...>\n"" ...\n"" <cylinder id=\"cyl1\" radius=\"0.8\" height=\"0.5\"\n"" movable=\"true\" mass=\"2.5\">\n"" <body position=\"0.4,2.3,0\" orientation=\"45,0,0\" />\n"" <leds>\n"" <led position=\" 0.15, 0.15,0.15\" color=\"white\" />\n"" <led position=\"-0.15, 0.15,0\" color=\"red\" />\n"" <led position=\" 0.15, 0.15,0\" color=\"blue\" />\n"" <led position=\" 0.15,-0.15,0\" color=\"green\" />\n"" </leds>\n"" </cylinder>\n"" ...\n"" </arena>\n\n""In the example, four LEDs are added around the cylinder. The LEDs have\n""different colors and are located around the cylinder.\n","Usable")
 REGISTER_STANDARD_SPACE_OPERATIONS_ON_COMPOSABLE (CCylinderEntity)
 REGISTER_STANDARD_SPACE_OPERATIONS_ON_ENTITY (CGripperEquippedEntity)
 REGISTER_STANDARD_SPACE_OPERATIONS_ON_ENTITY (CGroundSensorEquippedEntity)
 REGISTER_STANDARD_SPACE_OPERATIONS_ON_ENTITY (CLEDEntity)
 REGISTER_STANDARD_SPACE_OPERATIONS_ON_COMPOSABLE (CLEDEquippedEntity)
 REGISTER_ENTITY (CLightEntity,"light","Carlo Pinciroli [ilpincy@gmail.com]","1.0","A colored light.","The light entity is an entity that emits a light detectable by a robot camera\n""(as a normal LED) or by light sensors. A light is bodyless, therefore it must\n""not be added to physics engines.\n""A light is characterized by a color and an intensity. The color of the light\n""is perceived by cameras. The intensity modifies the reading of the light\n""sensors. The higher the intensity, the closer the light is perceived.\n\n""REQUIRED XML CONFIGURATION\n\n"" <arena ...>\n"" ...\n"" <light id=\"light0\"\n"" position=\"0.4,2.3,0.25\"\n"" orientation=\"0,0,0\"\n"" color=\"yellow\"\n"" intensity=\"1.0\"\n"" medium=\"leds\"/>\n"" ...\n"" </arena>\n\n""The 'id' attribute is necessary and must be unique among the entities. If two\n""entities share the same id, initialization aborts.\n""The 'position' attribute specifies the position of the center of the light.\n""The attribute values are in the X,Y,Z order.\n""The 'orientation' attribute specifies the orientation of the light. At the\n""moment this attribute is mandatory but its value is ignored. In the future,\n""it will be used to implement a directional light.\n""The 'color' attribute specifies the color of the light.\n""The 'intensity' attribute sets the intensity of the light. When the value is\n""1.0, the light emits a normal amount of light. When it is 0.5 the amount of\n""light is half, and when the value is 2.0 the emission is doubled. The\n""intensity of the light affects the readings of the light sensors but not\n""those of the cameras.\n""The 'medium' attribute is used to add the light the corresponding LED medium.\n\n""OPTIONAL XML CONFIGURATION\n\n""None.\n","Usable")
 REGISTER_STANDARD_SPACE_OPERATIONS_ON_ENTITY (CLightEntity)
 REGISTER_STANDARD_SPACE_OPERATIONS_ON_ENTITY (CLightSensorEquippedEntity)
 REGISTER_STANDARD_SPACE_OPERATIONS_ON_ENTITY (COmnidirectionalCameraEquippedEntity)
 REGISTER_STANDARD_SPACE_OPERATIONS_ON_ENTITY (CProximitySensorEquippedEntity)
 REGISTER_STANDARD_SPACE_OPERATIONS_ON_ENTITY (CRABEquippedEntity)
 REGISTER_STANDARD_SPACE_OPERATIONS_ON_ENTITY (CWheeledEntity)
 REGISTER_STANDARD_SPACE_OPERATIONS_ON_ENTITY (CWiFiEquippedEntity)
 REGISTER_MEDIUM (CLEDMedium,"led","Carlo Pinciroli [ilpincy@gmail.com]","1.0","Manages the LEDs.","This medium is required to manage the LED entities, thus allowing the\n""associated camera sensors to work properly. If you intend to use a camera\n""sensor that detects colored blobs, you must add this medium to the XML\n""configuration file.\n\n""REQUIRED XML CONFIGURATION\n\n""<led id=\"led\" />\n\n""OPTIONAL XML CONFIGURATION\n\n""None for the time being\n","Under development")
 REGISTER_MEDIUM (CRABMedium,"range_and_bearing","Carlo Pinciroli [ilpincy@gmail.com]","1.0","It simulates the communication across range-and-bearing-equipped robots.","This medium is required to simulate communication across range-and-bearing-\n""equipped robots. You need to add it to the <media> section every time you add\n""a range-and-bearing-equipped entity whose controller has a range-and-bearing\n""device activated.\n\n""REQUIRED XML CONFIGURATION\n\n""<range_and_bearing id=\"rab\" />\n\n""OPTIONAL XML CONFIGURATION\n\n""None for the time being\n","Under development")
 REGISTER_STANDARD_DYNAMICS2D_OPERATIONS_ON_ENTITY (CBoxEntity, CDynamics2DBoxModel)
 REGISTER_STANDARD_DYNAMICS2D_OPERATIONS_ON_ENTITY (CCylinderEntity, CDynamics2DCylinderModel)
 REGISTER_PHYSICS_ENGINE (CDynamics2DEngine,"dynamics2d","Carlo Pinciroli [ilpincy@gmail.com]","1.0","A 2D dynamics physics engine.","This physics engine is a 2D dynamics engine based on the Chipmunk library\n""(http://code.google.com/p/chipmunk-physics).\n\n""REQUIRED XML CONFIGURATION\n\n"" <physics_engines>\n"" ...\n"" <dynamics2d id=\"dyn2d\" />\n"" ...\n"" </physics_engines>\n\n""The 'id' attribute is necessary and must be unique among the physics engines.\n""It is used in the subsequent section <arena_physics> to assign entities to\n""physics engines. If two engines share the same id, initialization aborts.\n\n""OPTIONAL XML CONFIGURATION\n\n""The plane of the physics engine can be translated on the Z axis, to simulate\n""for example hovering objects, such as flying robots. To translate the plane\n""2m up the Z axis, use the 'elevation' attribute as follows:\n\n"" <physics_engines>\n"" ...\n"" <dynamics2d id=\"dyn2d\"\n"" elevation=\"2.0\" />\n"" ...\n"" </physics_engines>\n\n""When not specified, the elevation is zero, which means that the plane\n""corresponds to the XY plane.\n","Under development")
int BeginCollisionBetweenGripperAndGrippable (cpArbiter *pt_arb, cpSpace *pt_space, void *p_data)
int ManageCollisionBetweenGripperAndGrippable (cpArbiter *pt_arb, cpSpace *pt_space, void *p_data)
void AddConstraintBetweenGripperAndGrippable (cpSpace *pt_space, void *p_obj, void *p_data)
void RemoveConstraintBetweenGripperAndGrippable (cpSpace *pt_space, void *p_obj, void *p_data)
 REGISTER_SENSOR (CColoredBlobOmnidirectionalCameraRotZOnlySensor,"colored_blob_omnidirectional_camera","rot_z_only","Carlo Pinciroli [ilpincy@gmail.com]","1.0","A generic omnidirectional camera sensor to detect colored blobs.","TODO\n\n","Usable")
 REGISTER_SENSOR (CDifferentialSteeringDefaultSensor,"differential_steering","default","Carlo Pinciroli [ilpincy@gmail.com]","1.0","A generic differential steering sensor.","This sensor returns the current position and orientation of a robot. This sensor\n""can be used with any robot, since it accesses only the body component. In\n""controllers, you must include the ci_differential_steering_sensor.h header.\n\n""REQUIRED XML CONFIGURATION\n\n"" <controllers>\n"" ...\n"" <my_controller ...>\n"" ...\n"" <sensors>\n"" ...\n"" <differential_steering implementation=\"default\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""OPTIONAL XML CONFIGURATION\n\n""It is possible to add uniform noise to the sensor, thus matching the\n""characteristics of a real robot better. You can add noise through the\n""attributes 'vel_noise_range' and 'dist_noise_range'.\n""Attribute 'vel_noise_range' regulates the noise range on the velocity returned\n""by the sensor. Attribute 'dist_noise_range' sets the noise range on the\n""distance covered by the wheels.\n""value for rotation.\n\n"" <controllers>\n"" ...\n"" <my_controller ...>\n"" ...\n"" <sensors>\n"" ...\n"" <differential_steering implementation=\"default\"\n"" vel_noise_range=\"-0.1:0.2\"\n"" dist_noise_range=\"-10.5:13.7\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""OPTIONAL XML CONFIGURATION\n\n""None.\n","Usable")
 REGISTER_SENSOR (CGroundRotZOnlySensor,"ground","rot_z_only","Carlo Pinciroli [ilpincy@gmail.com]","1.0","A generic ground sensor (optimized for 2D).","This sensor accesses a set of ground sensors. The sensors all return a value\n""between 0 and 1, where 0 means black and 1 means white. Depending on the type\n""of ground sensor, readings can either take 0 or 1 as value (bw sensors) or a\n""value in between (grayscale sensors). In controllers, you must include the\n""ci_ground_sensor.h header.\n\n""REQUIRED XML CONFIGURATION\n\n"" <controllers>\n"" ...\n"" <my_controller ...>\n"" ...\n"" <sensors>\n"" ...\n"" <ground implementation=\"rot_z_only\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""OPTIONAL XML CONFIGURATION\n\n""It is possible to add uniform noise to the sensors, thus matching the\n""characteristics of a real robot better. This can be done with the attribute\n""\"noise_level\", whose allowed range is in [-1,1] and is added to the calculated\n""reading. The final sensor reading is always normalized in the [0-1] range.\n\n"" <controllers>\n"" ...\n"" <my_controller ...>\n"" ...\n"" <sensors>\n"" ...\n"" <ground implementation=\"rot_z_only\"\n"" noise_level=\"0.1\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""OPTIONAL XML CONFIGURATION\n\n""None.\n","Usable")
 REGISTER_SENSOR (CLightDefaultSensor,"light","default","Carlo Pinciroli [ilpincy@gmail.com]","1.0","A generic light sensor.","This sensor accesses a set of light sensors. The sensors all return a value\n""between 0 and 1, where 0 means nothing within range and 1 means the perceived\n""light saturates the sensor. Values between 0 and 1 depend on the distance of\n""the perceived light. Each reading R is calculated with R=(I/x)^2, where x is the\n""distance between a sensor and the light, and I is the reference intensity of the\n""perceived light. The reference intensity corresponds to the minimum distance at\n""which the light saturates a sensor. The reference intensity depends on the\n""individual light, and it is set with the \"intensity\" attribute of the light\n""entity. In case multiple lights are present in the environment, each sensor\n""reading is calculated as the sum of the individual readings due to each light.\n""In other words, light wave interference is not taken into account. In\n""controllers, you must include the ci_light_sensor.h header.\n\n""REQUIRED XML CONFIGURATION\n\n"" <controllers>\n"" ...\n"" <my_controller ...>\n"" ...\n"" <sensors>\n"" ...\n"" <light implementation=\"default\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""OPTIONAL XML CONFIGURATION\n\n""It is possible to draw the rays shot by the light sensor in the OpenGL\n""visualization. This can be useful for sensor debugging but also to understand\n""what's wrong in your controller. In OpenGL, the rays are drawn in cyan when\n""they are not obstructed and in purple when they are. In case a ray is\n""obstructed, a black dot is drawn where the intersection occurred.\n""To turn this functionality on, add the attribute \"show_rays\" as in this\n""example:\n\n"" <controllers>\n"" ...\n"" <my_controller ...>\n"" ...\n"" <sensors>\n"" ...\n"" <light implementation=\"default\"\n"" show_rays=\"true\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""It is possible to add uniform noise to the sensors, thus matching the\n""characteristics of a real robot better. This can be done with the attribute\n""\"noise_level\", whose allowed range is in [-1,1] and is added to the calculated\n""reading. The final sensor reading is always normalized in the [0-1] range.\n\n"" <controllers>\n"" ...\n"" <my_controller ...>\n"" ...\n"" <sensors>\n"" ...\n"" <light implementation=\"default\"\n"" noise_level=\"0.1\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""OPTIONAL XML CONFIGURATION\n\n""None.\n","Usable")
 REGISTER_SENSOR (CPositioningDefaultSensor,"positioning","default","Carlo Pinciroli [ilpincy@gmail.com]","1.0","A generic positioning sensor.","This sensor returns the current position and orientation of a robot. This sensor\n""can be used with any robot, since it accesses only the body component. In\n""controllers, you must include the ci_positioning_sensor.h header.\n\n""REQUIRED XML CONFIGURATION\n\n"" <controllers>\n"" ...\n"" <my_controller ...>\n"" ...\n"" <sensors>\n"" ...\n"" <positioning implementation=\"default\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""OPTIONAL XML CONFIGURATION\n\n""It is possible to add uniform noise to the sensor, thus matching the\n""characteristics of a real robot better. You can add noise through the\n""attributes 'pos_noise_range', 'angle_noise_range', and 'axis_noise_range'.\n""Attribute 'pos_noise_range' regulates the noise range on the position returned\n""by the sensor. Attribute 'angle_noise_range' sets the noise range on the angle\n""(values expressed in degrees). Attribute 'axis_noise_range' sets the noise for\n""the rotation axis. Angle and axis are used to calculate a quaternion, which is\n""the actual returned value for rotation.\n\n"" <controllers>\n"" ...\n"" <my_controller ...>\n"" ...\n"" <sensors>\n"" ...\n"" <positioning implementation=\"default\"\n"" pos_noise_range=\"-0.1:0.2\"\n"" angle_noise_range=\"-10.5:13.7\"\n"" axis_noise_range=\"-0.3:0.4\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""OPTIONAL XML CONFIGURATION\n\n""None.\n","Usable")
 REGISTER_SENSOR (CProximityDefaultSensor,"proximity","default","Carlo Pinciroli [ilpincy@gmail.com]","1.0","A generic proximity sensor.","This sensor accesses a set of proximity sensors. The sensors all return a value\n""between 0 and 1, where 0 means nothing within range and 1 means an external\n""object is touching the sensor. Values between 0 and 1 depend on the distance of\n""the occluding object, and are calculated as value=exp(-distance). In\n""controllers, you must include the ci_proximity_sensor.h header.\n\n""REQUIRED XML CONFIGURATION\n\n"" <controllers>\n"" ...\n"" <my_controller ...>\n"" ...\n"" <sensors>\n"" ...\n"" <proximity implementation=\"default\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""OPTIONAL XML CONFIGURATION\n\n""It is possible to draw the rays shot by the proximity sensor in the OpenGL\n""visualization. This can be useful for sensor debugging but also to understand\n""what's wrong in your controller. In OpenGL, the rays are drawn in cyan when\n""they are not obstructed and in purple when they are. In case a ray is\n""obstructed, a black dot is drawn where the intersection occurred.\n""To turn this functionality on, add the attribute \"show_rays\" as in this\n""example:\n\n"" <controllers>\n"" ...\n"" <my_controller ...>\n"" ...\n"" <sensors>\n"" ...\n"" <proximity implementation=\"default\"\n"" show_rays=\"true\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""It is possible to add uniform noise to the sensors, thus matching the\n""characteristics of a real robot better. This can be done with the attribute\n""\"noise_level\", whose allowed range is in [-1,1] and is added to the calculated\n""reading. The final sensor reading is always normalized in the [0-1] range.\n\n"" <controllers>\n"" ...\n"" <my_controller ...>\n"" ...\n"" <sensors>\n"" ...\n"" <proximity implementation=\"default\"\n"" noise_level=\"0.1\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n","Usable")
 REGISTER_SENSOR (CRangeAndBearingMediumSensor,"range_and_bearing","medium","Carlo Pinciroli [ilpincy@gmail.com]","1.0","The range-and-bearing sensor.","This sensor allows robots to perform situated communication, i.e., a form of\n""wireless communication whereby the receiver also knows the location of the\n""sender with respect to its own frame of reference.\n""This implementation of the range-and-bearing sensor is associated to the\n""range-and-bearing medium. To be able to use this sensor, you must add a\n""range-and-bearing medium to the <media> section.\n""This sensor allows a robot to receive messages. To send messages, you need the\n""range-and-bearing actuator.\n""To use this sensor, in controllers you must include the\n""ci_range_and_bearing_sensor.h header.\n\n""REQUIRED XML CONFIGURATION\n\n"" <controllers>\n"" ...\n"" <my_controller ...>\n"" ...\n"" <sensors>\n"" ...\n"" <range_and_bearing implementation=\"medium\"\n"" medium=\"rab\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""The 'medium' attribute must be set to the id of the range-and-bearing medium\n""declared in the <media> section.\n\n""OPTIONAL XML CONFIGURATION\n\n""It is possible to draw the rays shot by the range-and-bearing sensor in the\n""OpenGL visualization. This can be useful for sensor debugging but also to\n""understand what's wrong in your controller. In OpenGL, the rays are drawn in\n""cyan when two robots are communicating.\n""To turn this functionality on, add the attribute \"show_rays\" as in this\n""example:\n\n"" <controllers>\n"" ...\n"" <my_controller ...>\n"" ...\n"" <sensors>\n"" ...\n"" <range_and_bearing implementation=\"medium\"\n"" medium=\"rab\"\n"" show_rays=\"true\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""It is possible to add noise to the readings, thus matching the characteristics\n""of a real robot better. Noise is implemented as a random vector added to the\n""vector joining two communicating robots. For the random vector, the inclination\n""and azimuth are chosen uniformly in the range [0:PI] and [0:2PI], respectively,\n""and the length is drawn from a Gaussian distribution. The standard deviation of\n""the Gaussian distribution is expressed in meters and set by the user through\n""the attribute 'noise_std_dev' as shown in this example:\n\n"" <controllers>\n"" ...\n"" <my_controller ...>\n"" ...\n"" <sensors>\n"" ...\n"" <range_and_bearing implementation=\"medium\"\n"" medium=\"rab\"\n"" noise_std_dev=\"0.1\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n","Usable")
 REGISTER_QTOPENGL_ENTITY_OPERATION (CQTOpenGLOperationDrawNormal, CQTOpenGLOperationDrawBoxNormal, CBoxEntity)
 REGISTER_QTOPENGL_ENTITY_OPERATION (CQTOpenGLOperationDrawSelected, CQTOpenGLOperationDrawBoxSelected, CBoxEntity)
 REGISTER_QTOPENGL_ENTITY_OPERATION (CQTOpenGLOperationDrawNormal, CQTOpenGLOperationDrawCylinderNormal, CCylinderEntity)
 REGISTER_QTOPENGL_ENTITY_OPERATION (CQTOpenGLOperationDrawSelected, CQTOpenGLOperationDrawCylinderSelected, CCylinderEntity)
 REGISTER_QTOPENGL_ENTITY_OPERATION (CQTOpenGLOperationDrawNormal, CQTOpenGLOperationDrawLightNormal, CLightEntity)
 REGISTER_QTOPENGL_ENTITY_OPERATION (CQTOpenGLOperationDrawSelected, CQTOpenGLOperationDrawLightSelected, CLightEntity)
bool ItemLessThan (const CQTOpenGLLuaStateTreeItem *pc_i1, const CQTOpenGLLuaStateTreeItem *pc_i2)
 REGISTER_VISUALIZATION (CQTOpenGLRender,"qt-opengl","Carlo Pinciroli [ilpincy@gmail.com]","1.0","An interactive graphical renderer based on QT and OpenGL.","The QT-OpenGL renderer is a graphical renderer based on QT >= 4.5 and OpenGL.\n""It allows the user to watch and modify the simulation as it's running in an\n""intuitive way.\n\n""REQUIRED XML CONFIGURATION\n\n"" <visualization>\n"" <qtopengl_render />\n"" </visualization>\n\n""OPTIONAL XML CONFIGURATION\n\n""It is possible to set some camera parameters. There are 10 available\n""cameras to use. You can switch from one to the other by clicking on the\n""graphical view (to give it focus) and then pressing the keys 0-9.\n""To configure position and orientation of specific cameras, say cameras 0 to 3,\n""you have to include the following XML code:\n\n"" <visualization>\n"" <qtopengl_render>\n"" <camera>\n"" <placement idx=\"0\" position=\"2,2,2\" look_at=\"1,1,1\" />\n"" <placement idx=\"1\" position=\"1,0,7\" look_at=\"1,0,0\" />\n"" <placement idx=\"2\" position=\"3,3,4\" look_at=\"1,6,0\" />\n"" <placement idx=\"3\" position=\"2,3,2\" look_at=\"0,1,0\" />\n"" </camera>\n"" </qtopengl_render>\n"" </visualization>\n\n""The 'idx' attribute specifies the camera index (and the key to press to switch\n""to that camera).\n""The 'position' attribute contains the position of the camera in the arena.\n""The 'look_at' attribute sets the point the camera is looking at.\n""It also possible to set some optical parameters of real cameras, namely the\n""focal length and the length of the frame diagonal. For example:\n\n"" <visualization>\n"" <qtopengl_render>\n"" <camera>\n"" ...\n"" <placement idx=\"4\"\n"" position=\"4,1,4\"\n"" look_at=\"2,1,0\"\n"" lens_focal_length=\"50\"\n"" frame_diagonal=\"40\" />\n"" ...\n"" </camera>\n"" </qtopengl_render>\n"" </visualization>\n\n""The 'lens_focal_length' attribute controls the focal length of the lens of the\n""simulated camera. The value is in millimeters and it defaults, if not set in\n""XML, to 20mm.\n""The 'frame_diagonal' attribute specifies the length of the frame diagonal of\n""the image film. The value is in millimeters and it defaults, if not set in\n""XML, to 35mm.\n""This visualization also allows for user customization. In a similar fashion to\n""the loop functions, you can set a plug-in that derives from the\n""CQTOpenGLUserFunctions class. To load it in the system, follow this example:\n\n"" <visualization>\n"" <qtopengl_render>\n"" <user_functions library=\"/path/to/libmyuserfunctions.so\"\n"" label=\"my_user_functions\" />\n"" </qtopengl_render>\n"" </visualization>\n\n""The 'library' attribute points to the library where the user functions are\n""stored. This library can be the same as the loop functions, or a new one.\n""There is no limitation to where the code is to be found.\n""The 'label' attribute identifies the user function class to use. In this way,\n""in a single library you can have multiple user function implementations, if\n""you wish.\n""You can also grab frames and store them into image files, for example to create\n""videos in a fast way. To do it, you just need to press the red capture button\n""and frame grabbing will be on. By default, the frames are named\n""'frame_NNNNN.png' and are stored in the current directory, i.e. the directory\n""where you run the 'argos' command. If you want to override this behavior, you\n""can add the optional 'frame_grabbing' section as follows:\n\n"" <visualization>\n"" <qtopengl_render>\n"" <frame_grabbing directory=\"frames\"\n"" base_name=\"myframe_\"\n"" format=\"png\"\n"" quality=\"100\" />\n"" </qtopengl_render>\n"" </visualization>\n\n""All the attributes in this section are optional. If you don't specify one of\n""them, the default is taken.\n""The 'directory' attribute stores the directory where the frames are saved. If\n""the directory does not exist, a fatal error occurs. The directory must exist\n""and be writable. Both absolute and relative paths are allowed. The default\n""value is '.'\n""The 'base_name' attribute is the string to prepend to the file name. After this\n""string, the frame number (padded to 5 digits) is added. The default value is\n""'frame_', so a typical resulting name is 'frame_00165'.\n""The 'format' attribute specifies the format. The default value is 'png' but you\n""can put any format supported by Qt>=4.5. Refer to the Qt documentation for the\n""complete list of supported formats.\n""The 'quality' attribute dictates the quality of the image. Its value is in the\n""range [0:100] where 0 means maximum compression and minimum quality, and 100\n""means maximum quality and no compression at all. The default value is '-1',\n""which means to use Qt's default quality. For videos, it's best to use 100 to\n""avoid artifacts due to compression. For a normal screenshot, the default is the\n""safest choice.\n","Usable")

