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Abstract

A metaheuristic is a general algorithmic framework that can be easily adapted
to many different optimization problems for which exact/analytical approaches
are either limited or impractical. There are two main approaches used to
create new metaheuristic implementations: manual design, which is based on the
designer’s “intuition”—often involving looking for inspiration in other fields of
knowledge—and automatic design, which seeks to remove human intervention
from the design process by harnessing recent advances in automatic algorithm
configuration methods and machine learning. Compared to manual design,
which is typically time-consuming and error-prone, automatic design is often
much more efficient and has advantages, such as removing biases from the
creation process and increasing the flexibility with which new metaheuristic
designs can be explored. Yet, to this day, the vast majority of metaheuristics
proposed in the literature are still created by algorithm designers who manually
define the different components that make up the implementation based on
their knowledge (empirical, theoretical or intuitive) and/or by considering new
sources of inspiration.

The main topic of this thesis is how to improve the way we create metaheuris-
tics by replacing manual design with automatic design. We focus especially on
those cases where the use of manual design involves taking inspiration from
natural and even supernatural behaviors, since this approach has been used
intensively in the last two decades, spawning hundreds of so-called “novel”
metaphor-based metaheuristics. Unfortunately, for the vast majority of them,
it is still unknown what is their real novelty apart from the use of the new
metaphors. In order to put an end to this situation and, indeed, to try to remedy
it, we advocate for replacing “intuition” and “new sources of inspiration” with
automated design methods. To demonstrate the feasibility of this approach and
its advantages, we develop a metaheuristic software framework with a modular
design, that is coupled with an automatic configuration tool and allows to
automatically create high-performing implementations with novel designs.
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vi ABSTRACT

In the first half of this doctoral thesis, we focus on studying how the process
of designing metaheuristics has changed over the years. In doing so, we identify
the limitations of the approach of looking for inspiration in other fields of
knowledge and establish clear criteria to determine the cases where considering
introducing new metaphors makes sense and those where it does not. In this
endeavor, we rigorously analyze some of the most widespread and highly-cited
“novel” metaphor-based metaheuristics proposed in the last years, and compare
their components with those defined in some of the best-known metaheuristics
that have been proposed in the literature. We show that, despite being presented
as novel optimization techniques, they are in fact the same as, or at best minor
variations of, classic approaches, many of which were proposed years, or even
decades, before the “novel” metaheuristic were published.

In the other half of this thesis, we explore the use of automatic design as a
powerful alternative to manual design, that has also the potential of rendering
the need to find new sources of inspiration obsolete. We describe how modular
metaheuristic software frameworks are created, what are their advantages and
challenges, and why they are the most efficient way we have at the moment to
try to come up with new metaheuristic designs. Successfully, we experimentally
demonstrate that the metaheuristic software framework for particle swarm
optimization that we developed in the context of this research work can be
used to create high-performing implementations whose design had never been
considered before in the literature, without the need for introducing new sources
of inspiration, or any other kind of manual intervention. This doctoral thesis
concludes by: (i) identifying ways in which some of the fundamental aspect of
the broad field of metaheuristics can be improved; (ii) discussing the research
contributions presented in this work; and (iii) identifying some research paths
that can be explored in the future to give continuation to this work.
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Chapter 1

Introduction

Optimization is a vast research field with hundreds of years of history that
deals with a large variety of optimization problems and solution methods.
Although the early days of optimization were characterized by the development
of algorithms that could find optimal solutions, it eventually became clear that
many optimization problems cannot be efficiently solved to optimality. Well-
known examples of such problems are multimodal non-differentiable functions
in the continuous optimization domain (Andréasson et al. 2020; Luenberger, Ye,
et al. 2016), and NP-hard problems in the discrete optimization domain (Garey
and Johnson 1979; Papadimitriou and Steiglitz 1982; Tovey 2002). With the
advent of ever more powerful computers, heuristic algorithms rapidly became
the mainstream approach to deal with difficult optimization problems, replacing
in many cases the use of exact algorithms. In other words, the focus of the
research moved from the design and development of algorithms that find the
best solution, to the design and development of algorithms that can rapidly
provide solutions that are very good, although not provably optimal. Since
the seminal work by Glover (1986), the most used term to refer to this type of
algorithms is metaheuristic.

There have been many attempts to provide a definition of the term “meta-
heuristic” that is at the same time precise and allows to include all the diverse
metaheuristics that have been proposed in the literature. The definition pro-
vided by the Metaheuristics Network (Metaheuristics Network. Project Summary
n.d.), which is the one we adopt in this work, is:

“A metaheuristic is a set of algorithmic concepts that can be used
to define heuristic methods applicable to a wide set of different
problems. In other words, a metaheuristic can be seen as a general

1



2 CHAPTER 1. INTRODUCTION

algorithmic framework which can be applied to different optimiza-
tion problems with relatively few modifications to make it adapted
to a specific problem.”

Some of the most popular and best performing metaheuristics currently avail-
able in the literature include evolutionary computation (Fogel et al. 1966; Hol-
land 1975; Rechenberg 1973; Schwefel 1977, 1981), tabu search (Glover 1989,
1990), simulated annealing (Černý 1985; Kirkpatrick 1984), ant colony optimiza-
tion (Dorigo 1992a; Dorigo et al. 1991b; Dorigo and Stützle 2004), particle swarm
optimization (Eberhart and Kennedy 1995; Kennedy et al. 2001; Kennedy and
Eberhart 1995) and iterated local search (Ramalhinho Lourenço et al. 2002).

Over the years, the research on the different metaheuristics accumulated
into a plethora of different metaheuristic implementations in which the con-
cepts defining the metaheuristic (also called metaheuristic components) were
implemented in many different ways, with the goal of improving the efficiency
of the corresponding metaheuristic implementations. Researchers started then
to create new metaheuristic implementations that were no longer just proposing
new ways of implementing the metaheuristic components, but that were also
reusing components proposed in previous metaheuristic implementations. This
greatly increased the number of design choices to be made when creating a
new metaheuristic implementation. Thus, it became less and less efficient to
approach the creation of metaheuristic implementations manually—i.e., by hand-
crafting one by one the different components that make up the metaheuristic
implementation.

In order to devise new metaheuristic designs, and motivated by the early
successes of metaheuristics that were inspired by natural processes, such as
evolutionary computation, simulated annealing, and ant colony optimization,
a fraction of the metaheuristics community has been proposing “novel” meta-
heuristics based on a disparate set of metaphors. Unfortunately, not only this
approach is just another instance of the inefficient manual design approach, but
it has also caused a number of undesirable consequences for the entire field.
Among them, one of the most negative is that, more often than not, the only
novelty in a proposed “novel” metaheuristic seems to be the use of new—and
often confusing—terminology that hides its similarities with already published
metaheuristics and algorithms (Aranha et al. 2022; Armas et al. 2022; Campelo
and Aranha 2021a; Lones 2020; Piotrowski et al. 2014; Sörensen 2015; Thymianis
and Tzanetos 2022; Tzanetos and Dounias 2021; Weyland 2010).
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The initial motivation for this research is the need to better understand the
problem of the so-called “novel” metaphor-based algorithms and, in particular,
the causes that led to the intensive use of an approach that often seems to
lack any scientific motivation. To do so, in Chapter 2, we begin by studying
some of the classic metaphor-based metaheuristics published in the literature.
For each of them, we illustrate how the natural metaphor was of paramount
importance to their development, identify the algorithm concepts that have
been proposed in them, and explain how these concepts are used to perform
optimization. In Chapter 3, we discuss the two main approaches to design
metaheuristics and highlight their upsides and downsides. Based on all this
necessary background, in Chapter 4, we examine in great detail the problem
of the “novel” metaphor-based metaheuristic and explain why these “novel”
metaheuristics are so problematic, what are the negative consequences they
have created, and what efforts have been conducted so far by the scientific
community to address them.

Another important motivation for this research is the need to clarify the real
novelty of the hundreds of “novel” metaphor-based metaheuristics proposed
in the literature. Therefore, a substantial part of this work has been devoted
to perform rigorous, component-based analyses of these metaheuristics. We
present these analyses in Chapters 5 and Chapters 6. Our findings are similar
to those found by other rigorous analyses (see, e.g., (Piotrowski et al. 2014;
Weyland 2010)): the studied “novel” metaheuristics can be exactly mapped to
already published techniques just by rephrasing the terminology used to de-
scribe them (Camacho-Villalón et al. 2018, 2019, 2022a, 2023, 2020). Even though
these analyses are just a few compared to the number of “novel” metaheuristics
already published in the literature (which is around 500), their contribution to
the research community is relevant in our opinion, as they present concrete
instances of the problem and help to raise awareness about their negative
consequences.

Whereas Chapters 2 – 6 aim at providing the reader with a clear account
of the problem that is tackled in this work, Chapters 7 and 8 are dedicated
to propose possible solutions. In particular, we consider the use of automatic
algorithm design methods as a way to avoid altogether the approach of look-
ing for inspiration in other fields of knowledge to try to come up with new
metaheuristic designs. Automatic design, whose fundamentals are given in
Chapter 3, is a relatively recent approach in which manual human intervention
is increasingly less important (Stützle and López-Ibáñez 2019) and the need for
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novel metaphors disappears. The development of these automated methods and
their application to create efficient metaheuristic implementations is nowadays
a central topic in the field of metaheuristics.

In Chapter 7, we describe how the automatic design approach is being used
to create the new generation of high-performing metaheuristic implementations.
Then, in Chapter 8, we present PSO-X, a metaheuristic software framework for
particle swarm optimization that was developed in the context of this research
and that includes a large number of components proposed for this metaheuristic
that cover more than 20 years of its research and developments. The motivation
for proposing PSO-X goes beyond putting together many different variants
proposed for particle swarm optimization in one single place. We also aimed at
providing the metaheuristics community with a tool from which it was possible
to automatically instantiate a number of metaheuristic implementations that,
according to our analyses, are variants of particle swarm optimization. We
discuss the potential of PSO-X to do this at the end of Chapter 8.

Finally, in Chapter 9, we reflect on some of the fundamental aspect of the
broad field of metaheuristics that we believe should be re-thought in order
to continue pushing the field forward. This chapter elaborates on why we
should (i) focus on experimentally- or theoretically-driven research rather than
on purely application-driven research and competitive testing; (ii) use state-of-
the-art benchmarking practices to evaluate metaheuristics; and (iii) use modern
tools and mechanisms to automatically create high-performing metaheuristic
implementations. In Chapter 10, we present the conclusions of this thesis and
identify future research directions.

