
User Manual

ASEBA for ARGoS

Author: Manuele Brambilla

Stéphane Magnenat
Carlo Pinciroli

Version 1.0

Refers to:
revision 437 of ASEBA studio

revision 2/3/11 of ARGoS2

Document Proposed on Jan 2009
Last Modified on Apr 2012

Contents

1 Introduction 1

2 The E-Puck 2

3 Tutorial 7

4 ASEBA studio 14

5 Scripting Language 17

i

Credits

ASEBA is the work of Stéphane Magnenat (http://people.epfl.ch/stephane.
magnenat), Philippe Retornaz (http://people.epfl.ch/philippe.retornaz)
and Francesco Mondada (http://people.epfl.ch/francesco.mondada) from
EPFL (Ecole Polytechnique Fédérale de Lausanne - http://www.epfl.ch/).
The E-Puck project has been started at the Ecole Polytechnique Fédérale de
Lausanne as a collaboration between the Autonomous Systems Lab (http://
asl.epfl.ch/), the Swarm-Intelligent Systems group (http://swis.epfl.
ch/) and the Laboratory of Intelligent System (http://lis.epfl.ch/).
The ARGoS simulator has been developed at IRIDIA (Institut de Recherches
Interdisciplinaires et de Développements en Intelligence Artificielle - http:
//iridia.ulb.ac.be).
This manual is a modified version of the original ASEBA manual, written by
Stéphane Magnenat.
Both the latest version of the original software and the original manual can
be found at http://mobots.epfl.ch/aseba.html. Note however that the
manual refers only to ASEBA and not to the integration between ASEBA
and ARGoS.

ii

http://people.epfl.ch/stephane.magnenat
http://people.epfl.ch/stephane.magnenat
http://people.epfl.ch/philippe.retornaz
http://people.epfl.ch/francesco.mondada
http://www.epfl.ch/
http://asl.epfl.ch/
http://asl.epfl.ch/
http://swis.epfl.ch/
http://swis.epfl.ch/
http://lis.epfl.ch/
http://iridia.ulb.ac.be
http://iridia.ulb.ac.be
http://mobots.epfl.ch/aseba.html

Chapter 1

Introduction

A robot is a elettromechanical machine that can interact with the world
through sensors (e.g.: cameras and proximity sensors) and actuators (e.g.:
wheels and arms). An autonomous robot is a particular kind of robot that
can perform desired tasks without continuous human guidance. But how is
this possible? What is behind the behavior of an autonomous robot? It is
the controller that gives a brain to a robot. It dictates the conduct of the
robot and its reactions to external stimuli. A controller is a piece of software
that, executed by the hardware of the robot, gives it the ability to accomplish
tasks.

The goal of this manual is to give you a first look into the autonomous
robot world. You will see how to write a robot controller using ASEBA [4] and
ARGoS [5]. The first is an integrated development environment for mobile
robot controllers, while the second is a simulator for robotic environment.
At the end of this manual you will be able to program a controller for a
simple mobile robot, called E-Puck [1], through ASEBA and test it in the
ARGoS simulator. This manual is intended also to be a guide to ASEBA
studio and to its scripting language. The present guide includes information
useful for beginner users up to experienced robot programmers who want to
start learning ASEBA or need a reference for the scripting language.

The structure of this manual is the following: it starts with a panoramic
over the E-Puck (Section 2) and its characteristics, followed by a small tuto-
rial (Section 3) and an overview of ASEBA studio (Section 4). Finally there
is a reference guide to the ASEBA scripting language with examples (Section
5).

1

Chapter 2

The E-Puck

The E-Puck is a mobile robot. Its target audience is high school and univer-
sity students. The main features of the E-Puck are:

• Good structure - The robot has a clean mechanical structure, simple
to understand. The electronics, processor structure and software are a
good example of a clean modern system.

• Flexibility - The robot can cover a large spectrum of educational activ-
ities and therefore has a large potential in its sensors, processing power
and extensions. Potential educational fields are, for instance, mobile
robotics, real-time programming, embedded systems, signal process-
ing, image or sound feature extraction, human-machine interaction or
collective systems.