Variables

CARGoSLog LOG (std::cout, SLogColor(ARGOS_LOG_ATTRIBUTE_BRIGHT, ARGOS_LOG_COLOR_GREEN))
CARGoSLog LOGERR (std::cerr, SLogColor(ARGOS_LOG_ATTRIBUTE_BRIGHT, ARGOS_LOG_COLOR_RED))
CRange< CRadiansAPERTURE_RANGE (CCI_FootBotGripperActuator::LOCKED_NEGATIVE, CCI_FootBotGripperActuator::LOCKED_POSITIVE)
const Real RPM_TO_RADIANS_PER_SEC = ARGOS_PI / 30.0f
CRange< CRadiansINCLINATION_RANGE (CRadians(0), CRadians(ARGOS_PI))
const GLfloat MOVABLE_COLOR [] = { 1.0f, 0.0f, 0.0f, 1.0f }
const GLfloat NONMOVABLE_COLOR [] = { 0.7f, 0.7f, 0.7f, 1.0f }
const GLfloat SPECULAR [] = { 0.0f, 0.0f, 0.0f, 1.0f }
const GLfloat SHININESS [] = { 0.0f }
const GLfloat EMISSION [] = { 0.0f, 0.0f, 0.0f, 1.0f }

Detailed Description

The namespace containing all the ARGoS related code.

The namespace containing all the ARGoS-related code.


Typedef Documentation

typedef ticpp::Element argos::TConfigurationNode

The ARGoS configuration XML node.

Definition at line 27 of file argos_configuration.h.

typedef ticpp::Iterator<ticpp::Element> argos::TConfigurationNodeIterator

The iterator for the ARGoS configuration XML node.

Definition at line 29 of file argos_configuration.h.

typedef std::map<std::string, CEmbodiedEntity*> argos::TEmbodiedEntityMap

Definition at line 229 of file embodied_entity.h.

Definition at line 230 of file embodied_entity.h.

Definition at line 228 of file embodied_entity.h.

typedef std::vector<SQueryResultItem> argos::TQueryResult

Definition at line 44 of file query_plugins.h.


Enumeration Type Documentation

The possible attributes of the logged text.

Enumerator:
ARGOS_LOG_ATTRIBUTE_RESET 
ARGOS_LOG_ATTRIBUTE_BRIGHT 
ARGOS_LOG_ATTRIBUTE_DIM 
ARGOS_LOG_ATTRIBUTE_UNDERSCORE 
ARGOS_LOG_ATTRIBUTE_BLINK 
ARGOS_LOG_ATTRIBUTE_REVERSE 
ARGOS_LOG_ATTRIBUTE_HIDDEN 

Definition at line 22 of file argos_colored_text.h.

The possible colors of the logged text.