1.1 Preview of Contributions

The following is a summary of the contributions presented in this thesis:

A detailed review of the way metaheuristics are designed: We provide a
detailed review of the two main approaches used to design metaheuristics (i.e.,
manual design and automatic design) in which we contrast their benefits and
challenges.
Perspective for the field of metaheuristics: We present a critical perspective
for the field that discusses fundamental aspect that can be improved in order
to solve the issue of the “novel” metaheuristics and continue pushing the field
forward.
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• Camacho-Villalón, Christian Leonardo, Stützle, Thomas, and Dorigo,
Marco (2023). “Designing New Metaheuristics: Manual versus Automatic
Approaches”. In: Intelligent Computing, A Science Partner Journal. Accepted
for publication.

Rigorous analyses of the most popular “novel” metaphor-based metaheuris-
tics: We present a rigorous, component-by-component analysis of some of
the most popular and highly-cited “novel” metaphor-based metaheuristics. In
these analyses, we identify the ideas proposed in the “novel” metaheuristics
and compared them with those propose in other well-established techniques
proposed before in the literature in order to highlight their real novelty.

• Camacho-Villalón, Christian Leonardo, Dorigo, Marco, and Stützle,
Thomas (2018). “Why the Intelligent Water Drops Cannot Be Consid-
ered as a Novel Algorithm”. In: Swarm Intelligence, 11th International
Conference, ANTS 2018. Vol. 11172. Lecture Notes in Computer Science.
Springer, pp. 302–314.

• Camacho-Villalón, Christian Leonardo, Dorigo, Marco, and Stützle,
Thomas (2019). “The intelligent water drops algorithm: why it cannot be
considered a novel algorithm”. In: Swarm Intelligence 13.3–4, pp. 173–192.

• Camacho-Villalón, Christian Leonardo, Stützle, Thomas, and Dorigo,
Marco (2020). “Grey Wolf, Firefly and Bat Algorithms: Three Widespread
Algorithms that Do Not Contain Any Novelty”. In: Swarm Intelligence,
12th International Conference, ANTS 2020. Vol. 12421. Lecture Notes in
Computer Science. Springer, pp. 121–133.

• Camacho-Villalón, Christian Leonardo, Dorigo, Marco, and Stützle,
Thomas (2022a). “An analysis of why cuckoo search does not bring
any novel ideas to optimization”. In: Computers & Operations Research 142,
p. 105747.

• Camacho-Villalón, Christian Leonardo, Dorigo, Marco, and Stützle,
Thomas (2022b). “Exposing the grey wolf, moth-flame, whale, firefly,
bat, and antlion algorithms: six misleading optimization techniques in-
spired by bestial metaphors”. In: International Transactions in Operational
Research 30.6, pp. 2945–2971.

Open letter about metaphor-based metaheuristics: Together with other like-
minded scientist, we published an open letter that describes some of the unsci-
entific practices used in the field of metaheuristics and proposes a number of
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necessary actions to address them. This open letter was signed by more than 90
scientist and practitioners working on the field of metaheuristics.

• Aranha, Claus, Camacho-Villalón, Christian Leonardo, Campelo, Felipe,
Dorigo, Marco, Ruiz, Rubén, Sevaux, Marc, Sörensen, Kenneth, and
Stützle, Thomas (2022). “Metaphor-based Metaheuristics, a Call for Action:
the Elephant in the Room”. In: Swarm Intelligence 16.1, pp. 1–6.

PSO-X: We introduce PSO-X, a novel modular, automatically configurable
metaheuristic framework that includes a repertoires of components proposed
particle swarm optimization for over 20 years. This framework allows to auto-
matically generate high-performing implementation without the need of human
intervention and, by extension, without having to introduce new metaphors.

• Camacho-Villalón, Christian Leonardo, Dorigo, Marco, and Stützle,
Thomas (2022c). “PSO-X: A Component-Based Framework for the Au-
tomatic Design of Particle Swarm Optimization Algorithms”. In: IEEE
Transactions on Evolutionary Computation 26.3, pp. 402–416.
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Background
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Chapter 2

Optimization Problems and
Metaheuristics

2.1 Optimization Problems

Optimization problems arise in all domains and fields, and consist in finding
solutions that are optimal or near-optimal with respect to some goal (Rothlauf
2011). To give a few examples, we can consider someone with a limited budget
trying to get as many items as possible on a shopping list, an e-commerce
company selecting the routes for a fleet of vehicles serving customers in different
geographical zones, or an engineer designing the chassis for a new car. In
the optimization literature, these problems are known, respectively, as the
“knapsack problem” (Garey and Johnson 1979), the “vehicle routing problem”
(Dantzig and Ramser 1959), and as an “engineering design problem” (Deb 2012).
Even though we may not think much of it, being able to solve increasingly
difficult optimization problems has been instrumental in virtually all areas of life,
such as technology, manufacturing, supply chain, health care, finance, education,
commerce, etc. In addition to their practical relevance and complexity, that we
discuss below, the initial distinction that can be made between optimization
problems is based on the domain of their solution variables, which can be
discrete, continuous, or a mix of the two.

In combinatorial optimization problems, the goal is to find groupings, or-
derings or assignments of a discrete, finite set of values that satisfy some given
conditions. In formal terms, a combinatorial optimization problem can be
modeled as a tuple Π = (S, Ω, f ), where:

• S is the search space (also called the decision space) of the problem, and it

9
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is defined by a finite set of n decision variables, x1, . . . , xn, each with its
own domain, typically a subset of Z;

• Ω is a set of constraints among the decision variables; and

• f : S −→ R is an objective function that maps S to R.

A feasible solution to a combinatorial optimization problem is given by assigning
a possible value to each variable xi in S, for i = 1, . . . , n, that satisfies the
constraints in Ω.

Many combinatorial optimization problems are NP-hard, which means
that the computational effort required to solve them grows exponentially with
the size of the problem instances (Garey and Johnson 1979; Papadimitriou
and Steiglitz 1982). Some well-known examples of NP-hard combinatorial
optimization problems are: the traveling salesman problems, which involve
finding shortest tours on graphs; the Boolean satisfiability problems, which
involve finding models of propositional formulae; and job-scheduling problems,
which involve creating schedules for jobs to be processed by a number of
machines.

On the other hand, in continuous optimization problems, the goal is to find
real-valued vectors that minimize/maximize a continuous function. Without
loss of generality, we consider minimization problems, where the goal is to
minimize a d-dimensional continuous objective function f : S ⊆ Rd → R by
finding a vector o⃗ ∈ S, such that ∀ x⃗ ∈ S, f (⃗o) ≤ f (x⃗). The search space S is a
subset of Rd in which a solution is represented by a real-valued vector x⃗, and
each component xj of x⃗ is constrained by a lower and upper bound such that
lbj ≤ xj ≤ ubj, for j = 1, . . . , d. The vector o⃗ represents the solution for which
the evaluation function f (·) returns the minimum value. For a maximization
problem, the obvious adaptation consists in using − f (·) instead of f (·).

Finding optimal solutions to continuous optimization problems can be very
difficult, if not impossible, when the problems are not well-structured (i.e., when
the objective function is not explicitly known) or when there are constraints
on their decision variables (Luenberger, Ye, et al. 2016; Rothlauf 2011). Some
classical examples of optimization problems in continuous domains that are
difficult to solve are engineering design problems (such as airfoils, springs,
vessels, etc.), financial problems (such as portfolio selection and index tracking
problems), and parameter optimization problems in black-box scenarios1 (such

1Optimization problems in black-box scenarios are those in which the objective function of
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as managing power grids and developing personalized health-care treatments).

Over the years, many different methods have been developed to solve
optimization problems. Some of these methods are exact, i.e., they guarantee to
find the optimal solution; while others are heuristic or metaheuristic, i.e., they are
intended to find good solutions in short computational times without offering
any guarantees about their optimality. While both exact and (meta)heuristic
approaches have advantages and disadvantages, the decision of which method
to use typically depends on the complexity of the optimization problem.

For example, if the considered problem turns out to be NP-hard, an exact
algorithm such as branch and bound will not be able to solve a large instance of
the problem to optimality because the time taken by this method to find such an
optimal solution will grow exponentially with the size of the problem instance.
A similar scenario is obtained when dealing with continuous, non-differentiable,
multimodal functions, although, in this case, the problem is that applying
analytical/numerical methods, such as calculating the Hessian matrix of the
objective function or applying gradient search, requires a large computational
effort and it is limited to small areas of the search space where the optimal
solution is believed to be found. The notions of what makes optimization prob-
lems difficult to solve are established in the theory of computational complexity
(Garey and Johnson 1979; Papadimitriou and Steiglitz 1982; Tovey 2002), the
approximation theory (Powell et al. 1981) and in the study of non-linear systems
(Luenberger, Ye, et al. 2016).

To summarize, in many optimization problems of practical relevance—such
as selecting the routes for a fleet of vehicles, distributing a budget across the as-
sets of an investment portfolio, and selecting the parameter values that result in
the desired properties for a design—the task of finding the optimal solution can
be extremely difficult with today’s solution techniques and available computing
power. Therefore, in these cases, we have to rely on methods that are capable of
finding solutions that are good enough for whoever (the person/organization)
is interested in solving the optimization problem, regardless of whether the so-
lutions are optimal or not. Metaheuristics, which are described in the following,
are such methods.

the problem can be queried but it is not explicitly formulated (Audet and Hare 2017).
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2.2 Metaheuristics

Broadly speaking, metaheuristics are optimization techniques that extract infor-
mation from the search space and use it to direct the search towards areas where
high quality solutions can be found. Most metaheuristics have the following
characteristics: they are iterative—that is, solutions are constructed/perturbed
based on starting points or complete initial solutions by an optimization process
that consists of a number of steps that repeat for multiple iterations; they use
randomization—that is, they make use of random variables in one or more of
their components; and they have a user-defined termination criterion—e.g., reach-
ing a maximum amount of computational time or obtaining a solution of a
minimum desired quality.

Metaheuristics can be classified in many different ways. For example, they
can be constructive or perturbative, depending on the way they create new
candidate solutions; they can be memory-based or without memory, depending
on whether they memorize solutions (or solution components) or not; and they
can also be metaphor-based or non metaphor-based, depending on their source
of inspiration. However, one of the most frequently used ways to tell them
apart is given by the number of solutions handled in each iteration, that is,
by distinguishing between those that are single-solution and those that are
population-based.

In single-solution metaheuristics, the optimization process is based on one
single solution that is iteratively improved by making small changes to it. Ex-
amples of this type of metaheuristics are tabu search (Glover 1989), simulated
annealing (Černý 1985; Kirkpatrick et al. 1983) and iterated local search (Ra-
malhinho Lourenço et al. 2002). Differently, population-based metaheuristics
maintain multiple solutions in parallel that are combined to create new solu-
tions. Most swarm intelligence (Blum and Merkle 2008; Bonabeau et al. 1999;
Dorigo and Birattari 2007; Kennedy et al. 2001) and evolutionary algorithms
(Fogel et al. 1966; Holland 1975; Rechenberg 1973; Schwefel 1977, 1981) belong
to this class.