• User friendly - The robot is small and easy to use on a table next to
a computer. It needs minimal wiring and it has a long battery time.

• Good robustness and simple maintenance - The robot is able to
resist to students being simple, robust and cheap to repair.

• Cheap - The robot is cheap compared to other mobile robots.

• Extensibility - The E-Puck robot can be extended through a bus that
includes most of the signals of the processor and some signals of the
sensors and motors.

• Open hardware - All related documents and files (mechanical draw-
ings, schematics, production files, source code) are distributed under
an open hardware license.

2

Figure 2.1: Some sensors and actuators of the E-Puck robot: the proximity
sensors, the camera and the two wheels.

Technical Characteristics [2]

Diameter 70 mm
Weight 150 g
Battery Li Ion removable 5Wh
Autonomy 2-3 hours
Motors two stepper motors 20 steps/rev
Gear type included in motor block
Gear reduction 50:1
Resolution on wheels displ. 0.1 mm
Mechanical structure plastic body supporting PCBs, battery

and motors
Surface of work very flat
Processor dsPIC 30F6014 @ 60MHz
processor type 16 bit micro-controller with DSP core
RAM 8k
FLASH 144 k
Sensors 8 IR proximity and light sensors

3D accelerometer
3 microphones

3

640 x 480 color camera
battery voltage

Actuators 2 stepper motors
8 LEDs around the body, controlled
independently in intensity
one speaker
one body light

Communication RS232
Bluetooth
Infra-Red remote control

Programming env. GCC integrated in Mplab

Comments on the structure:
The E-Puck is based on a plastic body supporting the motors, the battery
and the electronics. This plastic body is fully transparent allowing to see all
elements of the robot.

The battery is placed on the bottom and can be easily extracted and recharged
separately. A battery protection is implemented to avoid battery damage.
Power on and low battery indicators help in understanding the status of the
battery. The processor can read the battery level.

The two wheels are actuated by stepper motors with 20 steps/revolution
through a reduction gear with a ratio of 50:1. The third contact point with
the ground is made by the plastic body. The robot is designed to run on flat
surfaces such as a table. Being well protected against dust, the robot should
be able to run on a standard room ground.

The processor on board is a dsPIC 30F6014 running at 60 MHz (internal, cor-
responding to 15 MIPS). This processor has both a standard micro-controller
structure and a DSP (digital signal processing) computation unit. Its 16 bits
core is much more advanced than a PIC core (dsPIC has 16 registers and
many DSP and C oriented instructions) and is designed to support C pro-
gramming. The DSP core brings very high performances in signal processing
applications.

The E-Puck is equipped with 8 infrared (IR) proximity sensors with a detec-
tion distance of some centimeters (3-4). Others sensors are a 3D accelerom-
eter, 3 omni-directional microphones and a color camera with a resolution of
640x480 pixels. The processor is very well suited for the processing of the IR
sensors, of the accelerometer data and the sound.

4

Range: 130 cm

Bearing: -135°

Figure 2.2: An example of measuring distances and angles with the range
and bearing board.

As actuators, in addition to the wheels, the E-Puck is equipped with a
speaker, 8 red LEDs around the body and a green led inside the transparent
body. On the speaker one can play any kind of sound. The 8 red LEDs and
the green body led can be controlled in intensity.

The communication links supported by E-Puck are a standard RS232, an
infrared remote control and Bluetooth. On Bluetooth there is a serial line
emulation supported by any PC, making the communication and the devel-
opment of PC software very simple.

The E-Puck is equipped with several extension connectors allowing to ex-
pand the system in several ways, with intelligent extensions or very simple
interfaces.

The range and bearing board

In addition to the standard sensors and actuators our E-Pucks are equipped
with a range and bearing board. The range and bearing board allows the

5

epuck to sense the distance and the relative angle of other robots in range
(see Picture 2.2). Moreover it allows the robots to communicate with each
other with a payload of two bytes.