Enumerator:
ARGOS_LOG_COLOR_BLACK 
ARGOS_LOG_COLOR_RED 
ARGOS_LOG_COLOR_GREEN 
ARGOS_LOG_COLOR_YELLOW 
ARGOS_LOG_COLOR_BLUE 
ARGOS_LOG_COLOR_MAGENTA 
ARGOS_LOG_COLOR_CYAN 
ARGOS_LOG_COLOR_WHITE 

Definition at line 35 of file argos_colored_text.h.

Enumerator:
EPUCK_LEFT_WHEEL 
EPUCK_RIGHT_WHEEL 

Definition at line 23 of file dynamics2d_epuck_model.cpp.

Enumerator:
MODE_OFF 
MODE_PASSIVE 
MODE_SPEED_CONTROL 
MODE_POSITION_CONTROL 

Definition at line 33 of file dynamics2d_footbot_model.cpp.

Enumerator:
FOOTBOT_LEFT_WHEEL 
FOOTBOT_RIGHT_WHEEL 

Definition at line 28 of file dynamics2d_footbot_model.cpp.


Function Documentation

template<typename T >
T argos::Abs ( const T &  t_v)

Returns the absolute value of the passed argument.

Returns:
the absolute value of the passed argument.

Definition at line 25 of file general.h.

SInt32 argos::Abs ( SInt32  t_v) [inline]

Returns the absolute value of the passed argument.

Specific implementation for the SInt32 type.

Returns:
the absolute value of the passed argument.
See also:
Abs()

Definition at line 37 of file general.h.

Real argos::Abs ( Real  t_v) [inline]

Returns the absolute value of the passed argument.

Specific implementation for the Real type.

Returns:
the absolute value of the passed argument.

Definition at line 48 of file general.h.

CRadians argos::ACos ( Real  f_value) [inline]

Computes the arccosine of the passed value.

Parameters:
f_valuea value in the range [-1:1]
Returns:
the arccosine in CRadians

Definition at line 589 of file angles.h.

void argos::AddChildNode ( TConfigurationNode &  t_parent_node,
TConfigurationNode &  t_child_node 
) [inline]

Adds an XML node as child of another XML node.

The node is added at the end of the children of the parent node.

Parameters:
t_parent_nodethe parent node
t_child_nodethe child node to add to the parent
Exceptions:
CARGoSExceptionif an error occurred

Definition at line 86 of file argos_configuration.h.

void argos::AddConstraintBetweenGripperAndGrippable ( cpSpace *  pt_space,
void *  p_obj,
void *  p_data 
)

Definition at line 199 of file dynamics2d_gripping.cpp.

template<typename T >
T* argos::any_cast ( CAny *  pc_any)

Performs a cast on the any type to the desired type, when the any type is passed by non-const pointer.

Definition at line 148 of file any.h.

template<typename T >
const T* argos::any_cast ( const CAny *  pc_any)

Performs a cast on the any type to the desired type, when the any type is passed by const pointer.

Definition at line 166 of file any.h.

template<typename T >
const T& argos::any_cast ( const CAny &  c_any)

Performs a cast on the any type to the desired type, when the any type is passed by const reference.

Definition at line 184 of file any.h.

template<typename T >
T& argos::any_cast ( CAny &  c_any)

Performs a cast on the any type to the desired type, when the any type is passed by non-const reference.

Definition at line 205 of file any.h.

CRadians argos::ASin ( Real  f_value) [inline]

Computes the arcsine of the passed value.

Parameters:
f_valuea value in the range [-1:1]
Returns:
the arcsine in CRadians

Definition at line 580 of file angles.h.

CRadians argos::ATan2 ( const Real  f_y,
const Real  f_x 
) [inline]

Computes the arctangent of the passed values.

It internally uses the standard function atan2(y,x).

Parameters:
f_ythe extent on the y axis
f_xthe extent on the x axis
Returns:
the arctangent in CRadians

Definition at line 600 of file angles.h.

int argos::BeginCollisionBetweenGripperAndGrippable ( cpArbiter *  pt_arb,
cpSpace *  pt_space,
void *  p_data 
)

Definition at line 143 of file dynamics2d_gripping.cpp.

CRange<size_t> argos::CalculatePluginRangeForThread ( size_t  un_id,
size_t  un_tot_plugins 
)

Definition at line 225 of file space_multi_thread_balance_quantity.cpp.

template<typename LABEL , typename PLUGIN , typename RETURN_VALUE >
RETURN_VALUE argos::CallEntityOperation ( PLUGIN &  t_plugin,
CEntity &  c_entity 
)

Calls the operation corresponding to the given context and operand Skips the function call if the operation is missing in the vtable.

Definition at line 383 of file entity.h.

SInt32 argos::Ceil ( Real  f_value) [inline]

Rounds the passed floating-point value to the closest higher integer.

Profiled, it takes 50% the time of ceil().

Returns:
the closest higher integer to the passed value.

Definition at line 149 of file general.h.

Real argos::Cos ( const CRadians &  c_radians) [inline]

Computes the cosine of the passed value in radians.

Parameters:
c_radiansthe angle in CRadians
Returns:
the cosine of the passed value

Definition at line 562 of file angles.h.

RealNumberGenerator* argos::CreateGenerator ( TConfigurationNode &  t_tree)

Definition at line 297 of file space.cpp.

Bright red text modifier.

argos::DEFINE_ARGOS_STREAM_COLOR_HELPER ( green  ,
GREEN   
)

Bright green text modifier.

argos::DEFINE_ARGOS_STREAM_COLOR_HELPER ( yellow  ,
YELLOW   
)

Bright yellow text modifier.

Bright blue text modifier.

argos::DEFINE_ARGOS_STREAM_COLOR_HELPER ( magenta  ,
MAGENTA   
)

Bright magenta text modifier.

Bright cyan text modifier.

argos::DEFINE_ARGOS_STREAM_COLOR_HELPER ( white  ,
WHITE   
)

Bright white text modifier.

Real argos::Distance ( const CVector2 &  c_v1,
const CVector2 &  c_v2 
) [inline]

Computes the distance between the passed vectors.

Parameters:
c_v1The first vector
c_v2The second vector
Returns:
The distance between the passed vectors

Definition at line 409 of file vector2.h.

Real argos::Distance ( const CVector3 &  c_v1,
const CVector3 &  c_v2 
) [inline]

Computes the distance between the passed vectors.

Parameters:
c_v1The first vector
c_v2The second vector
Returns:
The distance between the passed vectors

Definition at line 684 of file vector3.h.

bool argos::DoubleEq ( Real  f_value1,
Real  f_value2 
) [inline]

Tests whether a floating-point value is lower than another.

This method is like DoubleEqAbsolute(), but with f_epsilon = 0.0001.

Parameters:
f_value1the first value to test
f_value2the second value to test
Returns:
true if f_value1 < f_value2, false otherwise.
See also:
DoubleEqAbsolute()

Definition at line 204 of file general.h.

bool argos::DoubleEqAbsolute ( Real  f_value1,
Real  f_value2,
Real  f_epsilon 
) [inline]

Tests whether a floating-point value is lower than another.

This function perform the following test:

           Abs(f_value1 - f_value2)
 --------------------------------------------- <= f_epsilon
 Max (1.0f, Max(Abs(f_value1), Abs(f_value2)))
 
Parameters:
f_value1the first value to test
f_value2the second value to test
f_epsilonthe tolerance of the test
Returns:
true if f_value1 < f_value2, false otherwise.
See also:
DoubleEq()

Definition at line 192 of file general.h.

void argos::DumpResourceUsageAsTableRow ( std::ostream &  c_os,
const ::rusage &  t_resources 
)

Definition at line 63 of file profiler.cpp.

void argos::DumpResourceUsageHumanReadable ( std::ostream &  c_os,
const ::rusage &  t_resources 
)

Definition at line 37 of file profiler.cpp.

std::string & argos::ExpandEnvVariables ( std::string &  str_buffer)

Searches into str_buffer for occurrences of an environment variable of the form $VAR and substitutes them with the value of the variable.

Parameters:
str_bufferthe string to modify.
Returns:
the modified string

Definition at line 128 of file string_utilities.cpp.

SInt32 argos::Floor ( Real  f_value) [inline]

Rounds the passed floating-point value to the closest lower integer.

Profiled, it takes 50% the time of floor().

Returns:
the closest lower integer to the passed value.

Definition at line 138 of file general.h.

template<typename T >
T argos::FromString ( const std::string &  str_value)

Converts the given std::string parameter to the wanted type.

Example of use:

 std::string strToBeConverted("36");
 UInt32 unConverted = FromString(strToBeConverted);
 

Internally uses an std::ostringstream. If you want to use it with a custom type, you must define its std::istream& operator>>(std::istream&, type).

Template Parameters:
Tthe type of the target parameter.
Parameters:
str_valuethe string to convert.
Returns:
the converted value.

Definition at line 59 of file string_utilities.h.

bool argos::GetClosestEmbodiedEntityIntersectedByRay ( SEmbodiedEntityIntersectionItem &  s_item,
const CRay3 &  c_ray 
)

Definition at line 368 of file embodied_entity.cpp.

bool argos::GetClosestEmbodiedEntityIntersectedByRay ( SEmbodiedEntityIntersectionItem &  s_item,
const CRay3 &  c_ray,
CEmbodiedEntity &  c_entity 
)

Definition at line 396 of file embodied_entity.cpp.

TConfigurationNode& argos::GetNode ( TConfigurationNode &  t_node,
const std::string &  str_tag 
) [inline]

Given a tree root node, returns the first of its child nodes with the wanted name.

Given an XML tree, this function checks for the existence of a first-level node in this tree (i.e., a direct child of the root node) with the given name.

Parameters:
t_nodethe root node of the XML tree
str_tagthe name of the wanted child node
Returns:
the first child node with the given name
Exceptions:
CARGoSExceptionif no child node with the wanted name exists

Definition at line 61 of file argos_configuration.h.

template<typename T >
void argos::GetNodeAttribute ( TConfigurationNode &  t_node,
const std::string &  str_attribute,
T &  t_buffer 
)

Returns the value of a node's attribute.

XML nodes can have attributes: <mynode attribute1="this is a string attribute" attribute2="-87" attribute3="-0.5, 12.3, 4"> This function is templetized. This means that you can pass any variable type to this function and parsing will occur automatically. For instance: std::string strValue; GetNodeAttribute(tMyNode, "attribute1", strValue); // tMyNode points to <mynode> // strValue now is "this is a string attribute" SInt32 nValue; GetNodeAttribute(tMyNode, "attribute2", nValue); // tMyNode points to <mynode> // nValue now is -87 CVector3 cValue; GetNodeAttribute(tMyNode, "attribute3", cValue); // tMyNode points to <mynode> // cValue now is CVector3(-0.5, 12.3, 4)

Parameters:
t_nodethe node
str_attributethe name of the wanted attribute
t_buffera buffer where the value must be stored
Exceptions:
CARGoSExceptionif an error occurred (i.e., parse error) or the attribute does not exist
See also:
GetNodeAttributeOrDefault()

Definition at line 206 of file argos_configuration.h.

void argos::GetNodeAttribute ( TConfigurationNode &  t_node,
const std::string &  str_attribute,
bool &  b_buffer 
) [inline]

Returns the value of a node's attribute.

This function is an overloaded version of the templetized GetNodeAttribute() in which the buffer is a boolean.

Parameters:
t_nodethe node
str_attributethe name of the wanted attribute
b_buffera buffer where the value must be stored
Exceptions:
CARGoSExceptionif an error occurred (i.e., parse error) or the attribute does not exist
See also:
GetNodeAttribute()

Definition at line 229 of file argos_configuration.h.

void argos::GetNodeAttribute ( TConfigurationNode &  t_node,
const std::string &  str_attribute,
UInt8 un_buffer 
) [inline]

Returns the value of a node's attribute.

This function is an overloaded version of the templetized GetNodeAttribute() in which the buffer is a UInt8.

Parameters:
t_nodethe node
str_attributethe name of the wanted attribute
un_buffera buffer where the value must be stored
Exceptions:
CARGoSExceptionif an error occurred (i.e., parse error) or the attribute does not exist
See also:
GetNodeAttribute()

Definition at line 262 of file argos_configuration.h.

void argos::GetNodeAttribute ( TConfigurationNode &  t_node,
const std::string &  str_attribute,
SInt8 n_buffer 
) [inline]

Returns the value of a node's attribute.

This function is an overloaded version of the templetized GetNodeAttribute() in which the buffer is a SInt8.

Parameters:
t_nodethe node
str_attributethe name of the wanted attribute
n_buffera buffer where the value must be stored
Exceptions:
CARGoSExceptionif an error occurred (i.e., parse error) or the attribute does not exist
See also:
GetNodeAttribute()

Definition at line 287 of file argos_configuration.h.

template<typename T >
void argos::GetNodeAttributeOrDefault ( TConfigurationNode &  t_node,
const std::string &  str_attribute,
T &  t_buffer,
const T &  t_default 
)

Returns the value of a node's attribute, or the passed default value.

This function works like GetNodeAttribute(). The only difference is that if the wanted attribute does not exist, the passed default is stored in the buffer instead. stored in the buffer variable instead.

Parameters:
t_nodethe node
str_attributethe name of the wanted attribute
t_buffera buffer where the value must be stored
t_defaulta default value to be used if the attribute does not exist
Exceptions:
CARGoSExceptionif an error occurred (i.e., parse error)
See also:
GetNodeAttribute()

Definition at line 316 of file argos_configuration.h.

void argos::GetNodeAttributeOrDefault ( TConfigurationNode &  t_node,
const std::string &  str_attribute,
bool &  b_buffer,
const bool  b_default 
) [inline]

Returns the value of a node's attribute, or the passed default value.