Population-based and single-solution metaheuristics have different, often
complementary, optimization capabilities. For example, while population-based
metaheuristic are typically better at exploring the search space and quickly
identifying some of its most promising regions, single-solution metaheuristics
tend to be more effective when it comes to improving existing solutions. Thus,
it is quite common to combine these two types of metaheuristics in order to
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produce metaheuristic implementations that are better equipped to perform
robust optimization. Two ways of doing so are component-based hybrids, where a
population-based metaheuristic includes a single-solution metaheuristic as an
additional component in its procedure, and algorithm-sequential hybrids, where
one metaheuristic is executed after the other with the output of a metaheuristic
becoming the input of the next metaheuristic in the sequence (Blum and Roli
2008; Talbi 2013).

Although the vast majority of metaheuristics share the same high-level
characteristics (i.e., iterative, randomization and user-defined termination criterion—
as mentioned above), they can differ in all kinds of aspects, including the
specific mechanisms they use to sample the search space, the way they organize
the search process, and the mechanisms they use to control the exploration
vs. exploitation trade-off. In a number of cases, the way these aspects are
designed in the metaheuristics is by taking inspiration from natural, social
or human-made processes. The metaheuristics that have been created using
the “inspiration-based” approach are commonly referred to as metaphor-based
metaheuristics (Sörensen 2015).

Indeed, the approach of looking for inspiration in other fields of knowledge
has been very important for designing some of the best performing metaheuris-
tics currently available in the literature. Already in the 1970s, the use of naturally
occurring optimization processes—such as evolution by natural selection that
inspired evolutionary computation (Fogel et al. 1966; Holland 1975)—to formulate
new optimization algorithms became appealing to researchers in the areas of
computer science and engineering. However, it was in the 1980s and early
1990s that the approach of looking for inspiration in other fields of knowledge
began to be explored vigorously in the field of optimization and became a major
driver of its development. Notably, during these decades, some thermodynamic
principles were used to develop simulated annealing (Černý 1985; Kirkpatrick
et al. 1983), the foraging behavior of some ant species to develop ant colony
optimization (Dorigo 1992b; Dorigo et al. 1991b, 1996), and the dynamics and
social interactions of bird flocks to develop particle swarm optimization (Eberhart
and Kennedy 1995; Kennedy et al. 2001; Kennedy and Eberhart 1995).

Because of their success, these metaphor-based metaheuristics are currently
among the most extensively studied techniques in the optimization literature,
and we have therefore a reasonably good understanding of the way many of
them work. In fact, thanks to these studies, we now clearly understand that the
reason for their success has little to do with the fact of having found a new source
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of inspiration and much with the fact that they introduced novel and useful
algorithmic concepts that could be conveniently used for optimization purposes.
Unfortunately, this has not been understood by a part of the metaheuristics
research community that, as we already mentioned in the introductory chapter,
continues to propose “novel” metaphor-based metaheuristics whose sole novelty
is in the metaphor and terminology used to describe them.

The next sections present an overview of some selected metaheuristics in-
spired by natural behaviors. In particular, we focus on evolutionary computation
(EC) and swarm intelligence (SI), since they comprised some of the most suc-
cessful and well-studied metaphor-based metaheuristics. These metaheuristics
are also relevant for the analyses that we present in Chapters 5 and 6. For
each of them, we present their source of inspiration, describe their main meta-
heuristic components, and explain how these components are used to perform
optimization.

2.2.1 Evolutionary Computation

Evolutionary computation (EC) (Fogel et al. 1966; Holland 1975; Rechenberg
1973; Schwefel 1977, 1981) is one of the oldest metaphor-based metaheuristic
paradigms, whose foundations were inspired by the phenomenon of natural
evolution in biological species, such as the Darwinian survival of the fittest and
the genetic inheritance. According to natural evolution, species are in a constant
search to find useful adaptations to an environment that changes and that is
often complicated. Over time, these useful adaptations become traits that the
species develop, which are embodied in their chromosomes and represent the
“knowledge” that they have gained and allows them to thrive (Michalewicz and
Schoenauer 2013). The general procedure of an EC metaheuristic, also known
as evolutionary algorithm (EA), is the following:

As shown in Algorithm 1, in an evolutionary algorithm, solutions to the
optimization problem are represented as a “population” of “individuals” that
compete for survival (i.e., to remain in the set of solutions that make up the
“population”), where the “fittest” individuals (i.e., those with the best solution
quality) are favored to “reproduce” in order to create a new “generation” of
solutions (i.e., a new set of solutions that may replace the existing ones and
pass to the next iteration of the algorithm). Some of the most well-known EC
metaheuristics are evolution strategies (Rechenberg 1971; Schwefel 1977), genetic
algorithms (Goldberg 1989; Holland 1975), genetic programming (Koza 1992) and
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Algorithm 1 General procedure of an evolutionary algorithm

1: begin
2: initialize population of solutions
3: evaluate population
4: while termination condition not met do
5: select individuals for recombination
6: apply recombination operator
7: apply mutation operator
8: evaluate new individuals (a.k.a. offspring)
9: select individuals for survival

10: end while
11: return best solution found
12: end

differential evolution (Storn and Price 1997). In the following, we elaborate on
evolution strategies and differential evolution.

Evolution Strategies (ESs) (Rechenberg 1971, 1973; Schwefel 1977, 1981) are
among the first evolutionary algorithms proposed mainly to solve continuous
optimization problems. ESs use real-valued vectors to represent solutions and,
similarly to other EAs, they iteratively apply a number of evolutionary operators
(or just operators) to stochastically sample new solutions. The operators typically
used in ESs are:

• parental selection – choice of the solutions (parents) at the beginning of each
iteration that will be used to create new solutions (offspring);

• recombination – mechanism used to combine the information of two or
more parents in order to create one or more offspring;

• mutation – the process of applying a small perturbation to offspring;
• survival selection – choice of the solutions that will pass to the next iteration

(a.k.a. generation).

The parental selection operator can be implemented using a deterministic
scheme (one or more specific individuals are selected) or a stochastic scheme
(individuals are selected according to a probability distribution based on their
quality value). The quality value is usually called fitness value of an individual.
One of the first stochastic parental selection schemes proposed in the literature
is fitness proportional (Bäck et al. 1997; Holland 1975) and consists in assigning
to each individual a probability of being selected that is proportional to its
solution quality. Among the deterministic schemes, a typical option is the
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so-called fitness-based selection, in which only individuals with similar solution
quality are matched together to produce offspring (Hansen et al. 2015). Since
fitness-based selection drives the evolution process towards the best individuals,
it is often used when survival selection is non-elitist (see below).

The recombination operator can be implemented in many different ways.
Among the most used recombination operators are discrete recombination, where
the kth component of the offspring is taken from either of the parents, intermedi-
ate recombination, where the offspring is the result of computing the arithmetic
average of the parents’ kth component, and weighted recombination, which is
similar to intermediate recombination but parents can have different weights. Al-
though recombination was widely used in early ESs variants, it is considered
optional in most recent ESs implementations.

In ESs, the mutation operator is the most important algorithm component
and it is commonly implemented by adding a point symmetric perturbation
(e.g., random numbers drawn from a multivariate Gaussian/Cauchy/Lévy
distribution) to the result of recombination or, if recombination is not used, to
the result of parental selection. In practice, most ESs employ the Gaussian distri-
bution to create a perturbed vector u⃗ ′, such as the well-known spherical/isotropic
mutation, which is defined as follows:

u⃗ ′ = u⃗ +N (0, C), (2.1)

where u⃗ is a vector representing an individual and N (0, C) is the Gaussian
distribution with zero mean and covariance matrix C ∈ Rn×n. In the spheri-
cal/isotropic mutation, C is proportional to the identity matrix I, and therefore,
the Gaussian mutation component is often indicated as N (0, I).

ESs use the mnemonic notation (µ +, λ) to indicate the way in which survival
selection will be implemented in the algorithm, where µ and λ are two positive
integers that represent, respectively, the number of parents at the beginning
of the iteration and the number of offspring generated at each iteration. The
symbols “+” and “,” are used to specify whether survival selection is elitist
(µ + λ) or non-elitist (µ, λ). In the (µ + λ)–ES, the next generation is generated
by selecting the best µ solutions from the set of µ + λ individuals, whereas in
the (µ, λ)–ES the next generation is generated by selecting the best µ solutions
from the set of λ offspring.

Arguably the most successful ES is the (µ, λ)–evolution strategy with covari-
ance matrix adaptation (Hansen 1997; Hansen and Ostermeier 2001), commonly



2.2. METAHEURISTICS 17

know just as CMA–ES, in which the complete covariance matrix of the normal
mutation distribution is adapted at execution time. Two variants of CMA–ES
that have been proposed to further improve its performance are:

• the separable-CMA–ES (Ros and Hansen 2008) — which is a low complexity
variant intended for separable continuous functions, where the covariances
are assumed to be zeros; therefore, instead of the full covariance matrix,
this variant uses a diagonal matrix;

• the restart-CMA–ES with increasing population size (Auger and Hansen 2005)
— which is a variant where the population is doubled after every restart of
the algorithm. The algorithm restarts if the range of improvement of the
(i) the best solution, (ii) all function values of the most recent generation,
or (iii) the standard deviation of the normal distribution do not improve
for a number of iterations within a certain threshold.

To this day, CMA–ES remains as one of the best performing metaphor-based
metaheuristics available in the literature, and it is commonly employed in
experimental comparisons as a benchmark algorithm.

Differential Evolution (DE) (Price et al. 2005; Storn and Price 1997) is a more
recent evolutionary approach proposed for the approximate solution of con-
tinuous optimization problems that introduced various new concepts to the
EC literature. Similarly to ESs, DE starts by sampling the search space with
a “population” of randomly created “individuals”, that is, real-valued vectors
that are solutions to the optimization problem at hand. A minor difference
of DE with most EAs is in the order in which the evolutionary operators are
applied. Whereas in most EAs the typical order is: parental selection, then
recombination, then mutation, and then survival selection (see Algorithm 1); in
DE, the mutation operator is applied before recombination.

The main novelty of DE is the way in which the mutation operator is defined,
called differential mutation, that is similar to the moves in the Nelder-Mead
simplex search method (Nelder and Mead 1965). In DE, the mutation operator
consists of selecting two existing solutions, computing their vector difference,
multiplying their difference by a scaling factor, and adding this to a third vector
that is selected among the existing solutions and that is different from the two
vectors initially chosen. More formally, in DE, the mutation operator is defined
as follows:

m⃗ i = x⃗ a + β · (x⃗ b − x⃗ c), (2.2)
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where i = 1, . . . , n denotes ith individual in a population of n solutions, x⃗ a,
x⃗ b and x⃗ c are three different vectors chosen from the population, and β is the
scaling factor. It is important to note that, while vector x⃗ a, which is referred to
as base vector, can be selected in many ways, in most cases, it has to be different
from the solution in the population for which it is targeted, that is, vector x⃗ i in
the current population, that is referred to as target vector. The result of applying
Equation 2.2 is a vector called mutant vector, indicated as m⃗ i, and it is one of the
most important concepts in DE.