The board works through infrared communication [3]. Each robot is
emitting infrared beams that are then received by other robots and converted
to a distance, angle and a message. This allows the robots to have local
information about the position of other robots and communicate with them.

6

Chapter 3

Tutorial

You will use two different programs that, working together, will let you pro-
gram your robots and simulate their behavior.
ASEBA studio (developed by EPFL) is the controller development environ-
ment, where you will write your code, while ARGoS (developed by IRIDIA)
is the simulator, where you will see the robots working according to your
controllers. To start the simulator you must, first of all, open a terminal and
execute this command in the simulator directory:

user@user:~$ launch_argos -nc your_file.xml

You should now see a window with the arena and the robots (Figure 3.1).
You can change the camera position by clicking + dragging in the window:

Once the simulator is running, you have to start ASEBA studio to pro-
gram your robot. This could be done by opening a terminal window and
executing the following command:

user@user:~$ asebastudio

Then you have to connect ASEBA studio to the simulator: when the
dialog (Figure 3.2(a)) shows up just leave the default port and click on “con-
nect”; you should now see the studio (Figure 3.2(b)). The studio will not
connect as long as ARGoS is paused. A detailed description of studio is given
in Section 4.

7

Figure 3.1: Screenshot of ARGoS.

Your first robot controller

Now it is time to write your first controller!
To program a robot, you first have to understand how it works. A robot
interacts with the world in a loop: it perceives the state of the world through
its sensors, takes some decisions with its on-board computer, and does some
actions with its actuators; those actions change the state of the world, and
the robot perceive this new state when it reads its sensors again (Figure 3.3).
With ASEBA studio and the simulator, you can program a simulated E-Puck
robot. The simulator is built to be as accurate as possible with respect to
the real robot (the characteristic of the real robot are listed in Section 2):
in this way you can write your controller once, test it in the simulation and
port it to the real robot.
Now that you know how a robot interact with the world, let us write your
first robot controller. A complete high level description of ASEBA scripting
language, with examples, is available in Section 5.
In the text editor of the studio window, write the following lines:

leftSpeed = 10

rightSpeed = -10

8

(a) studio connection dialog.

(b) studio.

Figure 3.2: ASEBA studio.

9

Figure 3.3: A robot interacts with the world in a loop through its sensors
and actuators.

Click “Load” and then “Run”. You should see your robot turning on the
spot. This code sets the speed of the wheels when the robot starts. Since
these are the only instructions in the script, the robot keeps turning until
the simulator is stopped.
In order to have a more complex behavior, we should allow the robot to
perceive its environment, for instance the obstacles, and make decisions, for
example to stop.

A more elaborate robot controller

To interact with the world continuously, the robot must execute some in-
structions periodically. This is achieved with the onevent timer keyword.
For example, using a front proximity sensors, we can sense if there is an
object in front of the robot and stop:

initial setup - go straight

leftSpeed = 10

rightSpeed = 10

sense the world and

take a decision at every step

onevent timer

if prox[0] > 100 then # obstacle

leftSpeed = 0

rightSpeed = 0

end

The proximity sensor gives a perception of the distance between the robot

10

Figure 3.4: The robot trajectory changes with respect to the speed difference
between the wheels.

and an object. The output of the sensor is a numeric value between 0, if there
are no object in sight, and 3000, the robot is next to an obstacle. We have
just written a controller that stops the robot as soon as the proximity sensor
senses an obstacle.
Of course stopping when sensing an obstacle is good but we would like to be
able to do something else, for example turning. To have the robot wander
around, we have to understand how it moves.