This function is an overloaded version of the templetized GetNodeAttributeOrDefault() in which the buffer is a boolean. stored in the buffer variable instead.

Parameters:
t_nodethe node
str_attributethe name of the wanted attribute
b_buffera buffer where the value must be stored
b_defaulta default value to be used if the attribute does not exist
Exceptions:
CARGoSExceptionif an error occurred (i.e., parse error)
See also:
GetNodeAttributeOrDefault()

Definition at line 342 of file argos_configuration.h.

void argos::GetNodeAttributeOrDefault ( TConfigurationNode &  t_node,
const std::string &  str_attribute,
UInt8 un_buffer,
const UInt8  un_default 
) [inline]

Returns the value of a node's attribute, or the passed default value.

This function is an overloaded version of the templetized GetNodeAttributeOrDefault() in which the buffer is a UInt8. stored in the buffer variable instead.

Parameters:
t_nodethe node
str_attributethe name of the wanted attribute
un_buffera buffer where the value must be stored
un_defaulta default value to be used if the attribute does not exist
Exceptions:
CARGoSExceptionif an error occurred (i.e., parse error)
See also:
GetNodeAttributeOrDefault()

Definition at line 379 of file argos_configuration.h.

void argos::GetNodeAttributeOrDefault ( TConfigurationNode &  t_node,
const std::string &  str_attribute,
SInt8 n_buffer,
const SInt8  n_default 
) [inline]

Returns the value of a node's attribute, or the passed default value.

This function is an overloaded version of the templetized GetNodeAttributeOrDefault() in which the buffer is a SInt8. stored in the buffer variable instead.

Parameters:
t_nodethe node
str_attributethe name of the wanted attribute
n_buffera buffer where the value must be stored
n_defaulta default value to be used if the attribute does not exist
Exceptions:
CARGoSExceptionif an error occurred (i.e., parse error)
See also:
GetNodeAttributeOrDefault()

Definition at line 407 of file argos_configuration.h.

template<typename T >
void argos::GetNodeText ( TConfigurationNode &  t_node,
T &  t_buffer 
)

Returns the text of the passed XML node A node text is as follows:

 <mynode1>this is the text</mynode1>
 <mynode2>25</mynode2>
 <mynode3>3.14, 5.87</mynode3>
 

This function is templetized. This means that you can pass any variable type to this function and parsing will occur automatically. For instance:

 std::string strText;
 GetNodeText(tMyNode1, strText); // tMyNode1 points to <mynode1>
                                 // strText now is "this is the text"
 UInt32 unText;
 GetNodeText(tMyNode2, unText);  // tMyNode2 points to <mynode2>
                                 // unText now is 25
 CVector2 cText;
 GetNodeText(tMyNode3, cText);   // tMyNode3 points to <mynode3>
                                 // cText now is CVector2(3.14, 5.87)
 
Parameters:
t_nodethe node
t_buffera buffer where the text must be stored
Exceptions:
CARGoSExceptionif an error occurred (i.e., parse error) or the node has no text value
See also:
GetNodeTextOrDefault()

Definition at line 126 of file argos_configuration.h.

template<typename T >
void argos::GetNodeTextOrDefault ( TConfigurationNode &  t_node,
T &  t_buffer,
const T &  t_default 
)

Returns the text of the passed XML node, or the passed default value.

This function works like GetNodeText(). The only difference is that if no text value is found, the passed default is stored in the buffer variable instead.

Parameters:
t_nodethe node
t_buffera buffer where the text must be stored
t_defaulta default value to be used if the node has no text
Exceptions:
CARGoSExceptionif an error occurred (i.e., parse error)
See also:
GetNodeText()

Definition at line 150 of file argos_configuration.h.

template<typename DERIVED , typename BASE >
size_t argos::GetTag ( )

Returns the value of the tag associated to DERIVED

Definition at line 116 of file vtable.h.

template<typename CONTEXT , typename BASE , typename FUNCTION >
CVTable<CONTEXT, BASE, FUNCTION>& argos::GetVTable ( )

Function that returns a reference to the static vtable.

Definition at line 199 of file vtable.h.

argos::INIT_VTABLE_FOR ( CEntity  )
Real argos::Interpolate ( Real  f_x,
const std::vector< std::pair< Real, Real > > &  c_points 
) [inline]

Return the value of the linear interpolation.

Parameters:
f_xthe value of x that you want to interpolate
c_pointsvector of points NOTE: the vector has to be ordered in INCREASING ORDER.
Returns:
value of y.

Definition at line 217 of file general.h.

bool argos::ItemLessThan ( const CQTOpenGLLuaStateTreeItem *  pc_i1,
const CQTOpenGLLuaStateTreeItem *  pc_i2 
)

Definition at line 71 of file qtopengl_lua_statetree_item.cpp.

void* argos::LaunchThreadBalanceLength ( void *  p_data)

Definition at line 38 of file space_multi_thread_balance_length.cpp.

void* argos::LaunchUpdateThreadBalanceQuantity ( void *  p_data)

Definition at line 38 of file space_multi_thread_balance_quantity.cpp.

int argos::LuaRNGBernoulli ( lua_State *  pt_state)

Definition at line 22 of file lua_utility.cpp.

int argos::LuaRNGExponential ( lua_State *  pt_state)

Definition at line 114 of file lua_utility.cpp.

int argos::LuaRNGGaussian ( lua_State *  pt_state)

Definition at line 129 of file lua_utility.cpp.

int argos::LuaRNGUniform ( lua_State *  pt_state)

Definition at line 47 of file lua_utility.cpp.

int argos::LuaRNGUniformInt ( lua_State *  pt_state)

Definition at line 83 of file lua_utility.cpp.

int argos::ManageCollisionBetweenGripperAndGrippable ( cpArbiter *  pt_arb,
cpSpace *  pt_space,
void *  p_data 
)

Definition at line 159 of file dynamics2d_gripping.cpp.

bool argos::MatchPattern ( const std::string &  str_input,
const std::string  str_pattern 
)

Returns true if str_pattern is matched by str_input.

Internally uses the C function regcomp().

Parameters:
str_inputthe input string to analyze.
str_patternthe extended regular expression to match.
Returns:
true if str_pattern is matched by str_input.

Definition at line 106 of file string_utilities.cpp.

template<typename T >
T argos::Max ( const T &  t_v1,
const T &  t_v2 
)

Returns the bigger of the two passed arguments.

This version accepts const references as arguments.

Returns:
the bigger of the two passed arguments.

Definition at line 93 of file general.h.

template<typename T >
T& argos::Max ( T &  t_v1,
T &  t_v2 
)

Returns the bigger of the two passed arguments.

This version accepts non-const references as arguments.

Returns:
the bigger of the two passed arguments.

Definition at line 102 of file general.h.

template<typename T >
T argos::Min ( const T &  t_v1,
const T &  t_v2 
)

Returns the smaller of the two passed arguments.

This version accepts const references as arguments.

Returns:
the smaller of the two passed arguments.

Definition at line 75 of file general.h.

template<typename T >
T& argos::Min ( T &  t_v1,
T &  t_v2 
)

Returns the smaller of the two passed arguments.

This version accepts non-const references as arguments.

Returns:
the smaller of the two passed arguments.

Definition at line 84 of file general.h.

bool argos::NodeAttributeExists ( TConfigurationNode &  t_node,
const std::string &  str_attribute 
) [inline]

Returns true if the specified attribute of a node exists.

Parameters:
t_nodethe node whose attribute we want to search for
str_attributethe name of the attribute to search for
Returns:
true if the attribute exists, false otherwise

Definition at line 170 of file argos_configuration.h.

bool argos::NodeExists ( TConfigurationNode &  t_node,
const std::string &  str_tag 
) throw () [inline]

Given a tree root node, returns true if one of its child nodes has the wanted name.

Given an XML tree, this function checks for the existence of a first-level node in this tree (i.e., a direct child of the root node) with the given name.

Parameters:
t_nodethe root node of the XML tree
str_tagthe name of the wanted child node
Returns:
true when the node exists, false otherwise

Definition at line 42 of file argos_configuration.h.

::rusage argos::operator- ( const ::rusage &  t_resource1,
const ::rusage &  t_resource2 
)

Definition at line 89 of file profiler.cpp.

std::ostream & argos::operator<< ( std::ostream &  c_os,
const CCI_FootBotMotorGroundSensor::SReading &  s_reading 
)

Definition at line 31 of file ci_footbot_motor_ground_sensor.cpp.

std::ostream & argos::operator<< ( std::ostream &  c_os,
const CCI_FootBotBaseGroundSensor::SReading &  s_reading 
)

Definition at line 60 of file ci_footbot_base_ground_sensor.cpp.

std::ostream & argos::operator<< ( std::ostream &  c_os,
const CCI_FootBotBaseGroundSensor::TReadings &  t_readings 
)

Definition at line 70 of file ci_footbot_base_ground_sensor.cpp.

std::ostream & argos::operator<< ( std::ostream &  c_os,
const CCI_FootBotProximitySensor::SReading &  s_reading 
)

Definition at line 70 of file ci_footbot_proximity_sensor.cpp.

std::ostream& argos::operator<< ( std::ostream &  c_os,
const SLogColor &  s_log_color 
) [inline]

Stream operator that accepts the stream modifier.

See also:
SLogColor

Definition at line 78 of file argos_colored_text.h.

std::ostream & argos::operator<< ( std::ostream &  c_os,
const CCI_FootBotLightSensor::SReading &  s_reading 
)

Definition at line 93 of file ci_footbot_light_sensor.cpp.

std::ostream& argos::operator<< ( std::ostream &  c_os,
const CByteArray &  c_byte_array 
)

It streams the byte array through the given stream. Useful for files, for instance.

Parameters:
c_osthe C++ output stream the byte array to.
c_byte_arraythe byte array to stream.
Returns:
the new state of the output stream.

Definition at line 384 of file byte_array.cpp.

template<typename T >
void argos::ParseValues ( std::istream &  str_input,
UInt32  un_num_fields,
T *  pt_field_buffer,
const char  ch_delimiter = '\n' 
)

Definition at line 70 of file string_utilities.h.

template<typename T >
void argos::ParseValues ( const std::string &  str_input,
const UInt32  un_num_fields,
T *  pt_field_buffer,
const char  ch_delimiter = '\n' 
)

Definition at line 96 of file string_utilities.h.

void argos::PrintStackEntry ( CARGoSLog &  c_log,
lua_State *  pt_state,
SInt32  n_index 
)

Definition at line 187 of file lua_utility.cpp.

void argos::QueryPlugins ( const std::string &  str_query)

Definition at line 52 of file query_plugins.cpp.

template<class TYPE >
void argos::QuerySearchPlugins ( const std::string &  str_query,
TQueryResult &  t_result 
)

Definition at line 60 of file query_plugins.h.

template<class TYPE >
void argos::QueryShowList ( const std::string &  str_header)

Definition at line 84 of file query_plugins.h.

void argos::QueryShowPluginDescription ( const std::string &  str_query)

Definition at line 19 of file query_plugins.cpp.

void argos::RecursivePrintGlobals ( CARGoSLog &  c_log,
lua_State *  pt_state,
size_t  un_depth 
)

Definition at line 196 of file lua_utility.cpp.