The creation of the mutant vector is followed by the application of the
recombination operator, in which the mutant vector, m⃗ i, is recombined with
target vector, x⃗ i, in order to create a new vector, u⃗ i, that is referred to as trial
vector. The equation describing how apply the recombination operator and
obtain the trial vector is the following:

u i,k =

m i,k, if (U [0, 1] ≥ pa) ∨ (k = k i
rand)

x i,k, otherwise
, ∀k, ∀i, (2.3)

where k = 1, . . . , d allows to iterate between the values of the vectors, U [0, 1] is
a random number sampled from a uniform distribution, pa is a user-selected
parameter in the range [0, 1] that controls the fraction of values copied from the
mutant vector into the trial vector, and k i

rand is a randomly chosen dimension
that ensures that the trial vector is not a duplicate of the target vector. The newly
generated trial vector u⃗ i only replaces the target vector x⃗ i in the population if it
has better quality, otherwise is discarded. Also, as indicated in Equation 2.3, the
mutation and recombination operators are iteratively applied for every solution
in the population.

The version of DE that we have described above is known in the literature as
the “classic” DE, and it is typically referred to using the mnemonic DE/rand/1/bin.
After “DE”, the second term indicates the way in which the base vector is chosen,
the third term indicates the number of vector differences that are added to the
base vector, and that fourth term indicates the number of values donated by
the mutant vector. Some examples of popular variants of DE indicated using
their mnemonics are: DE/rand/1/bin (classic DE), DE/best/1/bin with uniform jitter,
DE/target-to-best/1/bin, and DE/rand/1/either-or.

In these DE variants, the second term (i.e., the choice of the base vectors) is
either “rand”, meaning that they are chosen at random from the population,
“best”, meaning that the best-so-far solution is used as base vector, or “target-
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to-best”, meaning that base vectors are chosen to lie on the line defined by the
target vector and the best-so-far solution. Also, in all cases, the third term is
“1”, which means that there is only one vector difference being added to the
base vector; however, it is not uncommon to add “2” or more vector differences.
The fourth term specifies the type of recombination being used, the options
showed in the examples are “bin”, which means that the number of values
donated by the mutant vector follows closely a binomial distribution (as in
Equation 2.3), and “either-or”, which means that the trial vector is either a
three-vector recombination or a randomly chosen population vector to which a
randomly chosen vector difference has been added. Finally, the term “uniform
jitter” indicates that the scaling factor becomes a random variable β k that is
sampled anew from a normal distribution N (0, 1) for each dimension k of a
vector.

2.2.2 Swarm Intelligence

Swarm intelligence studies natural and artificial systems composed of a large
number of individuals that coordinate using decentralized control and self-
organization to perform tasks or solve problems that are normally too demand-
ing for a single individual (Bonabeau et al. 1999; Dorigo 2001; Dorigo and
Birattari 2007). Swarm intelligence has therefore a double nature. On the one
hand, it is a scientific discipline that seeks to understand how social animals
coordinate their activities, such as ant colonies cultivating plants, fish schools
moving in milling or bait ball formations, and bacteria building living struc-
tures called biofilms. On the other hand, it is an engineering discipline that
tries to design and implement systems that can solve problems of practical
relevance and that does so by taking inspiration from the observations and
models proposed by the swarm intelligence scientific studies.

The study of swarms of artificial agents that cooperate to solve difficult
optimization problems has led to many innovative metaheuristics. Some of
the most representative ones are: ant colony optimization (Dorigo 1992b; Dorigo
et al. 1991b, 1996; Dorigo and Stützle 2004), particle swarm optimization (Eberhart
and Kennedy 1995; Kennedy and Eberhart 1995), and the artificial bee colony
algorithm (Karaboga et al. 2005; Karaboga and Basturk 2007). Before discussing
these metaheuristics in detail, it is worth noticing that, unlike ESs and DE,
where the metaphor of natural evolution is at the basis of the two approaches,
in the case of SI, each of the metaheuristics has its own source of inspiration
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and specific concepts. In the following subsections, we begin the description of
each SI metaheuristic by discussing first its biological inspiration, which allows
to understand more clearly the motivation of their authors to consider these
behaviors to devise metaheuristic algorithms.

Ant Colony Optimization (ACO) (Dorigo 1992b; Dorigo et al. 1991b, 1996;
Dorigo and Stützle 2004), first proposed in 1991, was developed for solving
hard combinatorial optimization problems. The first ACO algorithm, called
Ant System (AS) (Dorigo 1992b; Dorigo et al. 1991b), was inspired by the work
of Deneubourg et al. (Deneubourg et al. 1990; Goss et al. 1989) who studied
colonies of Argentine ants and found that they are capable of finding shortest
paths between their nests and food sources by depositing pheromones on the
ground and choosing their way using a stochastic rule biased by their perceived
pheromone intensity. In AS, Dorigo et al. showed that, in a way similar to real
ants, artificial ants are capable of building shortest paths on a graph via an
iterative construction process in which new nodes are selected and added to
partial paths using a stochastic selection mechanism that is biased by “artificial
pheromones”, a form of distributed information that is iteratively updated
by artificial ants and represents the knowledge they have acquired about the
quality of the solution components.

To better illustrate how ACO algorithms work, let us consider one iteration
of a popular variant of ACO called Ant Colony System (ACS) (Dorigo and
Gambardella 1996, 1997b). In the example we present, a population of ants
build solutions to a combinatorial optimization problem for which an evaluation
function has been defined that can be used to assess their quality.

First, starting from an empty solution, each ant in the population constructs
a complete solution to the problem by adding one solution component at a time
to a partial solution until it is completed. To do so, each ant k in the swarm
has associated a set Lk

r that contains the feasible solution components the ant
can add to its partial solution at each construction step r. The mechanism
used to select new solution components from Lk

r is given by the transition rule,
which differs among ACO variants and is one of the main components in the
algorithm. The transition rule of ACS uses a parameter q0 ∈ [0, 1] that allows to
alternate between two ways of selecting a solution component.

The first selection mode in ACS, which happens with probability q0, is a
simple greedy selection and consists in taking the most “profitable” element in
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the set Lk
r . This is done as follows:

jk
r = arg max

h∈Lk
r

{τα
h · η

β
h}, (2.4a)

where jk
r is the solution component to be added to the partial solution con-

structed by ant k at construction step r, h is a solution component in the set of
feasible options Lk

r , τh is the pheromone value associated to h, ηh is the value of
the heuristic information associated to h, and α and β are two real parameters
that control the relative influence of the pheromones and the heuristic infor-
mation in the equation. The heuristic information, η, whose usage is typical in
the transition rule of most ACO variants, allows to include problem-specific
information into the solution components selection process.

The second way of selecting a solution component in ACS, which hap-
pens with probability 1− q0, is a probabilistic one, and consists in assigning
probabilities to the solution component in Lk

r and then choosing one based on
these probabilities. This selection method is the most widely used across ACO
variants and it is defined as follows:

pk,j
r =

[τj]
α · [ηj]

β

∑h∈Lk
r
[τh]α · [ηh]β

∀j ∈ Lk
r , (2.4b)

where pk,j
r is the probability for ant k of selecting solution component j ∈ Lk

r

at construction step r. Based on the computed probabilities pk
r , the solution

component to be added to the partial solution is chosen using a random
proportional mechanism (a.k.a. roulette wheel), so that the elements in Lk

r with
higher quality (i.e., those with higher pheromones and heuristic information
values) are given higher probability of being chosen. In addition to roulette
wheel, there are many other selection mechanisms available in the literature
that differ mostly in the type of selective pressure they use—e.g., ranked,
tournament, elitist, etc.

In ACS, after a new solution component j has been added to a partial
solution, the pheromone value of the component is updated using a local
pheromone update procedure as follows:

τj = (1− φ) · τj + φ · τ0, (2.5)

where τ0 is the pheromone lower bound and φ is the local pheromone evap-
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oration rate. Both τ0 and φ are parameters of the algorithm. The goal of
Equation 2.5 is to slightly reduce the pheromone value of the newly added com-
ponent j, so that the probability other ants have of selecting the same sequence
of solution components for their solutions is also reduced, thus creating higher
diversity in the solutions. In one iteration of the ACS algorithm, Equation 2.4
and Equation 2.5 are applied iteratively by every ant until they have all built a
complete solution to the problem.

Last, a global pheromone update procedure takes place in the algorithm,
which consists in increasing the pheromone value of the solution components
in the best solution. The equation to do so is given by:

τj =

(1− ρ) · τj + ρ · ∆τbest
j if j ∈ sbest

τj otherwise
, (2.6)

where ∆τbest
j = F(sbest, j), F(·, ·) is a function that returns the amount of

pheromone to be added to each element j ∈ sbest, sbest is either the iteration-best
of the best-so-far solution constructed by an ant, and ρ is a parameter called
evaporation rate. The goal of the global pheromone update procedure is to
use the best quality solution to provide positive feedback to other ants in the
following iterations.

In addition to AS and ACS, many other ant-based algorithms have been
proposed in the literature (Dorigo and Stützle 2018; Dorigo and Stützle 2004).
However, despite the vast diversity of ideas and ways to implement an algorithm
of this kind, a large majority of them can be regarded as particular instances of
the ACO metaheuristic framework (Algorithm 2). Some well-known examples
of algorithms following the definition of this framework are ACS (Dorigo and
Gambardella 1996, 1997b), MAX –MIN ant system (Stützle and Hoos 1996,
2000), AntNet (Di Caro and Dorigo 1998), ACOR for continuous domains (Socha
and Dorigo 2008), ACOMV for mixed-integer variables (Liao et al. 2014b), and
Pareto-ACO (Alaya et al. 2007) and m-ACO (Iredi et al. 2001) for multi-objective
optimization.