The E-Puck is an example of a differential wheeled robot; this type of
robot changes its direction by setting different speeds to its right and left
wheels (Figure 3.4). If each wheel has the same speed, the robot goes forward;
otherwise it turns; if the speeds are opposite, the robot turns on the spot.
Industrial caterpillar vehicles use the same movement modality.
Now we are able to write a controller that makes a robot that turn softly
when it senses a far obstacle, turn on itself when next to an object, and goes
straight in any other occasion. We take input from the two frontal proximity
sensor to be safer. Here’s the code for obstacle avoidance:

leftSpeed = 10

rightSpeed = 10

onevent timer

if prox[0] > 500 or prox[7] > 500 then

11

leftSpeed = -10

rightSpeed = 10

else

if prox[0] > 100 or prox[1] > 100 then

leftSpeed = 3

rightSpeed = 10

else

leftSpeed = 10

rightSpeed = 10

end

end

It could be a good idea to see visually when a robot senses an obstacle.
How can we do it? The E-Puck is equipped with 8 LEDs that are a really
good way to show an internal status. So we just need to turn on the LEDs
when sensing an object. This, as all the commands to actuators, can be done
simply by setting the value of the LEDs to 1. To do that we could use a for
cycle to set all the LEDs variables to 1, but ”Leds” is an array and the best
way to change all the values of an array is to use the fill function, that has for
parameters the target array and the number to copy. Here’s is the modified
code:

...

if prox[0] > 100 or prox[1] > 100 then

leftSpeed = 3

rightSpeed = 10

call math.fill(Leds, 1) #turning on

else

leftSpeed = 10

rightSpeed = 10

call math.fill(Leds, 0) #turning off

end

...

Your turn

Now it is your turn! Feel free to explore, the robot is in a simulator and does
not risk any harm. Try to set the velocity as a constant: you can do this by

12

pressing the green “plus” button in the top right part of ASEBA studio, just
under Constants, give it a name, for instance MAX SPEED, set the value
by double-clicking the number next to the constant (now it should be 0) and
finally use the constant in your code as it was a variable. In this way you can
modify the value of this constant easily and for all the robots (if you have
more than one). Another thing to try is to command an actuator on-the-fly:
in the left part of ASEBA studio, under Memory there is the list of all the
variables, sensors and actuators; if you double click on any of the actuators
or variable values (sensors are read-only) you can set the number you want
and see how the robot reacts to this!
Try to experiment with the simulator and ASEBA studio, find all the possi-
bilities of the E-Puck and get a good understanding of the sensors, actuators
and dynamics of the robot.

13

Chapter 4

ASEBA studio

ASEBA studio is an integrated development editor, created by EPFL, within
which we edit and debug the scripts. It provides the following features:

• Concurrent editing - Each robot has its own tab with its script,
memory content, execution situation, sensor and actuator status, and
debugging commands. Every tab provides the command to load, reset,
start/pause, and execute step-by-step a single controller. In addition,
a toolbar provides the same commands to affect all the E-Pucks. This
allows us both an overall control of the group and a specific control
(very useful during the debug phase) of each script.

• Syntax highlighting - The script editor highlights the syntax and
colors errors in red. This increases the readability of the scripts and
helps pointing out mistakes.

• Instant compilation - studio recompiles the script while the developer
is typing it. The result of compilation (success or a description of the
error) is displayed below the editor. This permits the correction of
errors as soon as they appear, which increases the quality of the code.
By clicking on the error displayed studio automatically scroll to the
wrong part helping the user to correct it.

• Variables inspection - A list of the variables available on each robot
along with their values is available in each tab. We can update this list
with a single click on the Refresh button. This list provides a quick
overview of the state of the E-Pucks. This also allows you to modify
on-the-fly the values of actuators and variables, you can do that just
by double-clicking on the variable you want to change.

14

Figure 4.1: Screenshot of ASEBA studio. The enclosed elements are the
following: 1. General commands toolbar - 2. Unique tabs for each robot -
3. Editor with syntax highlighting - 4. Robot specific debug commands - 5.
Content of memory with the names and values of variables - 6. Constants
definition - 7. Events definition and log - 8. Native functions documentation
- 9. Compilation output and errors.

15

Figure 4.2: The chain of operations from the script to the robot.

• Debugger - studio integrates a debugger; for each robot, it shows the
current execution status. It supports continuous execution, step by
step, and breakpoints. A right click inside the script editor allows us
to set or clear a breakpoint on a specific line. After a breakpoint or a
step, the values of the variables are updated.