argos::REGISTER_ACTUATOR ( CRangeAndBearingDefaultActuator  ,
"range_and_bearing"  ,
"default"  ,
"Carlo Pinciroli "  [ilpincy @gmail.com],
"1.0"  ,
"The range and bearing actuator."  ,
"This actuator allows robots to perform situated  communication,
i.  e.,
a form of\n""wireless communication whereby the receiver also knows the location of the\n""sender with respect to its own frame of reference.\n""This actuator allows a robot to send messages.To receive  messages,
you need\n""the range-and-bearing sensor.\n""To use this  actuator,
in controllers you must include the\n""ci_range_and_bearing_actuator.h header.\n\n""REQUIRED XML CONFIGURATION\n\n""< controllers >\n""...\n""< my_controller...>\n""...\n""< actuators >\n""...\n""< range_and_bearing implementation=\"default\" />\n"" ...\n"" </actuators>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""OPTIONAL XML CONFIGURATION\n\n""None for the time being.\n"  ,
"Usable"   
)
argos::REGISTER_ACTUATOR ( CFootBotTurretDefaultActuator  ,
"footbot_turret"  ,
"default"  ,
"Carlo Pinciroli "  [ilpincy @gmail.com],
"1.0"  ,
"The foot-bot turret actuator."  ,
"This actuator controls the foot-bot turret. For a complete\n""description of its  usage,
refer to the ci_footbot_turret_actuator\n""file.\n\n""REQUIRED XML CONFIGURATION\n\n""< controllers >\n""...\n""< my_controller...>\n""...\n""< actuators >\n""...\n""< footbot_turret implementation=\"default\" />\n"" ...\n"" </actuators>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""OPTIONAL XML CONFIGURATION\n\n""None for the time being.\n"  ,
"Usable"   
)
argos::REGISTER_ACTUATOR ( CFootBotDistanceScannerDefaultActuator  ,
"footbot_distance_scanner"  ,
"default"  ,
"Carlo Pinciroli "  [ilpincy @gmail.com],
"1.0"  ,
"The foot-bot distance scanner actuator."  ,
"This actuator controls the foot-bot distance scanner. For a complete\n""description of its  usage,
refer to the ci_footbot_distance_scanner_actuator\n""file.\n\n""REQUIRED XML CONFIGURATION\n\n""< controllers >\n""...\n""< my_controller...>\n""...\n""< actuators >\n""...\n""< footbot_distance_scanner implementation=\"default\" />\n"" ...\n"" </actuators>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""OPTIONAL XML CONFIGURATION\n\n""None for the time being.\n"  ,
"Usable"   
)
argos::REGISTER_CONTROLLER ( CLuaController  ,
"lua_controller"   
)
argos::REGISTER_ENTITY ( CLightEntity  ,
"light"  ,
"Carlo Pinciroli "  [ilpincy @gmail.com],
"1.0"  ,
"A colored light."  ,
"The light entity is an entity that emits a light detectable by a robot camera\n""(as a normal LED) or by light sensors. A light is  bodyless,
therefore it must\n""not be added to physics engines.\n""A light is characterized by a color and an intensity.The color of the light\n""is perceived by cameras.The intensity modifies the reading of the light\n""sensors.The higher the  intensity,
the closer the light is perceived.\n\n""REQUIRED XML CONFIGURATION\n\n""< arena...>\n""...\n""< light id=\"light0\"\n"" position=\"0.4,2.3,0.25\"\n"" orientation=\"0,0,0\"\n"" color=\"yellow\"\n"" intensity=\"1.0\"\n"" medium=\"leds\"/>\n"" ...\n"" </arena>\n\n""The 'id' attribute is necessary and must be unique among the entities. If two\n""entities share the same  id,
initialization aborts.\n""The 'position'attribute specifies the position of the center of the light.\n""The attribute values are in the  X,
,
Z order.\n""The 'orientation'attribute specifies the orientation of the light.At the\n""moment this attribute is mandatory but its value is ignored.In the  future,
\n""it will be used to implement a directional light.\n""The 'color'attribute specifies the color of the light.\n""The 'intensity'attribute sets the intensity of the light.When the value is\n""1.  0,
the light emits a normal amount of light.When it is 0.5 the amount of\n""light is  half,
and when the value is 2.0 the emission is doubled.The\n""intensity of the light affects the readings of the light sensors but not\n""those of the cameras.\n""The 'medium'attribute is used to add the light the corresponding LED medium.\n\n""OPTIONAL XML CONFIGURATION\n\n""None.\n"  ,
"Usable"   
)
argos::REGISTER_ENTITY ( CBoxEntity  ,
"box"  ,
"Carlo Pinciroli "  [ilpincy @gmail.com],
"1.0"  ,
"A stretchable 3D box."  ,
"The box entity can be used to model  walls,
obstacles or box-shaped grippable\n""objects.It can be movable or not.A movable object can be pushed and gripped.\n""An unmovable object is pretty much like a wall.\n\n""REQUIRED XML CONFIGURATION\n\n""To declare an unmovable object(i.e., a wall) you need the following:\n\n""< arena...>\n""...\n""< box id=\"box1\" size=\"0.75,0.1,0.5\" movable=\"false\">\n"" <body position=\"0.4,2.3,0\" orientation=\"45,0,0\" />\n"" </box>\n"" ...\n"" </arena>\n\n""To declare a movable object you need the following:\n\n"" <arena ...>\n"" ...\n"" <box id=\"box1\" size=\"0.75,0.1,0.5\" movable=\"true\" mass=\"2.5\">\n"" <body position=\"0.4,2.3,0\" orientation=\"45,0,0\" />\n"" </box>\n"" ...\n"" </arena>\n\n""The 'id' attribute is necessary and must be unique among the entities. If two\n""entities share the same  id,
initialization aborts.\n""The 'size'attribute specifies the size of the box along the three  axes,
in\n""the  X,
,
Z order.When you add a  box,
imagine it initially unrotated and\n""centered in the origin.The  size,
then  ,
corresponds to the extent along the  X,
\n""Y and Z axes.\n""The 'movable'attribute specifies whether or not the object is movable.When\n""set to 'false'  ,
the object is unmovable:if another object pushes against  it,
\n""the box won't move.When the attribute is set to 'true'  ,
the box is movable\n""upon pushing or gripping.When an object is  movable,
the 'mass'attribute is\n""required.\n""The 'mass'attribute quantifies the mass of the box in kg.\n""The 'body/position'attribute specifies the position of the base of the box in\n""the arena.The three values are in the  X,
,
Z order.\n""The 'body/orientation'attribute specifies the orientation of the 3D box.All\n""rotations are performed with respect to the center of mass.The order of the\n""angles is  Z,
,
,
which means that the first number corresponds to the rotation\n""around the Z  axis,
the second around Y and the last around X.This reflects\n""the internal convention used in  ARGoS,
in which rotations are performed in\n""that order.Angles are expressed in degrees.\n\n""OPTIONAL XML CONFIGURATION\n\n""It is possible to add any number of colored LEDs to the box.In this  way,
\n""the box is visible with a robot camera.The position and color of the\n""LEDs is specified with the following syntax:\n\n""< arena...>\n""...\n""< box id=\"box1\" size=\"0.75,0.1,0.5\" movable=\"true\" mass=\"2.5\">\n"" <body position=\"0.4,2.3,0\" orientation=\"45,0,0\" />\n"" <leds>\n"" <led position=\" 0.15, 0.15,0.15\" color=\"white\" />\n"" <led position=\"-0.15, 0.15,0\" color=\"red\" />\n"" <led position=\" 0.15, 0.15,0\" color=\"blue\" />\n"" <led position=\" 0.15,-0.15,0\" color=\"green\" />\n"" </leds>\n"" </box>\n"" ...\n"" </arena>\n\n""In the  example,
four LEDs are added to the box.The LEDs have\n""different colors and are located one on the top and three\n""around the box.\n"  ,
"Usable"   
)
argos::REGISTER_ENTITY ( CCylinderEntity  ,
"cylinder"  ,
"Carlo Pinciroli "  [ilpincy @gmail.com],
"1.0"  ,
"A stretchable cylinder."  ,
"The cylinder entity can be used to model obstacles or cylinder-shaped\n""grippable objects. The cylinder has a red LED on the center of one\n""of the circular  surfaces,
that allows perception using the cameras.\n""The cylinder can be movable or not.A movable object can be pushed\n""and gripped.An unmovable object is pretty much like a column.\n\n""REQUIRED XML CONFIGURATION\n\n""To declare an unmovable object(i.e., a column) you need the following:\n\n""< arena...>\n""...\n""< cylinder id=\"cyl1\" radius=\"0.8\" height=\"0.5\" movable=\"false\">\n"" <body position=\"0.4,2.3,0\" orientation=\"45,0,0\" />\n"" </cylinder>\n"" ...\n"" </arena>\n\n""To declare a movable object you need the following:\n\n"" <arena ...>\n"" ...\n"" <cylinder id=\"cyl1\" radius=\"0.8\" height=\"0.5\"\n"" movable=\"true\" mass=\"2.5\">\n"" <body position=\"0.4,2.3,0\" orientation=\"45,0,0\" />\n"" </cylinder>\n"" ...\n"" </arena>\n\n""The 'id' attribute is necessary and must be unique among the entities. If two\n""entities share the same  id,
initialization aborts.\n""The 'radius'and 'height'attributes specify the size of the cylinder.When\n""you add a  cylinder,
imagine it initially unrotated and centered in the origin.\n""The base of the  cylinder,
then  ,
is parallel to the XY plane and its height\n""goes with the Z axis.\n""The 'movable'attribute specifies whether or not the object is movable.When\n""set to 'false'  ,
the object is unmovable:if another object pushes against  it,
\n""the cylinder won't move.When the attribute is set to 'true'  ,
the cylinder is\n""movable upon pushing or gripping.When an object is  movable,
the 'mass'\n""attribute is required.\n""The 'mass'attribute quantifies the mass of the cylinder in kg.\n""The 'body/position'attribute specifies the position of the base of the\n""cylinder in the arena.The three values are in the  X,
,
Z order.\n""The 'body/orientation'attribute specifies the orientation of the cylinder.All\n""rotations are performed with respect to the center of mass.The order of the\n""angles is  Z,
,
,
which means that the first number corresponds to the rotation\n""around the Z  axis,
the second around Y and the last around X.This reflects\n""the internal convention used in  ARGoS,
in which rotations are performed in\n""that order.Angles are expressed in degrees.\n\n""OPTIONAL XML CONFIGURATION\n\n""It is possible to add any number of colored LEDs to the cylinder.In this  way,
\n""the cylinder is visible with a robot camera.The position and color of the\n""LEDs is specified with the following syntax:\n\n""< arena...>\n""...\n""< cylinder id=\"cyl1\" radius=\"0.8\" height=\"0.5\"\n"" movable=\"true\" mass=\"2.5\">\n"" <body position=\"0.4,2.3,0\" orientation=\"45,0,0\" />\n"" <leds>\n"" <led position=\" 0.15, 0.15,0.15\" color=\"white\" />\n"" <led position=\"-0.15, 0.15,0\" color=\"red\" />\n"" <led position=\" 0.15, 0.15,0\" color=\"blue\" />\n"" <led position=\" 0.15,-0.15,0\" color=\"green\" />\n"" </leds>\n"" </cylinder>\n"" ...\n"" </arena>\n\n""In the  example,
four LEDs are added around the cylinder.The LEDs have\n""different colors and are located around the cylinder.\n"  ,
"Usable"   
)
argos::REGISTER_ENTITY ( CEPuckEntity  ,
"e-puck"  ,
"Carlo Pinciroli "  [ilpincy @gmail.com],
"1.0"  ,
"The e-puck robot."  ,
"The e-puck is a open-  hardware,
extensible robot intended for education.In its\n""simplest  form,
it is a two-wheeled robot equipped with proximity  sensors,
\n""ground  sensors,
light  sensors,
microphone,
a frontal  camera,
and a ring of\n""red LEDs.More information is available at http://www.epuck.org\n\n""REQUIRED XML CONFIGURATION\n\n""< arena...>\n""...\n""< e-puck id=\"fb0\">\n"" <body position=\"0.4,2.3,0.25\" orientation=\"45,90,0\" />\n"" <controller config=\"mycntrl\" />\n"" </e-puck>\n"" ...\n"" </arena>\n\n""The 'id' attribute is necessary and must be unique among the entities. If two\n""entities share the same  id,
initialization aborts.\n""The 'body/position'attribute specifies the position of the pucktom point of the\n""e-puck in the arena.When the robot is untranslated and  unrotated,
the\n""pucktom point is in the origin and it is defined as the middle point between\n""the two wheels on the XY plane and the lowest point of the robot on the Z\n""  axis,
that is the point where the wheels touch the floor.The attribute values\n""are in the  X,
,
Z order.\n""The 'body/orientation'attribute specifies the orientation of the e-puck.All\n""rotations are performed with respect to the pucktom point.The order of the\n""angles is  Z,
,
,
which means that the first number corresponds to the rotation\n""around the Z  axis,
the second around Y and the last around X.This reflects\n""the internal convention used in  ARGoS,
in which rotations are performed in\n""that order.Angles are expressed in degrees.When the robot is  unrotated,
it\n""is oriented along the X axis.\n""The 'controller/config'attribute is used to assign a controller to the\n""e-puck.The value of the attribute must be set to the id of a previously\n""defined controller.Controllers are defined in the< controllers > XML subtree.\n\n""OPTIONAL XML CONFIGURATION\n\n""None for the time being.\n"  ,
"Under development"   
)
argos::REGISTER_ENTITY ( CFloorEntity  ,
"floor"  ,
"Carlo Pinciroli "  [ilpincy @gmail.com],
"1.0"  ,
"It contains the properties of the arena floor."  ,
"The floor entity contains the properties of the arena floor. In the current\n""  implementation,
it contains only the color of the floor.The floor color is\n""detected by the robots'ground sensors.\n\n""REQUIRED XML CONFIGURATION\n\n""< arena...>\n""...\n""< floor id=\"floor\"\n"" source=\"SOURCE\" />\n"" ...\n"" </arena>\n\n""The 'id' attribute is necessary and must be unique among the entities. If two\n""entities share the same  id,
initialization aborts.\n""The 'source'attribute specifies where to get the color of the floor from.Its\n""  value,
here denoted as  SOURCE,
can assume the following values:\n\n""image The color is calculated from the passed image file\n""loop_functions The color is calculated calling the loop functions\n\n""When 'source'is set to 'image'  ,
as showed in the following  example,
you have\n""to specify the image path in the additional attribute 'path':\n\n""< arena...>\n""...\n""< floor id=\"floor\"\n"" source=\"image\"\n"" path=\"/path/to/imagefile.ext\" />\n"" ...\n"" </arena>\n\n""Many image formats are  available,
such as  PNG,
JPG  ,
BMP  ,
GIF and many more.\n""Refer to the FreeImage webpage for a complete list of supported image formats\n""(http://freeimage.sourceforge.net/features.html).\n\n""When 'source'is set to 'loop_functions'  ,
as showed in the following  example,
\n""an image is implicitly created to be used as texture for graphical\n""visualizations.The algorithm that creates the texture needs to convert from\n""meters(in the arena) to pixels(of the texture).You control how many pixels\n""per meter are used with the attribute 'pixels_per_meter'.  Clearly,
the higher\n""  value,
the higher the  quality,
but also the slower the algorithm and the bigger\n""the texture.The algorithm is called only once at init  time,
so the fact that\n""it is slow is not so important.  However,
the image size is limited by OpenGL.\n""Every implementation has its own  limit,
and you should check yours if any\n""texture-related problem arises.Now for the example:\n\n""< arena...>\n""...\n""< floor id=\"floor\"\n"" source=\"loop_functions\"\n"" pixels_per_meter=\"100\" />\n"" ...\n"" </arena>\n\n""OPTIONAL XML CONFIGURATION\n\n""None for the time being.\n"  ,
"Usable"   
)
argos::REGISTER_ENTITY ( CFootBotEntity  ,
"foot-bot"  ,
"Carlo Pinciroli "  [ilpincy @gmail.com],
"1.0"  ,
"The foot-bot  robot,
developed in the Swarmanoid project."  ,
"The foot-bot is a wheeled robot developed in the Swarmanoid Project. It is a\n""modular robot with a rich set of sensors and actuators. For more  information,