As shown in Algorithm 2, the ACO metaheuristic framework defines the
guidelines to instantiate a constructive, population-based algorithm based on
four main algorithmic components: (i) a stochastic solution construction, involving
the routines needed by the artificial ants to construct solutions, such as the
transition rule; (ii) a local pheromone update, that is, an optional procedure that
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Algorithm 2 ACO metaheuristic

1: begin
2: set initial parameters
3: while termination condition not met do
4: repeat
5: apply stochastic solution construction
6: apply local pheromone update ▷ optional
7: until construction process is completed
8: apply daemon actions ▷ optional
9: apply pheromone update

10: end while
11: return best solution found
12: end

allows local modification of the pheromone trail while constructing solutions;
(iii) daemon actions, which are optional routines such as local search (Hoos
and Stützle 2004) to improve the solutions constructed by the ants; and (iv)
a pheromone update, involving the routines to modify the pheromone trails in
order to ensure an adequate compromise between exploration and exploitation
of the search space. In principle, using this framework, ACO algorithms can
be applied to any combinatorial optimization problem for which a stochastic
solution construction can be defined.

Particle Swarm Optimization (PSO) (Eberhart and Kennedy 1995; Kennedy and
Eberhart 1995) was proposed in 1995 for the approximate solution of continuous
optimization problems. The first developments of PSO were inspired by studies
of the dynamics and social interactions of bird flocks. These studies showed
that, by following a few simple rules, simulated bird flocks could display a
strong synchronization in initiation of flight, turning while flying, and landing
(Heppner and Grenander 1990; Poli et al. 2007). In the proposed PSO algorithm,
particles (which correspond to birds in a flock and represent a solution of the
considered optimization problem) try to discover the region of the search space
where the best quality solutions are located by moving in directions that are
estimated based on the best locations that they and their neighboring particles
have visited in the past.

In the standard version of PSO (StaPSO) (Shi and Eberhart 1998) (Algorithm
3), the concepts of visual communication, flying coordination, and birds’ cogni-
tive capabilities were translated into a computational model composed of three
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main elements: (i) a cognitive component that allows each particle i in the swarm
to memorize the best position it has visited so far, called personal best position
p⃗ i; (ii) a social component that allows a particle to know the best position l⃗ i ever
found by any of the particles in its neighborhood; and (iii) a velocity update rule
and a position update rule that specify how the particles move in the search space
and that are defined respectively as follows:

v⃗ i
t+1 = ωv⃗ i

t + φ1Ui
1t
(

p⃗ i
t − x⃗ i

t
)
+ φ2Ui

2t
(⃗
l i
t − x⃗ i

t
)
, (2.7)

x⃗ i
t+1 = x⃗ i

t + v⃗ i
t+1. (2.8)

Algorithm 3 The standard PSO algorithm

1: begin
2: set initial parameters
3: t← 0
4: repeat
5: for i← 1 to size(swarm) do
6: find l⃗ i in the neighborhood of i
7: apply velocity update rule ▷ e.g., Equation 2.7
8: apply position update rule ▷ e.g., Equation 2.8
9: end for

10: update particles’ personal best p⃗
11: t← t + 1
12: until termination criterion is met
13: return best solution found
14: end

As shown in Algorithm 3, the position of the particles (vectors x⃗), which
represent candidate solutions to the optimization problem, are updated in every
iteration t of the algorithm by computing a new velocity vector (Equation 2.7)
that is added to their current positions (Equation 2.8). The computation of a
particle’s new velocity makes use of two random diagonal matrices, Ui

1t and
Ui

2t, to introduce diversity to the particle’s movement and of three parameters,
ω, φ1 and φ2, to control, respectively, the influence of the previous velocity
(i.e., the particle’s inertia), the cognitive component and the social component.
The role of vectors p⃗t and l⃗t in the velocity update rule is to combine the
knowledge acquired by each particle during the search with the knowledge of
the best-informed individual in the neighborhood of the particle.

In PSO, the social component of a particle is determined by its neighborhood,
which can be defined in many different ways, allowing in turn to create many
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different population topologies. For example, a simple, low-connected topology
such as a ring is created by assigning to each particle’s neighborhood the two
adjacent (i.e., closest) neighbors; while the fully-connected, sometimes referred
to as gbest, topology is created by assigning all particles to the neighborhood
of all other particles. In this latter case, the local best particle is also the global
best and its position is indicated by g⃗t. When using the ring topology, the
information about where the best-so-far solution is located spreads slowly
among particles, whereas with the fully-connected topology the entire swarm
knows immediately the position of the best-so-far solution at each iteration.2

Over the years, many improvements and modifications have been pro-
posed for PSO. Some of the best-known variants of this metaheuristic are
the constrained coefficient PSO (Clerc and Kennedy 2002), the locally convergent
PSO (Bergh and Engelbrecht 2002), the locally convergent rotation invariant PSO
(Bonyadi and Michalewicz 2014), the cooperative PSO (Bergh and Engelbrecht
2004), the restart PSO (García-Nieto and Alba 2011), the cooperative co-evolution
PSO (Li and Yao 2011), the group-based PSO with random diagonal matrices (Zyl
and Engelbrecht 2016), and the “charged” particles (Blackwell and Bentley 2002)
and multi-swarms PSO (Blackwell and Branke 2004, 2006).

Artificial Bee Colony (ABC) (Karaboga et al. 2005; Karaboga and Basturk 2007),
first introduced in 2005, is an optimization technique proposed for tackling
continuous optimization problems. ABC was inspired by the self-organization
and division of labor observed in honeybee colonies, where individuals special-
ize in specific tasks and divide accordingly in order to explore different food
sources in parallel and exploit more intensively the ones that are more profitable
(Karaboga and Akay 2009). In ABC, the food sources exploited by the hive
represent candidate solutions to the optimization problem, and the honeybees
represent either local search procedures in charge of exploring neighboring so-
lutions, or procedures that are used to create new solutions at random. In plain
computational terms, ABC is a combination of parallel local search mechanisms
with the occasional introduction of new, randomly created solutions (Aydın
et al. 2017b).

As shown in Algorithm 4, the standard implementations of ABC consist
of three steps that are repeated iteratively. In the first step, called employed
bees, each solution x⃗ i in the set of candidate solutions (referred to as reference

2Note that there are many others topologies studied in the literature of PSO, including
wheels, lattices, stars, clusters, and randomly assigned edges (Mendes et al. 2004).
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Algorithm 4 The standard ABC algorithm

1: set initial parameters
2: repeat
3: apply employed bees step
4: apply onlookers bees step
5: apply scout bees step
6: until termination criterion is met
7: return best solution found

solutions in the ABC literature) is used to create a new solution x⃗ ′ i by modifying
a randomly chosen dimension j as follows:

x′ ik =

x i
k + ψi

k(x i
k − x r

k ), if j = k

x i
k, otherwise

, (2.9)

where k indicates the kth entry of the vector, ψi
k is a random number in the range

[−1, 1], and x r is a randomly chosen reference solution different from x⃗ i. Also,
in the employed bees step, when the quality of the newly created solution x⃗ ′ ik is
higher than the one of x⃗ i

k, the newly created solution x⃗ ′ ik replaces x⃗ i
k in the set

of reference solutions.

The onlookers bees step is similar to the employed bees one; the only difference
consists in the use of a probabilistic mechanism to select the reference solutions
that will be modified. Therefore, as opposed to the employed bees step where all
the reference solutions in R are used to create new solutions regardless of their
quality, in the onlookers bees step, the probability of a solution being selected is
proportional to its quality, so that the best quality ones are given higher chances.

Finally, in the scout bees step, each reference solution has a counter initialized
to zero that increases by one when a new solution with lower quality has been
created or that re-initializes to zero otherwise. If the counter reaches the value
of a parameter λ that limits the maximum number of lower quality solutions
that can be consecutively created, the reference solution is removed from the
population and a new one is randomly created with a counter initialized to
zero.

Even though ABC is a relatively recent approach, it already has a rich
literature with many variants and experimental studies investigating ways to
enhance its performance. For example, in (Akay and Karaboga 2012), it was
showed that the standard version of the algorithm has a slow convergence rate
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due to the fact that only one dimension of the solutions is modified at a time.
This fact motivated the authors of (Akay and Karaboga 2012) to introduce two
changes that have become common design choices in ABC implementations:
(i) a parameter MR to probabilistically control the number of dimensions to be
modified at each time for each solution, and (ii) the use a parameterized range
[−a, a] for computing the value of ψi

k, instead of using the fixed range [−1, 1].
Additionally, some studies have found a faster convergence speed and an
improved performance on specific problems by using alternative initialization
schemes, such as chaotic maps (Alatas 2010; Lu et al. 2014; Xiang and An 2013)
and opposition-based learning (El-Abd 2011), which produce also a higher
diversification of the solutions, thus helping to escape from local stagnation.

There have been as well studies proposing modifications to the main al-
gorithm component of ABC, Equation 2.9, in order to have a better balance
between exploration and exploitation of the search space. In general, most
changes proposed to this equation are based on ideas employed in other meta-
heuristic approaches, such as PSO and differential evolution (Storn and Price
1997). For example, the variant proposed in (Xiang and An 2013) replaces
vector x⃗ r by the best-so-far solution with the goal of enhancing exploitation of
the search space, which is similar to the use of vector g⃗t in PSO. Also similar
to PSO, in (Gao et al. 2014), the authors proposed to guide the search by a
random neighbor or by the global-best solution, whereas in (Li and Yang 2016)
the authors gave artificial bees a memory so that they can keep track of their
personal best positions. In (Xiang et al. 2014), the authors proposed a search
equation for ABC that was inspired by the classical differential evolution (DE)
algorithm DE/rand/1/bin (Price et al. 2005), in which artificial bees search around
the best solution found in the previous iteration.

2.3 Summary

In this chapter, we discussed the fact that many optimization problems of
practical relevance are very complex and cannot be tackled in an efficient way
with exact methods. Examples of this type of problems are NP-hard problems
in the discrete domain, and non-differentiable, multimodal functions in the
continuous domain. The computational requirements (time and/or memory)
needed by exact methods to solve complex optimization problems to optimality
can be exceedingly demanding, making their application either limited to
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a small number of cases or altogether impractical. Unlike exact methods,
metaheuristics are capable of finding high-quality solutions to these difficult
optimization problems in short computational times, but offer no guarantees
about the optimality of the solutions.

Another important subject reviewed in this chapter is the use of inspiration
from other fields of knowledge to come up with new metaheuristic designs.
There are many metaheuristics that have been inspired by natural occurring
optimization processes, such as the phenomenon of evolution, which inspired
evolutionary computation, and the collective behavior of some species, such
as ant colonies and bird flocks, which inspired, respectively, ant colony opti-
mization and particle swarm optimization. In all these cases, the metaphors
that inspired the metaheuristics allowed their authors to develop innovative
optimization algorithms that introduced novel concepts to the field. However,
as we also pointed out in this chapter, in order for this approach to work, there
has to be a sound, scientific motivation to use a new metaphor, as well as a
careful abstraction of the behavior into algorithm concepts.