• Events - We can specify the names of the events, and by double-
clicking on a name, we can send the corresponding event. Below the
list of events names, a log shows the recent events along with their time
stamp and parameters. Note that with E-Pucks events can only be used
as debugging “flags”, i.e. showing the programmer that a certain event
has been emitted. For the syntax see Section 5.

• Native functions. studio lists the native functions available on each
E-Puck. These are useful mathematical functions that can be used
during the developing of the software. It is strongly suggested to use
these functions instead of re-writing your own for efficiency and space
optimization. The tool tip of each function gives a short documentation
about the function.

• Constants definition - We can define constants that are available
for all the robots. This provides a way to control common parameters
among all robots. Try to use a constant every time you need a common
numerical input. In this way it will be easier for you to change the
parameters if you need and for others to understand what you write.
Constants definition and using is explained in Section 5.

The chain of operations behind ASEBA is this (figure 4.2): first you write
your controller in ASEBA studio using the scripting language, then the in-
ternal compiler translates the script into byte code (a set of instruction) that
is used by the virtual machine inside the robot micro-processor.

16

Chapter 5

Scripting Language

Using ASEBA studio, you program the robots by writing scripts in a sim-
ple language. Syntactically, this language resembles Matlab (and Java/C);
semantically, it is a simple imperative programming language with a single
basic type (16 bits signed integers) and arrays. Here are its features:

• Comments - every time you need to comment or write something that
doesn’t need to be compiled use ’#’. Comments begin with a ’#’ and
terminate at the end of line.

this is a comment

var b # another comment

• Variables - Variables refer either to single scalar values or to arrays
of scalar values. The values are only integers ranging from -32767 to
32767, which is the range of 16 bits signed integers. Remember these
constraints when operating with numbers because if the result is out of
these bounds an integer overflow happens (e.g. 32767 + 1 = -32768).
Another thing to bear in mind is that division results are rounded to
the smallest integer (e.g. 999/1000 = 0).
You can access arrays elements using the usual square parenthesis op-
erator; arrays indexes begin at zero.
All variables must be declared at the beginning of the script.

simple declaration

var a

17

declaration and initialization

var b = 0

array declaration

var c[10]

array declaration and initialization

var d[3] = 2, 3, 4

• Expressions and assignations - Expressions allow mathematical
computations and are written using the standard mathematical syntax.
Assignation uses the symbol = and sets the result of the computation
of an expression to a scalar variable or to an array element. ASEBA
provides the operators +, -, *, /, % (modulo), << (left shift), and >>
(right shift). Operator precedence is *, /, %; followed by + and -; fol-
lowed by << and >>. To evaluate an expression in a different order,
we can use a pair of parenthesis to group a sub-expression.

a = 1 + 1

b = (a - 7) % 5

b = b + d[0]

c[i] = d[i]

• Conditionals - ASEBA provides two types of conditionals: if and
when. ASEBA provides the operators ==, !=, >, >=, <, and <=.
Both if and when execute a different block of code whether a condition
is true or false; but when executes the block corresponding to true only
if the last evaluation of the condition was false and the current is true
while if does so each time that the condition is true, and else each
time it is false. This allows the execution of code only when something
changes, which is convenient for robotics applications. Note that the
combination of an else and an if is an elseif. The syntax is visible
in the example.

if a - b > c[0] then

c[0] = a

else

18

b = 0

end

if a - b > c[0] then

c[0] = a

elseif a - b > c[1] then

b = 0

else

b = -1

end

when a <= b do

c = d * 37

end

• Loops - Two constructs allow the creation of loops: while and for. A
while loop repeatedly executes a block of code as long as the condition
is true. The condition is of the same form as the one if uses. A
for loop allows a variable to iterate over a range of integers, with an
optional step size. The syntax is shown in the example.