\n""refer to the dedicated web page\n""(http://www.swarmanoid.org/swarmanoid_hardware.php).\n\n""REQUIRED XML CONFIGURATION\n\n""< arena...>\n""...\n""< foot-bot id=\"fb0\">\n"" <body position=\"0.4,2.3,0.25\" orientation=\"45,0,0\" />\n"" <controller config=\"mycntrl\" />\n"" </foot-bot>\n"" ...\n"" </arena>\n\n""The 'id' attribute is necessary and must be unique among the entities. If two\n""entities share the same  id,
initialization aborts.\n""The 'body/position'attribute specifies the position of the bottom point of the\n""foot-bot in the arena.When the robot is untranslated and  unrotated,
the\n""bottom point is in the origin and it is defined as the middle point between\n""the two wheels on the XY plane and the lowest point of the robot on the Z\n""  axis,
that is the point where the wheels touch the floor.The attribute values\n""are in the  X,
,
Z order.\n""The 'body/orientation'attribute specifies the orientation of the foot-bot.All\n""rotations are performed with respect to the bottom point.The order of the\n""angles is  Z,
,
,
which means that the first number corresponds to the rotation\n""around the Z  axis,
the second around Y and the last around X.This reflects\n""the internal convention used in  ARGoS,
in which rotations are performed in\n""that order.Angles are expressed in degrees.When the robot is  unrotated,
it\n""is oriented along the X axis.\n""The 'controller/config'attribute is used to assign a controller to the\n""foot-bot.The value of the attribute must be set to the id of a previously\n""defined controller.Controllers are defined in the< controllers > XML subtree.\n\n""OPTIONAL XML CONFIGURATION\n\n""You can set the emission range of the range-and-bearing system.By  default,
a\n""message sent by a foot-bot can be received up to 3m.By using the 'rab_range'\n""  attribute,
you can change it  to,
i.  e.,
4m as follows:\n\n""< arena...>\n""...\n""< foot-bot id=\"fb0\" rab_range=\"4\">\n"" <body position=\"0.4,2.3,0.25\" orientation=\"45,0,0\" />\n"" <controller config=\"mycntrl\" />\n"" </foot-bot>\n"" ...\n"" </arena>\n\n""You can also change the aperture of the omnidirectional camera. The aperture is\n""set to 70 degrees by default. The tip of the omnidirectional camera is placed on\n""top of the robot   h=0.289,
and with an aperture of 70 degrees the range on the\n""ground is  r = h*tan(aperture)=0.289*tan(70)=0.794m. To change the aperture to 80\n""degrees,
use the 'omnidirectional_camera_aperture'as follows:\n\n""< arena...>\n""...\n""< foot-bot id=\"fb0\" omnidirectional_camera_aperture=\"80\">\n"" <body position=\"0.4,2.3,0.25\" orientation=\"45,0,0\" />\n"" <controller config=\"mycntrl\" />\n"" </foot-bot>\n"" ...\n"" </arena>\n\n"  ,
"Under development"   
)
argos::REGISTER_MEDIUM ( CLEDMedium  ,
"led"  ,
"Carlo Pinciroli "  [ilpincy @gmail.com],
"1.0"  ,
"Manages the LEDs."  ,
"This medium is required to manage the LED  entities,
thus allowing the\n""associated camera sensors to work properly.If you intend to use a camera\n""sensor that detects colored  blobs,
you must add this medium to the XML\n""configuration file.\n\n""REQUIRED XML CONFIGURATION\n\n""< led id=\"led\" />\n\n""OPTIONAL XML CONFIGURATION\n\n""None for the time being\n"  ,
"Under development"   
)
argos::REGISTER_MEDIUM ( CRABMedium  ,
"range_and_bearing"  ,
"Carlo Pinciroli "  [ilpincy @gmail.com],
"1.0"  ,
"It simulates the communication across range-and-bearing-equipped robots."  ,
"This medium is required to simulate communication across range-and-bearing-\n""equipped robots. You need to add it to the <media> section every time you add\n""a range-and-bearing-equipped entity whose controller has a range-and-bearing\n""device activated.\n\n""REQUIRED XML CONFIGURATION\n\n""<range_and_bearing id=\"rab\" />\n\n""OPTIONAL XML CONFIGURATION\n\n""None for the time being\n"  ,
"Under development"   
)
argos::REGISTER_PHYSICS_ENGINE ( CDynamics2DEngine  ,
"dynamics2d"  ,
"Carlo Pinciroli "  [ilpincy @gmail.com],
"1.0"  ,
"A 2D dynamics physics engine."  ,
"This physics engine is a 2D dynamics engine based on the Chipmunk library\n""(http://code.google.com/p/chipmunk-physics).\n\n""REQUIRED XML CONFIGURATION\n\n"" <physics_engines>\n"" ...\n"" <dynamics2d id=\"dyn2d\" />\n"" ...\n"" </physics_engines>\n\n""The 'id' attribute is necessary and must be unique among the physics engines.\n""It is used in the subsequent section <arena_physics> to assign entities to\n""physics engines. If two engines share the same  id,
initialization aborts.\n\n""OPTIONAL XML CONFIGURATION\n\n""The plane of the physics engine can be translated on the Z  axis,
to simulate\n""for example hovering  objects,
such as flying robots.To translate the plane\n""2m up the Z  axis,
use the 'elevation'attribute as follows:\n\n""< physics_engines >\n""...\n""< dynamics2d id=\"dyn2d\"\n"" elevation=\"2.0\" />\n"" ...\n"" </physics_engines>\n\n""When not  specified,
the elevation is  zero,
which means that the plane\n""corresponds to the XY plane.\n"  ,
"Under development"   
)
argos::REGISTER_QTOPENGL_ENTITY_OPERATION ( CQTOpenGLOperationDrawNormal  ,
CQTOpenGLOperationDrawLightNormal  ,
CLightEntity   
)
argos::REGISTER_QTOPENGL_ENTITY_OPERATION ( CQTOpenGLOperationDrawSelected  ,
CQTOpenGLOperationDrawLightSelected  ,
CLightEntity   
)
argos::REGISTER_QTOPENGL_ENTITY_OPERATION ( CQTOpenGLOperationDrawNormal  ,
CQTOpenGLOperationDrawCylinderNormal  ,
CCylinderEntity   
)
argos::REGISTER_QTOPENGL_ENTITY_OPERATION ( CQTOpenGLOperationDrawSelected  ,
CQTOpenGLOperationDrawCylinderSelected  ,
CCylinderEntity   
)
argos::REGISTER_QTOPENGL_ENTITY_OPERATION ( CQTOpenGLOperationDrawNormal  ,
CQTOpenGLOperationDrawBoxNormal  ,
CBoxEntity   
)
argos::REGISTER_QTOPENGL_ENTITY_OPERATION ( CQTOpenGLOperationDrawSelected  ,
CQTOpenGLOperationDrawBoxSelected  ,
CBoxEntity   
)
argos::REGISTER_QTOPENGL_ENTITY_OPERATION ( CQTOpenGLOperationDrawNormal  ,
CQTOpenGLOperationDrawEPuckNormal  ,
CEPuckEntity   
)
argos::REGISTER_QTOPENGL_ENTITY_OPERATION ( CQTOpenGLOperationDrawSelected  ,
CQTOpenGLOperationDrawEPuckSelected  ,
CEPuckEntity   
)
argos::REGISTER_QTOPENGL_ENTITY_OPERATION ( CQTOpenGLOperationDrawNormal  ,
CQTOpenGLOperationDrawFootBotNormal  ,
CFootBotEntity   
)
argos::REGISTER_QTOPENGL_ENTITY_OPERATION ( CQTOpenGLOperationDrawSelected  ,
CQTOpenGLOperationDrawFootBotSelected  ,
CFootBotEntity   
)
argos::REGISTER_SENSOR ( CFootBotTurretEncoderDefaultSensor  ,
"footbot_turret_encoder"  ,
"default"  ,
"Carlo Pinciroli "  [ilpincy @gmail.com],
"1.0"  ,
"The foot-bot turret encoder sensor."  ,
"This sensor accesses the foot-bot turret encoder. For a complete\n""description of its  usage,
refer to the ci_footbot_turret_encoder_sensor\n""file.\n\n""REQUIRED XML CONFIGURATION\n\n""< controllers >\n""...\n""< my_controller...>\n""...\n""< sensors >\n""...\n""< footbot_turret implementation=\"default\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""OPTIONAL XML CONFIGURATION\n\n""None for the time being.\n"  ,
"Usable"   
)
argos::REGISTER_SENSOR ( CFootBotProximityDefaultSensor  ,
"footbot_proximity"  ,
"default"  ,
"Carlo Pinciroli "  [ilpincy @gmail.com],
"1.0"  ,
"The foot-bot proximity sensor."  ,
"This sensor accesses the foot-bot proximity sensor. For a complete description\n""of its  usage,
refer to the ci_footbot_proximity_sensor.h interface.For the XML\n""  configuration,
refer to the default proximity sensor.\n"  ,
"Usable"   
)
argos::REGISTER_SENSOR ( CFootBotMotorGroundRotZOnlySensor  ,
"footbot_motor_ground"  ,
"rot_z_only"  ,
"Carlo Pinciroli "  [ilpincy @gmail.com],
"1.0"  ,
"The foot-bot motor ground sensor."  ,
"This sensor accesses the foot-bot motor ground sensor. For a complete description\n""of its  usage,
refer to the ci_footbot_motor_ground_sensor.h interface.For the XML\n""  configuration,
refer to the default ground sensor.\n"  ,
"Usable"   
)
argos::REGISTER_SENSOR ( CFootBotBaseGroundRotZOnlySensor  ,
"footbot_base_ground"  ,
"rot_z_only"  ,
"Carlo Pinciroli "  [ilpincy @gmail.com],
"1.0"  ,
"The foot-bot base ground sensor."  ,
"This sensor accesses the foot-bot base ground sensor. For a complete description\n""of its  usage,
refer to the ci_footbot_base_ground_sensor.h interface.For the XML\n""  configuration,
refer to the default ground sensor.\n"  ,
"Usable"   
)
argos::REGISTER_SENSOR ( CPositioningDefaultSensor  ,
"positioning"  ,
"default"  ,
"Carlo Pinciroli "  [ilpincy @gmail.com],
"1.0"  ,
"A generic positioning sensor."  ,
"This sensor returns the current position and orientation of a robot. This sensor\n""can be used with any  robot,
since it accesses only the body component.In\n""  controllers,
you must include the ci_positioning_sensor.h header.\n\n""REQUIRED XML CONFIGURATION\n\n""< controllers >\n""...\n""< my_controller...>\n""...\n""< sensors >\n""...\n""< positioning implementation=\"default\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""OPTIONAL XML CONFIGURATION\n\n""It is possible to add uniform noise to the  sensor,
thus matching the\n""characteristics of a real robot better.You can add noise through the\n""attributes 'pos_noise_range'  ,
'angle_noise_range'  ,
and 'axis_noise_range'.\n""Attribute 'pos_noise_range'regulates the noise range on the position returned\n""by the sensor.Attribute 'angle_noise_range'sets the noise range on the angle\n""(values expressed in degrees).Attribute 'axis_noise_range'sets the noise for\n""the rotation axis.Angle and axis are used to calculate a  quaternion,
which is\n""the actual returned value for rotation.\n\n""< controllers >\n""...\n""< my_controller...>\n""...\n""< sensors >\n""...\n""< positioning implementation=\"default\"\n"" pos_noise_range=\"-0.1:0.2\"\n"" angle_noise_range=\"-10.5:13.7\"\n"" axis_noise_range=\"-0.3:0.4\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""OPTIONAL XML CONFIGURATION\n\n""None.\n"  ,
"Usable"   
)
argos::REGISTER_SENSOR ( CDifferentialSteeringDefaultSensor  ,
"differential_steering"  ,
"default"  ,
"Carlo Pinciroli "  [ilpincy @gmail.com],
"1.0"  ,
"A generic differential steering sensor."  ,
"This sensor returns the current position and orientation of a robot. This sensor\n""can be used with any  robot,
since it accesses only the body component.In\n""  controllers,
you must include the ci_differential_steering_sensor.h header.\n\n""REQUIRED XML CONFIGURATION\n\n""< controllers >\n""...\n""< my_controller...>\n""...\n""< sensors >\n""...\n""< differential_steering implementation=\"default\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""OPTIONAL XML CONFIGURATION\n\n""It is possible to add uniform noise to the  sensor,
thus matching the\n""characteristics of a real robot better.You can add noise through the\n""attributes 'vel_noise_range'and 'dist_noise_range'.\n""Attribute 'vel_noise_range'regulates the noise range on the velocity returned\n""by the sensor.Attribute 'dist_noise_range'sets the noise range on the\n""distance covered by the wheels.\n""value for rotation.\n\n""< controllers >\n""...\n""< my_controller...>\n""...\n""< sensors >\n""...\n""< differential_steering implementation=\"default\"\n"" vel_noise_range=\"-0.1:0.2\"\n"" dist_noise_range=\"-10.5:13.7\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""OPTIONAL XML CONFIGURATION\n\n""None.\n"  ,
"Usable"   
)
argos::REGISTER_SENSOR ( CGroundRotZOnlySensor  ,
"ground"  ,
"rot_z_only"  ,
"Carlo Pinciroli "  [ilpincy @gmail.com],
"1.0"  ,
"A generic ground sensor (optimized for 2D)."  ,
"This sensor accesses a set of ground sensors. The sensors all return a value\n""between 0 and  1,
where 0 means black and 1 means white.Depending on the type\n""of ground  sensor,
readings can either take 0 or 1 as value(bw sensors) or a\n""value in between(grayscale sensors).In  controllers,
you must include the\n""ci_ground_sensor.h header.\n\n""REQUIRED XML CONFIGURATION\n\n""< controllers >\n""...\n""< my_controller...>\n""...\n""< sensors >\n""...\n""< ground implementation=\"rot_z_only\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""OPTIONAL XML CONFIGURATION\n\n""It is possible to add uniform noise to the  sensors,
thus matching the\n""characteristics of a real robot better.This can be done with the attribute\n""\"noise_level\"  ,
whose allowed range is inand is added to the calculated\n""reading.The final sensor reading is always normalized in therange.\n\n""< controllers >\n""...\n""< my_controller...>\n""...\n""< sensors >\n""...\n""< ground implementation=\"rot_z_only\"\n"" noise_level=\"0.1\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""OPTIONAL XML CONFIGURATION\n\n""None.\n"  [-1, 1][0-1],
"Usable"   
)
argos::REGISTER_SENSOR ( CProximityDefaultSensor  ,
"proximity"  ,
"default"  ,
"Carlo Pinciroli "  [ilpincy @gmail.com],
"1.0"  ,
"A generic proximity sensor."  ,
"This sensor accesses a set of proximity sensors. The sensors all return a value\n""between 0 and  1,
where 0 means nothing within range and 1 means an external\n""object is touching the sensor.Values between 0 and 1 depend on the distance of\n""the occluding  object,
and are calculated as  value = exp(-distance). In\n""controllers,
you must include the ci_proximity_sensor.h header.\n\n""REQUIRED XML CONFIGURATION\n\n""< controllers >\n""...\n""< my_controller...>\n""...\n""< sensors >\n""...\n""< proximity implementation=\"default\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""OPTIONAL XML CONFIGURATION\n\n""It is possible to draw the rays shot by the proximity sensor in the OpenGL\n""visualization. This can be useful for sensor debugging but also to understand\n""what's wrong in your controller. In  OpenGL,
the rays are drawn in cyan when\n""they are not obstructed and in purple when they are.In case a ray is\n""  obstructed,
a black dot is drawn where the intersection occurred.\n""To turn this functionality  on,
add the attribute\"show_rays\" as in this\n""example:\n\n"" <controllers>\n"" ...\n"" <my_controller ...>\n"" ...\n"" <sensors>\n"" ...\n"" <proximity implementation=\"default\"\n"" show_rays=\"true\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""It is possible to add uniform noise to the  sensors,
thus matching the\n""characteristics of a real robot better.This can be done with the attribute\n""\"noise_level\"  ,
whose allowed range is inand is added to the calculated\n""reading.The final sensor reading is always normalized in therange.\n\n""< controllers >\n""...\n""< my_controller...>\n""...\n""< sensors >\n""...\n""< proximity implementation=\"default\"\n"" noise_level=\"0.1\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n"  [-1, 1][0-1],
"Usable"   
)
argos::REGISTER_SENSOR ( CLightDefaultSensor  ,
"light"  ,
"default"  ,
"Carlo Pinciroli "  [ilpincy @gmail.com],
"1.0"  ,
"A generic light sensor."  ,
"This sensor accesses a set of light sensors. The sensors all return a value\n""between 0 and  1,
where 0 means nothing within range and 1 means the perceived\n""light saturates the sensor.Values between 0 and 1 depend on the distance of\n""the perceived light.Each reading R is calculated with  R = (I/x)^2,
where x is the\n""distance between a sensor and the  light,