Chapter 3

How to Design Metaheuristics:
Manual vs. Automatic Approaches

3.1 Manual Design of Metaheuristics

Historically, the creation of new metaheuristics, or of metaheuristics implemen-
tations with improved performance, was done by algorithm designers who
manually devised new designs or introduced modifications to already existing
ones based on their knowledge (either empirical, theoretical or intuitive) and
expertise—something typically referred to as manual design (López-Ibáñez et al.
2016; Stützle and López-Ibáñez 2019).

Even though manual design has been useful for the implementation of many
high-performing metaheuristics, it is becoming less and less efficient over time.
Indeed, the design of a high-performing implementation of a metaheuristic
requires both to choose among large sets of different possible metaheuristic
components and to fine-tune the value of their parameters, and it is often
unrealistic to rely on the developers’ knowledge and expertise to perform these
tasks efficiently. This is because human algorithm designers are biased by
their previous experience and limited in the number of designs they can try,
making the design process time-consuming and error-prone. In practice, the
main disadvantages of manual design are that it limits the flexibility with which
new metaheuristic designs can be explored and the generality of the developed
metaheuristics. Additionally, the manual design process is often directed by
subjective choices that might make the design process difficult to understand a
posteriori.

The flexibility limitation is caused by the fact that metaheuristics have been

29



30 CHAPTER 3. HOW TO DESIGN METAHEURISTICS: MANUAL VS. AUTOMATIC

traditionally conceived as monolithic blocks—that is, they have a predefined and
often rigid structure. This rigid structure constrains the options for modifying
the metaheuristics’ behavior: the designer can adjust the metaheuristic’s pa-
rameter values or redefine the metaheuristic’s components (Bezerra et al. 2016).
However, the many high-performing hybrid metaheuristics implementations
that exist today (Blum and Roli 2008; Maniezzo et al. 2022; Talbi 2002, 2013)
have highlighted the importance of being able to propose metaheuristic designs
that go beyond the bounds of the original monolithic block. Unfortunately,
doing so manually can be very difficult.

The generality limitation is caused by the fact that in most cases the initial
development of a metaheuristic is done with some application in mind; the
performance of the developed metaheuristic tends therefore to be very good
for the specific problem or problem class for which the metaheuristic was
developed, but it will often be not so good for other problems or problem
classes. In general, a metaheuristic’s performance tends to drop considerably
when it is applied to a problem that has very different characteristics from those
for which it was originally developed, or when the optimization scenario has
specific constraints that were not considered in the initial metaheuristic design,
such as being allowed to run only for a limited time or being unable to use
problem-related information (e.g., black-box scenarios or ill-defined real-life
problems) (Blackwell and Branke 2006; Hansen et al. 2011). In those cases, a new
implementation of the metaheuristic has to be designed for the new problem in
order to obtain good results.

Unfortunately, the process of manually adjusting a metaheuristic so as to
propose a new metaheuristic implementation is a laborious task riddled with
pitfalls. First of all, as we said above, the designer of the new metaheuristic
implementation may start by trying to enhance the behavior of the metaheuris-
tic by using different parameter values or by modifying one or more of the
metaheuristic’s components in the implementation that, according to his/her
knowledge and expertise, may be hindering the metaheuristic’s performance. If
this process, which depends solely on the ability of the human designer, does
not produce the desired outcome, then, the only option might be to design
and implement a new metaheuristic from scratch. This latter task, however,
is even more challenging than the previous one, since the algorithm designer
now needs to try to come up with a better design guided, once again, only by
his/her knowledge and previous experiences.

Finally, manual design makes the design of a metaheuristic a subjective
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process, where the rationale behind certain design decisions remains hidden in
the mind of the human designer and what is learned by the designer is, therefore,
not shared with the rest of the research community. In practice, manual design
consists in choosing, by trial and error, a good algorithm design from a large set
of options. To make the task more manageable, algorithm designers tend to not
consider certain types of design that, based on their knowledge, they believe
they would not work for the problem at hand. However, which designs are
not considered and why they are not considered is rarely written in published
technical papers; as a result, most of the times information on the designs
that have been tried and that were not particularly successful gets lost. This is
unfortunate because having access to this type of “negative” information would
be useful to guide the creation of new designs in the future.

3.2 Automatic Design of Metaheuristics

As the need to solve increasingly complex problems more efficiently has grown,
so has the need for better and more efficient problem solving methods. This has
motivated many researchers in the field to look for alternative design approaches
that are not subject to the downsides of manual design. In particular, one of
the main goals of the research done in this direction has been to reduce the
heavy reliance on human algorithm designers, which makes the design process
biased, time-consuming and error-prone. Automatic algorithm design methods
are a powerful alternative to manual design. These methods remove the need
for human intervention by exploiting recent advances in automatic algorithm
configuration methods.

The automatic design of metaheuristics implementations is a relatively new
paradigm, in which the creation of a metaheuristic implementation is tackled as
an optimization problem that consists in finding a combination of metaheuristic
components and parameter settings that will perform very well when applied
to the optimization problem considered. To do so, automatic design methods
for metaheuristic implementations rely on two main ingredients: a design space—
that is, the set of all possible metaheuristic’ designs that can be obtained by
combining metaheuristic components and parameters settings; and an automatic
configuration tool—that is, a tool that allows the exploration of the design space
of the metaheuristic. In recent years, a number of metaheuristic software
frameworks have been proposed that greatly facilitate the use of the automatic
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design methods to create high-performing metaheuristic implementations.
In the metaheuristics literature, the methods that target the design of meta-

heuristic implementations as an optimization problem are sometimes referred
to as hyper-heuristics. A modern definition of the term hyper-heuristic is the
following: “a search method or learning mechanism for selecting or generating
heuristics to solve computational search problems” (Burke et al. 2013). Initially,
however, the research on hyper-heuristics was not focused on the automatic de-
sign of metaheuristic implementations, but rather, on the selection of performing
implementation from a portfolio of pre-existing metaheuristic implementations,
the so-called “heuristics for choosing heuristics” for combinatorial optimization
problems. Nowadays, the automatic design of metaheuristics is approached by
hyper-heuristics in the same way as automatic design methods, i.e., by defining
a metaheuristic design space and using an optimization algorithm to explore
it and find a performing design. In fact, in the vast majority of cases, the
only difference between automatic design methods and hyper-heuristics is that
hyper-heuristics explore the design space using genetic programming (Koza
1992; Sabar et al. 2013).

3.2.1 Metaheuristic Design Space: The Component-Based View

In order to define a metaheuristic design space, the first step is to come up with a
component-based view of the considered metaheuristic. To do so, the algorithm
designer first identifies the many different ways in which a metaheuristic’s com-
ponents can be implemented (e.g., by studying the different implementations of
the metaheuristic that have been proposed in the literature), and then groups
them together based on their functionality. The components obtained in this
way define the metaheuristic design space and are combined using an automatic
configuration tool (see next section). The automatic configuration tool considers
these components as parameters—that can be numerical, categorical, and subor-
dinate—to be optimized. Numerical parameters are the classical parameters
whose value is either a real or an integer number—e.g., the mutation rate in
EC, the evaporation rate in ACO, or the particle’s inertia in PSO. Categorical
parameters are alternatives for a particular component’s functionality—e.g.,
the recombination operator in EC, the solution construction rule in ACO, or
the population topology in PSO. Finally, subordinate parameters are those that
are only necessary for particular values of other parameters—e.g., if, in ACO,
the MAX –MIN Ant System pheromone update rule is selected, then the
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subordinate parameters controlling the pheromone lower and upper bounds
should also be selected. All these parameters form the parameter configuration
space C that will be used by the configuration tool, as explained in the next
section.

3.2.2 Automatic Configuration Tools

Automatic configuration tools (ACTs) were initially developed to automatically
select the parameter values in parameterized software in order to increase its
performance as much as possible (Audet and Orban 2006; Nannen and Eiben
2006). However, over the years, more general-purpose ACTs have been proposed
that allow also to select the algorithm components of the implementation.
The use of ACTs took off in the last decade not only because they generate
algorithms that, being tailored for a specific problem, most of the times have
a very good performance, but also thanks to the higher availability of cheap
computing power, as they can be very computationally expensive. The working
mechanisms of ACTs are diverse, ranging from experimental design techniques
to surrogate-model based approaches. The specific mechanisms implemented in
the ACT determine how computationally-intensive it is, the type of parameters
it can handle, and the type of post-configuration analyses that can be conducted.

Problem instances I Assess the performance of M(c) on some i in I Return best configuration c*
Configuration task performed by an ACT

Select or generate configuration c from C

Is b over?noComputational budget b

Metaheuristic M and its parameter configuration space C
yes

Figure 3.1: General workflow followed by an automatic configuration tool (ACT)
used to configure a metaheuristic

The general workflow followed by ACTs is depicted in Figure 3.1. Given a
parameter configuration space C, an iterative process is carried out in which
the metaheuristic M being configured is executed with different parameter
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configurations c on the set of test instances I until a given computational budget
b is fully used. The different approaches that have been investigated so far to
develop ACTs can be categorized as follows:

• Experimental design techniques, that are based on the use of statistical
techniques to evaluate aspects such as the statistical significance of perfor-
mance differences; an example of these techniques is CALIBRA (Adenso-
Dıéaz and Laguna 2006).

• Heuristic search techniques, that consist, as their name suggests, in the
application of metaheuristics to tackle configuration tasks. Examples are
ParamILS (Hutter et al. 2009), which implements an iterated local search
in the parameter configuration space; and the work presented in (Yuan
et al. 2012), where the covariance matrix adaptation evolution strategy
(CMA-ES) (Hansen and Ostermeier 2001) is used for a configuration task
of numerical parameters.

• Surrogate-model based techniques, that try to predict the shape of the con-
figuration landscape based on previous execution of the algorithm with
the goal of avoiding to waste executions on the unpromising regions. The
best-known technique of this type is the sequential model-based algorithm
configuration (SMAC) (Hutter et al. 2011).

• Iterated racing approaches, that are based on the idea of performing sequen-
tial statistical testing using the Friedman test and its related post-tests in
order to create a sampling model that can be refined by iteratively “racing”
candidate configurations and discarding those that perform poorly. Vari-
ous racing algorithm are implemented in the irace package (López-Ibáñez
et al. 2016).

While ACTs differ mostly in the way they approach the automatic configu-
ration problem and in their generality, there are also practical differences that
may be important for the user. For example, when used out-of-the-box, iterated
racing approaches, such as irace, can impose a higher computational overhead
during the configuration process than surrogate model-based approaches, such
as SMAC, thus making this latter more suitable for configuration scenarios with
very expensive objective functions. However, both irace and SMAC and other
actively maintained ACTs allow nowadays to make changes to their sampling
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models in order to reduce computational times in expensive configuration sce-
narios or to perform a more intensive search if computational time is abundant.
Another important difference between ACTs is the use of early termination
mechanisms for poorly performing configurations, also called capping or adaptive
capping (Hutter et al. 2009; López-Ibáñez et al. 2016), which help to make a more
efficient use of the computational time available, and are particularly useful
in those cases where the optimization problems involve time-related objective
functions. Finally, a common feature of most ACTs is that they provide lots of
useful data that can be used for conducting post-configuration analyses, such
as a parameter importance (Hutter et al. 2014; Pérez Cáceres et al. 2017) and
ablation analysis (Fawcett and Hoos 2016).