while i < 10 do

v = v + i * i

i = i + 1

end

for i in 0:8 do

t[i] = a[i]*2

end

for i in 1:10 step 2 do

v = v + i * i

end

19

• Native functions - ASEBA script is designed to be simple to allow a
quick understanding even by novice developers and to implement the
virtual machine efficiently. To implement complex or resource consum-
ing processing, we provide native functions that are implemented in
native code for efficient execution. For instance, a native function is
the natural way to implement a scalar product. Native functions are
safe, in that they specify and check the sizes of their arguments, which
can be constants, variables, or array accesses. In the latter, we can
access the whole array, a single element, or a sub-range of the array.
Native functions take their arguments as reference and can modify their
contents but do not return any value. Native functions are called by
the call keyword.

var a[3] = 1, 2, 3

var b[3] = 2, 3, 4

var c[5] = 5. 10. 15

var d

call vecprod(a, b, d, 3)

call vecprod(a, c[0:2], d, 3)

• Events - Events in ASEBA are mostly used as debug tools. A pro-
grammer can use them as a non-blocking signal of a special condition.
A script can send an event by using the emit keyword. Events must be
defined in the “event” tab. Flags raised are shown in the same tab. An
event can also have a parameter that is showed when the correspondent
event is called.
Note that on ASEBA for ARGoS, the events cannot be used to acti-
vate functions. For this reason, events are only used for debugging, for
example emitting an event when a certain value becomes negative.
There is a very special native event called timer. The timer event is
generated every time-step and it is used by the programmer to make
the robot react to external stimuli. All the code following the onevent

timer keyword is executed at every time step and usually is the core
of the controller. Normally the code is divided in three parts: variable
declaration, variable initialization and the code that must be executed
every time-step. This is the piece of the controller that analyzes new
sensor data and operate the actuators.

20

if prox[0] > 500 then

emit collision_event

end

onevent timer

if prox[0] > 500 then

leftSpeed = MAXSPEED

rightSpeed = -MAXSPEED

else

leftSpeed = MAXSPEED

rightSpeed = MAXSPEED

end

• ASEBA Types - ASEBA supports only int16. This means that there
is no support for decimal numbers or other traditional types such as
booleans. Note that this might cause unexpected results as, for in-
stance, all division where the numerator is smaller than the denom-
inator results in zero. Note also that as the only type supported is
the int16, values are limited between -32768 and 32767. Beware of
overflows!

• ASEBA Angles - ASEBA Angles are a special way of treating the
angles in order to exploit the int16 overflow when dealing with an-
gles. ASEBA Angles are used in the native functions. ASEBA an-
gles are a mapping of signed degrees [-180;180] to the min-max int16
[-32768;32767]. This mapping ease the task of dealing with mathemat-
ical operations over angles. Adding two angles which results is over
180 degrees will cause an overflow returning the correct normalized
angle. Consider this example: 160(Deg) + 160(Deg) = 320(Deg) =
29126(AsebaAng)+29126(AsebaAng) = 58252(AsebaAng,Overflow) =
−7282(AsebaAng) = −40(Deg). When using ASEBA angles the nor-
malization comes for free thanks to the buffer overflow.

21

Bibliography

[1] Michael Bonani. E-puck. http://www.e-puck.org.

[2] Michael Bonani, Philippe Retornaz, and Francesco Mondada. E-puck
flyer. http://iridia.ulb.ac.be/wiki/images/2/2c/E-puck-flyer-V1.pdf.

[3] A. Gutiérrez, A. Campo, M. Dorigo, J. Donate, F. Monasterio-Huelin,
and L. Magdalena. Open e-puck range & bearing miniaturized board for
local communication in swarm robotics. In IEEE International Confer-
ence on Robotics and Automation ICRA 2009, pages 3111–3116. IEEE
Press, 2009.

[4] Stéphane Magnenat, Philippe Retornaz, and Francesco Mondada. Aseba.
http://mobots.epfl.ch/aseba.html.

[5] Carlo Pinciroli, Marco Dorigo, and Mauro Birattari. Argos.
http://www.swarmanoid.org/swarmanoid simulation.php.

22

	Introduction
	The E-Puck
	Tutorial
	ASEBA studio
	Scripting Language