and I is the reference intensity of the\n""perceived light.The reference intensity corresponds to the minimum distance at\n""which the light saturates a sensor.The reference intensity depends on the\n""individual  light,
and it is set with the\"intensity\" attribute of the light\n""entity. In case multiple lights are present in the  environment,
each sensor\n""reading is calculated as the sum of the individual readings due to each light.\n""In other  words,
light wave interference is not taken into account.In\n""  controllers,
you must include the ci_light_sensor.h header.\n\n""REQUIRED XML CONFIGURATION\n\n""< controllers >\n""...\n""< my_controller...>\n""...\n""< sensors >\n""...\n""< light implementation=\"default\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""OPTIONAL XML CONFIGURATION\n\n""It is possible to draw the rays shot by the light sensor in the OpenGL\n""visualization. This can be useful for sensor debugging but also to understand\n""what's wrong in your controller. In  OpenGL,
the rays are drawn in cyan when\n""they are not obstructed and in purple when they are.In case a ray is\n""  obstructed,
a black dot is drawn where the intersection occurred.\n""To turn this functionality  on,
add the attribute\"show_rays\" as in this\n""example:\n\n"" <controllers>\n"" ...\n"" <my_controller ...>\n"" ...\n"" <sensors>\n"" ...\n"" <light implementation=\"default\"\n"" show_rays=\"true\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""It is possible to add uniform noise to the  sensors,
thus matching the\n""characteristics of a real robot better.This can be done with the attribute\n""\"noise_level\"  ,
whose allowed range is inand is added to the calculated\n""reading.The final sensor reading is always normalized in therange.\n\n""< controllers >\n""...\n""< my_controller...>\n""...\n""< sensors >\n""...\n""< light implementation=\"default\"\n"" noise_level=\"0.1\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""OPTIONAL XML CONFIGURATION\n\n""None.\n"  [-1, 1][0-1],
"Usable"   
)
argos::REGISTER_SENSOR ( CRangeAndBearingMediumSensor  ,
"range_and_bearing"  ,
"medium"  ,
"Carlo Pinciroli "  [ilpincy @gmail.com],
"1.0"  ,
"The range-and-bearing sensor."  ,
"This sensor allows robots to perform situated  communication,
i.  e.,
a form of\n""wireless communication whereby the receiver also knows the location of the\n""sender with respect to its own frame of reference.\n""This implementation of the range-and-bearing sensor is associated to the\n""range-and-bearing medium.To be able to use this  sensor,
you must add a\n""range-and-bearing medium to the< media > section.\n""This sensor allows a robot to receive messages.To send  messages,
you need the\n""range-and-bearing actuator.\n""To use this  sensor,
in controllers you must include the\n""ci_range_and_bearing_sensor.h header.\n\n""REQUIRED XML CONFIGURATION\n\n""< controllers >\n""...\n""< my_controller...>\n""...\n""< sensors >\n""...\n""< range_and_bearing implementation=\"medium\"\n"" medium=\"rab\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""The 'medium' attribute must be set to the id of the range-and-bearing medium\n""declared in the <media> section.\n\n""OPTIONAL XML CONFIGURATION\n\n""It is possible to draw the rays shot by the range-and-bearing sensor in the\n""OpenGL visualization. This can be useful for sensor debugging but also to\n""understand what's wrong in your controller. In  OpenGL,
the rays are drawn in\n""cyan when two robots are communicating.\n""To turn this functionality  on,
add the attribute\"show_rays\" as in this\n""example:\n\n"" <controllers>\n"" ...\n"" <my_controller ...>\n"" ...\n"" <sensors>\n"" ...\n"" <range_and_bearing implementation=\"medium\"\n"" medium=\"rab\"\n"" show_rays=\"true\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""It is possible to add noise to the  readings,
thus matching the characteristics\n""of a real robot better.Noise is implemented as a random vector added to the\n""vector joining two communicating robots.For the random  vector,
the inclination\n""and azimuth are chosen uniformly in the  rangeand[0:PI][0:2PI],
respectively  ,
\n""and the length is drawn from a Gaussian distribution.The standard deviation of\n""the Gaussian distribution is expressed in meters and set by the user through\n""the attribute 'noise_std_dev'as shown in this example:\n\n""< controllers >\n""...\n""< my_controller...>\n""...\n""< sensors >\n""...\n""< range_and_bearing implementation=\"medium\"\n"" medium=\"rab\"\n"" noise_std_dev=\"0.1\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n"  ,
"Usable"   
)
argos::REGISTER_SENSOR ( CColoredBlobOmnidirectionalCameraRotZOnlySensor  ,
"colored_blob_omnidirectional_camera"  ,
"rot_z_only"  ,
"Carlo Pinciroli "  [ilpincy @gmail.com],
"1.0"  ,
"A generic omnidirectional camera sensor to detect colored blobs."  ,
"TODO\n\n"  ,
"Usable"   
)
argos::REGISTER_SENSOR ( CFootBotLightRotZOnlySensor  ,
"footbot_light"  ,
"rot_z_only"  ,
"Carlo Pinciroli "  [ilpincy @gmail.com],
"1.0"  ,
"The foot-bot light sensor (optimized for 2D)."  ,
"This sensor accesses a set of light sensors. The sensors all return a value\n""between 0 and  1,
where 0 means nothing within range and 1 means the perceived\n""light saturates the sensor.Values between 0 and 1 depend on the distance of\n""the perceived light.Each reading R is calculated with  R = (I/x)^2,
where x is the\n""distance between a sensor and the  light,
and I is the reference intensity of the\n""perceived light.The reference intensity corresponds to the minimum distance at\n""which the light saturates a sensor.The reference intensity depends on the\n""individual  light,
and it is set with the\"intensity\" attribute of the light\n""entity. In case multiple lights are present in the  environment,
each sensor\n""reading is calculated as the sum of the individual readings due to each light.\n""In other  words,
light wave interference is not taken into account.In\n""  controllers,
you must include the ci_light_sensor.h header.\n\n""REQUIRED XML CONFIGURATION\n\n""< controllers >\n""...\n""< my_controller...>\n""...\n""< sensors >\n""...\n""< light implementation=\"rot_z_only\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""OPTIONAL XML CONFIGURATION\n\n""It is possible to draw the rays shot by the light sensor in the OpenGL\n""visualization. This can be useful for sensor debugging but also to understand\n""what's wrong in your controller. In  OpenGL,
the rays are drawn in cyan when\n""they are not obstructed and in purple when they are.In case a ray is\n""  obstructed,
a black dot is drawn where the intersection occurred.\n""To turn this functionality  on,
add the attribute\"show_rays\" as in this\n""example:\n\n"" <controllers>\n"" ...\n"" <my_controller ...>\n"" ...\n"" <sensors>\n"" ...\n"" <light implementation=\"rot_z_only\"\n"" show_rays=\"true\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""It is possible to add uniform noise to the  sensors,
thus matching the\n""characteristics of a real robot better.This can be done with the attribute\n""\"noise_level\"  ,
whose allowed range is inand is added to the calculated\n""reading.The final sensor reading is always normalized in therange.\n\n""< controllers >\n""...\n""< my_controller...>\n""...\n""< sensors >\n""...\n""< light implementation=\"rot_z_only\"\n"" noise_level=\"0.1\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""OPTIONAL XML CONFIGURATION\n\n""None.\n"  [-1, 1][0-1],
"Usable"   
)
argos::REGISTER_SENSOR ( CFootBotDistanceScannerRotZOnlySensor  ,
"footbot_distance_scanner"  ,
"rot_z_only"  ,
"Carlo Pinciroli "  [ilpincy @gmail.com],
"1.0"  ,
"The foot-bot distance scanner sensor (optimized for 2D)."  ,
"This sensor accesses the foot-bot distance scanner sensor. For a complete\n""description of its  usage,
refer to the common interface.\n""In this  implementation,
the readings are calculated under the assumption that\n""the foot-bot is always parallel to the XY  plane,
i.  e.,
it rotates only around\n""the Z axis.This implementation is faster than a 3D one and should be used\n""only when the assumption about the foot-bot rotation holds.\n\n""REQUIRED XML CONFIGURATION\n\n""< controllers >\n""...\n""< my_controller...>\n""...\n""< sensors >\n""...\n""< footbot_distance_scanner implementation=\"rot_z_only\" />\n"" ...\n"" </sensors>\n"" ...\n"" </my_controller>\n"" ...\n"" </controllers>\n\n""OPTIONAL XML CONFIGURATION\n\n""It is possible to draw the rays shot by the distance scanner in the OpenGL\n""visualization. This can be useful for sensor debugging but also to understand\n""what's wrong in your controller. In  OpenGL,
the rays are drawn in cyan when\n""they are not obstructed and in purple when they are.In case a ray is\n""  obstructed,
a black dot is drawn where the intersection occurred.\n""To turn this functionality  on,
add the attribute '  show_rays = \"true\"' in the\n""XML as in this example:\n\n""  <controllers>\n""    ...\n""    <my_controller ...>\n""      ...\n""      <sensors>\n""        ...\n""        <footbot_distance_scanner implementation=\"rot_z_only\"\n""                                  show_rays=\"true\" />\n""        ...\n""      </sensors>\n""      ...\n""    </my_controller>\n""    ...\n""  </controllers>\n",
"Usable"   
)
argos::REGISTER_SPACE_OPERATION ( CSpaceOperationAddEntity  ,
CSpaceOperationAddCFloorEntity  ,
CFloorEntity   
)
argos::REGISTER_STANDARD_DYNAMICS2D_OPERATIONS_ON_ENTITY ( CCylinderEntity  ,
CDynamics2DCylinderModel   
)
argos::REGISTER_STANDARD_DYNAMICS2D_OPERATIONS_ON_ENTITY ( CEPuckEntity  ,
CDynamics2DEPuckModel   
)
argos::REGISTER_STANDARD_DYNAMICS2D_OPERATIONS_ON_ENTITY ( CBoxEntity  ,
CDynamics2DBoxModel   
)
argos::REGISTER_STANDARD_DYNAMICS2D_OPERATIONS_ON_ENTITY ( CFootBotEntity  ,
CDynamics2DFootBotModel   
)
argos::REGISTER_STANDARD_SPACE_OPERATIONS_ON_ENTITY ( COmnidirectionalCameraEquippedEntity  )
argos::REGISTER_STANDARD_SPACE_OPERATIONS_ON_ENTITY ( CFootBotDistanceScannerEquippedEntity  )
argos::REGISTER_STANDARD_SPACE_OPERATIONS_ON_ENTITY ( CLightSensorEquippedEntity  )
argos::REGISTER_STANDARD_SPACE_OPERATIONS_ON_ENTITY ( CProximitySensorEquippedEntity  )
argos::REGISTER_STANDARD_SPACE_OPERATIONS_ON_ENTITY ( CGroundSensorEquippedEntity  )
argos::REGISTER_VISUALIZATION ( CQTOpenGLRender  ,
"qt-opengl"  ,
"Carlo Pinciroli "  [ilpincy @gmail.com],
"1.0"  ,
"An interactive graphical renderer based on QT and OpenGL."  ,
"The QT-OpenGL renderer is a graphical renderer based on QT >= 4.5 and OpenGL.\n""It allows the user to watch and modify the simulation as it's running in an\n""intuitive way.\n\n""REQUIRED XML CONFIGURATION\n\n"" <visualization>\n"" <qtopengl_render />\n"" </visualization>\n\n""OPTIONAL XML CONFIGURATION\n\n""It is possible to set some camera parameters. There are 10 available\n""cameras to use. You can switch from one to the other by clicking on the\n""graphical view (to give it focus) and then pressing the keys 0-9.\n""To configure position and orientation of specific  cameras,
say cameras 0 to  3,
\n""you have to include the following XML code:\n\n""< visualization >\n""< qtopengl_render >\n""< camera >\n""< placement idx=\"0\" position=\"2,2,2\" look_at=\"1,1,1\" />\n"" <placement idx=\"1\" position=\"1,0,7\" look_at=\"1,0,0\" />\n"" <placement idx=\"2\" position=\"3,3,4\" look_at=\"1,6,0\" />\n"" <placement idx=\"3\" position=\"2,3,2\" look_at=\"0,1,0\" />\n"" </camera>\n"" </qtopengl_render>\n"" </visualization>\n\n""The 'idx' attribute specifies the camera index (and the key to press to switch\n""to that camera).\n""The 'position' attribute contains the position of the camera in the arena.\n""The 'look_at' attribute sets the point the camera is looking at.\n""It also possible to set some optical parameters of real  cameras,
namely the\n""focal length and the length of the frame diagonal.For example:\n\n""< visualization >\n""< qtopengl_render >\n""< camera >\n""...\n""< placement idx=\"4\"\n"" position=\"4,1,4\"\n"" look_at=\"2,1,0\"\n"" lens_focal_length=\"50\"\n"" frame_diagonal=\"40\" />\n"" ...\n"" </camera>\n"" </qtopengl_render>\n"" </visualization>\n\n""The 'lens_focal_length' attribute controls the focal length of the lens of the\n""simulated camera. The value is in millimeters and it  defaults,
if not set in\n""  XML,
to 20mm.\n""The 'frame_diagonal'attribute specifies the length of the frame diagonal of\n""the image film.The value is in millimeters and it  defaults,
if not set in\n""  XML,
to 35mm.\n""This visualization also allows for user customization.In a similar fashion to\n""the loop  functions,
you can set a plug-in that derives from the\n""CQTOpenGLUserFunctions class.To load it in the  system,
follow this example:\n\n""< visualization >\n""< qtopengl_render >\n""< user_functions library=\"/path/to/libmyuserfunctions.so\"\n"" label=\"my_user_functions\" />\n"" </qtopengl_render>\n"" </visualization>\n\n""The 'library' attribute points to the library where the user functions are\n""stored. This library can be the same as the loop  functions,
or a new one.\n""There is no limitation to where the code is to be found.\n""The 'label'attribute identifies the user function class to use.In this  way,
\n""in a single library you can have multiple user function  implementations,
if\n""you wish.\n""You can also grab frames and store them into image  files,
for example to create\n""videos in a fast way.To do  it,
you just need to press the red capture button\n""and frame grabbing will be on.By  default,
the frames are named\n""'frame_NNNNN.png'and are stored in the current  directory,
i.e.the directory\n""where you run the 'argos'command.If you want to override this  behavior,
you\n""can add the optional 'frame_grabbing'section as follows:\n\n""< visualization >\n""< qtopengl_render >\n""< frame_grabbing directory=\"frames\"\n"" base_name=\"myframe_\"\n"" format=\"png\"\n"" quality=\"100\" />\n"" </qtopengl_render>\n"" </visualization>\n\n""All the attributes in this section are optional. If you don't specify one of\n""  them,
the default is taken.\n""The 'directory'attribute stores the directory where the frames are saved.If\n""the directory does not  exist,
a fatal error occurs.The directory must exist\n""and be writable.Both absolute and relative paths are allowed.The default\n""value is '.'\n""The 'base_name'attribute is the string to prepend to the file name.After this\n""  string,
the frame number(padded to 5 digits) is added.The default value is\n""'frame_'  ,
so a typical resulting name is 'frame_00165'.\n""The 'format'attribute specifies the format.The default value is 'png'but you\n""can put any format supported by Qt >=4.5.Refer to the Qt documentation for the\n""complete list of supported formats.\n""The 'quality'attribute dictates the quality of the image.Its value is in the\n""rangewhere 0 means maximum compression and minimum  quality[0:100],
and 100\n""means maximum quality and no compression at all.The default value is '-1'  ,
\n""which means to use Qt's default quality.For  videos,
it's best to use 100 to\n""avoid artifacts due to compression.For a normal  screenshot,
the default is the\n""safest choice.\n"  ,
"Usable"   
)
void argos::RemoveConstraintBetweenGripperAndGrippable ( cpSpace *  pt_space,
void *  p_obj,
void *  p_data 
)