3.3 Summary

In spite of its inherent disadvantages, the use of manual design is still by far the
most common way to approach the creation of new metaheuristics. In particular,
manual design makes it difficult to explore new metaheuristic designs when the
number of available design choices is large, which in turn limits the generality
with which the metaheuristic can be applied to broader classes of problems.
Additionally, in manual design, algorithm designers make numerous choices
that are rarely registered for future consideration, which makes the design
process subjective and typically quite difficult to reproduce.

Currently, one of the most efficient alternatives to manual design is automatic
design. In automatic design, the process of designing a metaheuristic imple-
mentation is formulated as an optimization problem that consists in finding
the combination of components and parameter values that offer the best perfor-
mance. To apply the automatic design approach, the first step is to define the
design space of the metaheuristics using a component-based view. The design
space is an abstraction of the many different ways in which a metaheuristic
can be implemented, which allows both to replicate known designs as well
as to explore new ones never considered before. To automatize the task of
exploring a metaheuristic’s design space, researchers have developed a number
of automatic configuration tools (ACTs). Some state-of-the-art ACTs, such as
irace and SMAC, have been increasingly used in experimental studies, which
show that they are capable of creating high-performing implementations, even
in those cases where the design space is large and complex.





Chapter 4

The “Novel” Metaphor-Based
Metaheuristics Issue

In addition to the general issues with manual design discussed in Chapter 3,
there is the problem that manual design has often been (mis)guided by opti-
mization processes observed in natural systems that were used as a source of
inspiration. Even though this approach was very successful in the early days
of metaphor-based metaheuristics, when very innovative and well-performing
metaheuristics—such as evolutionary computation, ant colony optimization,
simulated annealing, and particle swarm optimization—were proposed, this is
no longer the case today. Indeed, because of the success of these early metaphor-
based metaheuristics, many researchers started to create “novel” metaheuristics
using metaphors for which there was no clear mapping between an optimiza-
tion process observed in the inspiring natural behavior and the optimization
process implemented in the corresponding “novel” metaheuristic.

As a result, in the last few decades, hundreds of metaphors from the most
diverse set of natural, artificial and even supernatural behaviors, have been
used to develop “novel” metaphor-based metaheuristics. In most cases, these
metaheuristics have been created based on simplistic mathematical models
that vaguely match the behaviors that inspired them and have been presented
using overemphasized metaphoric descriptions that make their understanding
unnecessarily difficult (some examples are given below). Recently, however, the
real novelty of some of the most widespread among these “novel” metaphor-
based metaheuristics has been the focus of rigorous analyses, which have
provided compelling evidence that, rather than being novel, these metaphor-
based metaheuristics are either the same, or at best minor variations, of well-
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established metaheuristics, and that their only real novelty is in the use of new
metaphors and terminology (Armas et al. 2022; Camacho-Villalón et al. 2019,
2022a, 2023, 2020; Piotrowski et al. 2014; Thymianis and Tzanetos 2022; Tzanetos
and Dounias 2021; Weyland 2010).

In particular, three main problems have been identified in papers proposing
“novel” metaphor-based metaheuristics (Aranha et al. 2022). First, the introduc-
tion of useless metaphors that do not have any scientific basis—e.g., zombies,
reincarnation, and intelligent water drops—and of new, unnecessary terminology
that makes it difficult to understand the ideas proposed in these metaheuris-
tics. Second, the lack of any significant novelty; indeed, it is typically the
case that the ideas proposed in these metaheuristics are already known in the
field. Third, the use of poor experimental validation and comparison practices,
such as comparing “novel” metaheuristics run on recent computers against
old algorithms run on old computers, and the use of benchmark testbeds that
contain biases that can be exploited by the “novel” metaheuristics, thus favoring
their performance.1

The negative consequences of the “novel” metaphor-based metaheuristics
trend extend well beyond the existence of a few algorithms inspired by far-
fetched behaviors that were presented in papers with methodological issues. In
fact, the hundreds of “novel” metaphor-based metaheuristics already published
in the literature (Campelo and Aranha 2021a) are the result of a pernicious
trend grounded on unscientific practices. Unfortunately, this unhealthy trend is
still far from being over; this is due, in large part, to the prevalence of manual
design as the main way to create metaheuristics. In the remainder of this
subsection, we explain in detail why “novel” metaphor-based metaheuristics
are so problematic, what are some of their negative consequences, and what
efforts have been done so far to address them.

4.1 The Metaphor Rush

Taking inspiration from natural processes has played a major role in the devel-
opment of many innovative solutions. In particular, in science and technology,
there are many instances of the use of this approach, a few well-known exam-

1An example of this was provided in (Kudela 2022), where it was experimentally demon-
strated that the “novel” slime mold, butterfly and Harris hawks metaheuristics, among others,
make use of center-bias operators that increase their efficiency when the testbed includes
problems that have the optimal solution located in the center of the search space.
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ples are synthetic, self-cleaning materials inspired by some plants leaves (Wang
et al. 2020), the Japanese bullet trains whose aerodynamic front shape was
inspired by a bird’s beak (Crandell et al. 2019), and a number of learning and
intelligent algorithms, such as those found in the evolutionary computation and
swarm intelligence research fields, whose sources of inspiration were discussed
in detail in Chapter 2. Additionally, in virtually all domains and fields, it is
common to use metaphors to present abstract ideas in order to help convey
more easily their meaning, such as the metaphor of trees in graph theory that
helps to visualize a specific type of data structure, or the fact that we use the
word mouse to refer to a device that looks like a small rodent attached to our
computer (although wireless and ergonomic mice have rendered the metaphor
much less effective).

Starting in the mid 2000’s, the field of optimization has witnessed a true rush
to find “interesting” behaviors, mostly from natural and social phenomena, that
can be used to devise reputedly “novel” metaheuristics. In the numerous papers
proposing this kind of metaheuristics, the authors present their metaheuristics
using the following sequence of steps: (i) they start by claiming to have found
a new behavior that has applications in optimization; (ii) they present why, in
their opinion, the behavior is interesting, followed by an extensive list of other
“novel” metaheuristics based on “interesting” behaviors; (iii) they describe their
proposed metaheuristic using the terminology of the behavior instead of the
one that is normally used in optimization; and (iv) they compare the “novel”
metaheuristic with other optimization techniques that are often old and whose
performance is much worse than the state of the art.

To give a concrete example, we can consider the grey wolf optimizer (Mirjalili
et al. 2014). According to its authors, this metaheuristic is inspired by “the
way grey wolves organize for hunting” following a “strict social hierarchy”. To
describe the metaheuristic, the authors introduce a new terminology in which
candidate solutions are referred to as “wolves”, the three best solutions in the
“pack” (i.e., the set of candidate solutions) are referred to as the “alpha”, “beta”
and “delta” wolves, and the optimum of the problem is the “prey” the wolves
are hunting. As shown in (Camacho-Villalón et al. 2023, 2020), the grey wolf
optimizer metaheuristic is based on the idea of computing, at each iteration,
the centroid of a hypertriangle whose vertices are the position of the three
best solutions (i.e., “alpha”, “beta” and “delta”), and of using the computed
centroid to bias the movement of the rest of the solutions (i.e., the “pack”).
The performance of the grey wolf optimizer metaheuristic was evaluated on a
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set of 29 continuous functions, all with low dimensionality and/or with the
optimum at the center of the search space, as well as on some classic engineering
design problems; it was compared against PSO, DE, and the covariance matrix
adaptation evolution strategies (CMA-ES) (Hansen and Ostermeier 2001), with
the outcome that it was found to have a similar performance. This similarity
in performance, however, is not a surprise, since the “novel” grey wolf optimizer
metaheuristic was later shown to be nothing more than a simple variant of PSO
(Camacho-Villalón et al. 2023, 2020).

Another example of a popular “novel” metaphor-based metaheuristic is
cuckoo search (Yang and Deb 2009), which is described using the metaphor
of “cuckoo’s parasitic behavior”. In this metaheuristic, initial solutions are
referred to as “cuckoos” while solutions that have been perturbed are referred
to as “eggs”. The cuckoo search metaheuristic is based on the idea that some
“cuckoos” lay a number of “eggs” in the “nests” of other birds (which are
random points in the search space) and some of these “eggs” will still exist
in the next iteration and some other will not. The authors of cuckoo search
compared their metaheuristic against a genetic algorithm and the first version
of PSO. The comparison was run using 13 continuous functions that were all
with optimum at the center of the search space and for which the authors did
not provide any information about their dimensionality. Because of this, it is
difficult to evaluate the quality of the results they obtained. However, this might
be considered irrelevant given that, perhaps unsurprisingly for those familiar
with evolutionary computation, cuckoo search turned out to be an evolution
strategy that uses the crossover of differential evolution (Camacho-Villalón et al.
2022a), and therefore does not give any contribution to the state of the art.

4.2 The Consequences of the Metaphor Rush

Over time, the number of papers proposing “novel” metaphor-based meta-
heuristics has grown to several hundreds—at the time of writing this article, it is
estimated there are around 500 metaphor-based metaheuristics (Ma et al. 2023;
Tzanetos and Dounias 2021). Very often, the authors of these papers make very
strong, and wrong, statements that go from saying that they are proposing a
novel technique inspired by some sort of “intelligent” behavior, to claiming they



4.2. THE CONSEQUENCES OF THE METAPHOR RUSH 41

have found a new and unexplored field.2 Unfortunately, despite the complete
lack of evidence to support such statements and the increasing awareness about
the problems that these “novel” metaheuristics are causing in the research field,
a part of the metaheuristics community is under the delusion that this is a good
approach and continues to actively propose more metaheuristics of this kind.

One of the main problems caused by the constant publication of papers
proposing “novel” metaheuristics has been the fragmentation of the literature
into dozens of barely distinguishable niches (Aranha et al. 2022; Campelo and
Aranha 2021b). A direct consequence of this fragmentation is a confusing
literature, in which the same ideas and concepts are being reintroduced over
and over again using many different terminologies derived from the use of
new metaphors. This, in turn, has made the comparisons of metaheuristics
increasingly challenging. Indeed, just to make an example, it is very difficult to
compare the optimization capabilities of “grey wolves hunting” with those of
“cuckoos laying eggs”. But, even worse, when one analyses the mathematical
models proposed for these metaheuristics more closely, they turn out to be
either the same or minor variations of those proposed in optimization techniques
published many years before.