Definition at line 212 of file dynamics2d_gripping.cpp.

void argos::Replace ( std::string &  str_buffer,
const std::string &  str_original,
const std::string &  str_new 
)

Searches into str_buffer for occurrences of str_original and substitutes them with str_new.

Parameters:
str_bufferthe string to modify.
str_originalthe string to search for.
str_newthe substitute string.

Definition at line 79 of file string_utilities.cpp.

std::ostream& argos::reset ( std::ostream &  c_os) [inline]

Resets the text to the default settings.

The default settings are white text on black background.

Definition at line 128 of file argos_colored_text.h.

SInt32 argos::Round ( Real  f_value) [inline]

Rounds the passed floating-point value to the closest integer.

If the passed value is >0, Floor() is called. Otherwise, Ceil() is called.

Returns:
the closest integer.

Definition at line 160 of file general.h.

SInt32 argos::RoundClosestToZero ( Real  f_value) [inline]

Rounds the passed floating-point value to the integer closest to zero.

If the passed value is >0, Floor() is called. Otherwise, Ceil() is called.

Returns:
the integer closest to zero.

Definition at line 170 of file general.h.

template<typename T >
void argos::SetNodeAttribute ( TConfigurationNode &  t_node,
const std::string &  str_attribute,
const T &  t_value 
)

Sets the value of the wanted node's attribute.

If the attribute does not exist, it is created.

Parameters:
t_nodethe node
str_attributethe name of the wanted attribute
t_valuethe value to set

Definition at line 432 of file argos_configuration.h.

void argos::SetNodeAttribute ( TConfigurationNode &  t_node,
const std::string &  str_attribute,
const bool  b_value 
) [inline]

Sets the value of the wanted node's attribute.

This function is an overloaded version of the templetized SetNodeAttribute() for boolean values.

Parameters:
t_nodethe node
str_attributethe name of the wanted attribute
b_valuethe value to set
See also:
SetNodeAttribute()

Definition at line 449 of file argos_configuration.h.

void argos::SetNodeAttribute ( TConfigurationNode &  t_node,
const std::string &  str_attribute,
const SInt8  n_value 
) [inline]

Sets the value of the wanted node's attribute.

This function is an overloaded version of the templetized SetNodeAttribute() for SInt8 values.

Parameters:
t_nodethe node
str_attributethe name of the wanted attribute
n_valuethe value to set
See also:
SetNodeAttribute()

Definition at line 471 of file argos_configuration.h.

void argos::SetNodeAttribute ( TConfigurationNode &  t_node,
const std::string &  str_attribute,
const UInt8  un_value 
) [inline]

Sets the value of the wanted node's attribute.

This function is an overloaded version of the templetized SetNodeAttribute() for UInt8 values.

Parameters:
t_nodethe node
str_attributethe name of the wanted attribute
un_valuethe value to set
See also:
SetNodeAttribute()

Definition at line 488 of file argos_configuration.h.

template<typename T >
SInt32 argos::Sign ( const T &  t_v)

Returns the sign of the value of the passed argument.

Returns:
-1 if the value is negative, +1 if it is positive, or 0 if the value is 0.

Definition at line 113 of file general.h.

Real argos::Sin ( const CRadians &  c_radians) [inline]

Computes the sine of the passed value in radians.

Parameters:
c_radiansthe angle in CRadians
Returns:
the sine of the passed value

Definition at line 553 of file angles.h.

template<typename T >
T argos::Square ( const T &  t_v)

Returns the square of the value of the passed argument.

Returns:
the square of the value of the passed argument.

Definition at line 126 of file general.h.

Real argos::SquareDistance ( const CVector2 &  c_v1,
const CVector2 &  c_v2 
) [inline]

Computes the square distance between the passed vectors.

Parameters:
c_v1The first vector
c_v2The second vector
Returns:
The square distance between the passed vectors

Definition at line 399 of file vector2.h.

Real argos::SquareDistance ( const CVector3 &  c_v1,
const CVector3 &  c_v2 
) [inline]

Computes the square distance between the passed vectors.

Parameters:
c_v1The first vector
c_v2The second vector
Returns:
The square distance between the passed vectors

Definition at line 674 of file vector3.h.

std::string argos::StringToLowerCase ( const std::string &  str_string)

Converts a string to lower case.

Parameters:
str_stringthe string to convert.
Returns:
the lower case string.

Definition at line 62 of file string_utilities.cpp.

std::string argos::StringToUpperCase ( const std::string &  str_string)

Converts a string to upper case.

Parameters:
str_stringthe string to convert.
Returns:
the upper case string.

Definition at line 45 of file string_utilities.cpp.

Real argos::Tan ( const CRadians &  c_radians) [inline]

Computes the tangent of the passed value in radians.

Parameters:
c_radiansthe angle in CRadians
Returns:
the tangent of the passed value

Definition at line 571 of file angles.h.

CDegrees argos::ToDegrees ( const CRadians &  c_radians) [inline]

Converts CRadians to CDegrees.

Converts this object to CDegrees.

Parameters:
c_radiansthe object to convert
Returns:
the converted CDegrees object

Definition at line 495 of file angles.h.

void argos::Tokenize ( const std::string &  str_string,
std::vector< std::string > &  vec_tokens,
const std::string &  str_delimiters = " " 
)

Tokenizes the given string according to the wanted delimiters (by default just a " ").

Parameters:
str_stringthe string to tokenize.
vec_tokensthe vector to fill with tokens.
str_delimitersthe delimiters to use.

Definition at line 16 of file string_utilities.cpp.

CRadians argos::ToRadians ( const CDegrees &  c_degrees) [inline]

Converts CDegrees to CRadians.

Converts this object to CRadians.

Parameters:
c_degreesthe object to convert
Returns:
the converted CRadians object

Definition at line 504 of file angles.h.

template<typename T >
std::string argos::ToString ( const T &  t_value)

Converts the given parameter to a std::string.

Example of use:

 UInt32 unToBeConverted(22);
 std::string strConverted = ToString(unToBeConverted);
 

Internally uses an std::ostringstream. If you want to use it with a custom type, you must define its std::ostream& operator<<(std::ostream&, type).

Template Parameters:
Tthe type of the parameter to convert.
Parameters:
t_valuethe parameter to convert.
Returns:
the std::string.

Definition at line 36 of file string_utilities.h.


Variable Documentation

const GLfloat argos::EMISSION = { 0.0f, 0.0f, 0.0f, 1.0f }

Definition at line 23 of file qtopengl_box.cpp.

Definition at line 159 of file argos_log.h.

Definition at line 160 of file argos_log.h.

const GLfloat argos::MOVABLE_COLOR = { 1.0f, 0.0f, 0.0f, 1.0f }

Definition at line 19 of file qtopengl_box.cpp.

const GLfloat argos::NONMOVABLE_COLOR = { 0.7f, 0.7f, 0.7f, 1.0f }

Definition at line 20 of file qtopengl_box.cpp.

const GLfloat argos::SHININESS = { 0.0f }

Definition at line 22 of file qtopengl_box.cpp.

const GLfloat argos::SPECULAR = { 0.0f, 0.0f, 0.0f, 1.0f }

Definition at line 21 of file qtopengl_box.cpp.