The hundreds of “novel” metaphor-based metaheuristics already published
have popularized the wrong idea that having found a new “interesting” behavior
and developing a simplistic mathematical model based on it justifies its inclusion
in the metaheuristics literature, regardless of whether or not it brings novel and
useful ideas to the field. It is very worrying indeed that articles that have serious
methodological flaws and total lack of scientific rationale3 are so constantly able
to pass the peer review process of scientific venues, many of which seem—most
unfortunately—to be a lot more interested in future citation counts than in
publishing quality papers with meaningful contributions.

Finally, there is the damage caused to the reputation and external perception
of the field of metaheuristics.4 In particular, it is causing damage to the fields
of swarm intelligence and evolutionary computation that are often used as

2See for example: Satish Gajawada. POSTDOC: The Human Optimization. Computer
Science & Information Technology (CS & IT), CSCP 3 (2013): 183–187. Pdf available at
https://www.airccj.org/CSCP/vol3/csit3918.pdf

3Consider, for example, the following excerpt from the intelligent water drops paper: “In
nature, we often see water drops moving in rivers, lakes and seas. . . We also know that the water drops
have no visible eyes to be able to find the destination (lake or river).” More on this in Chapter 5.

4This issue was brilliantly exposed by Sörensen in (Sörensen 2015) as well as in a parodic
(yet insightful) paper titled “A Spectral Approach to Ghost Detection” (https://sigbovik.org
/2013/proceedings.pdf), whose reading we strongly recommend.

https://sigbovik.org/2013/proceedings.pdf
https://sigbovik.org/2013/proceedings.pdf
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examples to justify the use of metaphors. The misconception is that, even
though, in particular cases and if done properly, a metaphor can guide the
design of a successful metaheuristic, this happens very rarely and in most cases
it only ends up in unnecessary confusion.

4.3 The Role of the Academic Research System

It would be very hard to explain the existence of a trend such as the one of
the “novel” metaphor-based metaheuristics without considering some of the
problems that exist in the current academic research system. The academic
research system is the framework used by academic researchers to carry out,
review and disseminate scientific contributions, and involves the interaction
of many different people with many different interests and goals. Some of the
problems that exist in the current academic research system are:

• Misuse of incentives: One of the most pervasive problems in the academic
research system is the use of incentives (e.g., financial support, professional
recognition, academic promotion, etc.) as levers to increase “productivity”,
which is measured as a function of the number of articles a researcher
has published in a certain period of time (Edwards and Roy 2017). This
way of measuring productivity, that favors quantity over quality, puts an
excessive pressure to publish, creating a phenomenon otherwise known
as publish-or-perish (Harzing 2010).

• Journal impact factor manipulation: The journals impact factor (JIF) is
widely used as a measure of the quality and influence of a journal within
the field and, by extension, of the quality of the work produced by the
researchers that publish in that journal. Artificially inflating JIFs (either
by authors excessively citing some specific sources or by editors asking
authors to cite the articles published by their journals) not only results in
inaccurate information, but also puts editors under pressure to game this
metric in order to “attract” submissions (Ioannidis and Thombs 2019).

• Weakness of the peer-review process: One critical problem of the academic
research system is that the peer-review process that we use to control the
quality of the publications is not robust enough to detect and prevent
dishonest behaviors (Edwards and Roy 2017; Weyland 2010). In order for
the peer-review process to work well, it is unrealistically assumed that
everyone involved will always play by the rules. Unfortunately, there is an
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increasing number of examples showing that this is not always the case
(Sörensen 2015; Sörensen et al. 2019).

• Conflicts of interest: The experimental sciences have been shown to be par-
ticularly vulnerable to the existence of conflicting interests in the academic
research system. While having different interests is not by itself a problem,
when the goals of the different parties involved in scientific research are
unaligned or conflicting, the consequences can be detrimental, creating
problems, such as biases, inaccuracy in the results, and false findings
(Ioannidis 2005). The existence of conflicting interests in experimental
sciences has been recognized as one of the main underlying causes of the
reproducibility crisis (Baker 2016; López-Ibáñez et al. 2021).

Even though the problems of the academic research system are widespread
and affect different scientific fields in different ways, it is not difficult to see
the role they have played in letting the trend of the “novel” metaphor-based
metaheuristics grow larger and larger over the years. Indeed, the existence
of these problems can help us to understand (i) why some authors can be
motivated to propose “novel” metaheuristics in vast quantities, (ii) why most of
the papers of this kind include a long list of references to other similar “novel”
metaheuristics, (iii) why the papers proposing “novel” metaheuristics are so
constantly able to pass the peer-review process of some publication venues,
and (iv) why some publication venues may welcome articles proposing “novel”
metaheuristics regardless of their real contribution and quality.

4.4 Efforts to Mitigate the Metaphor Rush

So far, most efforts aimed at dealing with the metaphor-based metaheuristics
involve raising awareness about the issue and how they negatively affect the
metaheuristics research field. One of the earliest efforts in this sense was
the publication by Dennis Weyland of the paper “A Rigorous Analysis of
the Harmony Search Algorithm” (Weyland 2010), where it was shown, by
means of a component-by-component comparison, that harmony search is in fact
an evolutionary algorithm. The paper by Weyland also identified a number
of problems in the actual research system that contributed to let a “novel”
metaheuristic like harmony search become popular despite its complete lack of
novelty. Another notable example is the paper “Metaheuristics—The Metaphor
Exposed” by Kenneth Sörensen (Sörensen 2015), which was the first paper
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clearly attempting to bring attention to the “metaphor problem” in the field of
metaheuristics.

Although these papers barely resonated outside the community that was
already aware of the problem, they were a stimulus for other researchers to
act and propose possible solutions. Most of these efforts can be categorized
as follows: (i) critical analysis of metaphor-based metaheuristics, (ii) modeling
frameworks, taxonomies, and metaphor-free descriptions, and (iii) editorial
policies.

In category (i) we find the efforts to clarify whether there is any real novelty
in these “novel” metaheuristics and obtain insights on the motivation the
authors had to use a particular metaphor. Component-based analyses, similar
to that of Weyland (Weyland 2010), have been conducted for the following
“novel” metaheuristics: biogeography-based optimization (Simon et al. 2011), black
hole optimization (Piotrowski et al. 2014), intelligent water drops (Camacho-Villalón
et al. 2018, 2019), grey wolf optimizer, moth-flame optimization algorithm, whale
optimization, firefly algorithm, bat algorithm, antlion optimizer (Camacho-Villalón et
al. 2023, 2020), and cuckoo search (Camacho-Villalón et al. 2022a). The conclusion
of all these analyses has been clear: there is no novelty in any of these “novel”
metaheuristics, since they only have negligible differences with well-established
metaheuristics. In a critical paper with a slightly different focus, Melvin et
al. (Melvin et al. 2012) showed that the gravitational search algorithm is based on a
mathematical model that is inconsistent with Newtonian gravity, thus rendering
the use of the metaphor of gravity useless. The gravitational search algorithm is
an example of why using new metaphors without having a sound motivation
to do so may actually result in ineffective metaheuristics.

Category (ii) includes the efforts that many researches have done to try and
put order in the literature by proposing taxonomies and modeling frameworks
that allow to establish similarities among metaheuristics based on patterns in
their design (Armas et al. 2022; Cruz-Duarte et al. 2020; Fong et al. 2016; Molina
et al. 2020; Stegherr et al. 2020; Thymianis and Tzanetos 2022; Tzanetos and
Dounias 2021). The ultimate goal of these efforts is to provide the metaheuristics
community with a comprehensive tool that can help to readily identify the com-
ponents that make up a metaheuristic, and consequently, to have a systematic
way to evaluate whether a “novel” metaheuristic is actually novel or not. The
main challenge is to incorporate a sufficiently large number of components in
the tool so that it is representative of the vast diversity of the metaheuristics
and of their implementations; in this way, it can be used to identify virtually
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any possible metaheuristic design. While the first steps in this direction have
been taken, this is an huge endeavor that will require a great deal of additional
research in order to be accomplished.

In category (ii), we also find those papers aimed at better understanding
the way metaphor-based metaheuristics work and their relationship with other
metaheuristics. Examples of these efforts are the papers by Lones (2014, 2020),
in which the author provides an accessible description of some of the “novel”
metaphor-based metaheuristics using a metaphor-free terminology. In addition
to this, there is an increasing number of papers aimed at quantifying the size of
the problem by compiling comprehensive lists of metaphor-based metaheuristics
and/or analyzing their performance (Campelo and Aranha 2021a; Kudela 2022,
2023; Ma et al. 2023; Tzanetos et al. 2020).

Finally, category (iii) contains the very few efforts coming directly from
editorial policies that explicitly forbid the submission of papers proposing
metaphor-based metaheuristics unless the authors can provide compelling
evidence that the use of the metaphor contributes to the advancement of the
state of the art. Some of the journals that have established this type of policies are
4OR,5 Journal of Heuristics,6 Swarm Intelligence (Dorigo 2016), ACM Transactions on
Evolutionary Learning and Optimization,7 and Engineering Applications of Artificial
Intelligence.8 Establishing editorial policies is undoubtedly one of the most
effective mechanisms to stop the publication of metaphor-based metaheuristics;
unfortunately, in the scientific publication system this approach remains the
exception rather than the rule.

4.5 Summary

In the chapter, we discussed the problematic trend of the “novel” metaheuristics
based on all kinds of metaphors, which exist in part due to the prevalence of
manual design as the main way to create metaheuristics. In order to illustrate
why these kinds of metaheuristics are so problematic, we presented two concrete
examples of highly-cited “novel” metaheuristics that turned out to lack any
novelty, and being therefore only a source of confusion and reiteration of known

5https://www.springer.com/journal/10732/updates/17199246
6https://www.springer.com/journal/10732/updates/17199246
7https://dl.acm.org/journal/telo/author-guidelines
8https://www.sciencedirect.com/journal/engineering-applications-of-artificia

l-intelligence

https://www.springer.com/journal/10732/updates/17199246
https://www.springer.com/journal/10732/updates/17199246
https://dl.acm.org/journal/telo/author-guidelines
https://www.sciencedirect.com/journal/engineering-applications-of-artificial-intelligence
https://www.sciencedirect.com/journal/engineering-applications-of-artificial-intelligence
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ideas. Unfortunately, these are just two examples in a long list of other “novel”
metaheuristics with similar problems. In Chapters 5 and 6, we present the
complete analysis of the two “novel” metaheuristics mentioned in this chapter,
as well as the analysis of several others in order to provide further evidence for
the thesis that these type of metaheuristics are not truly novel.

While many important efforts have been conducted to address the problem
of the “novel” metaphor-based metaheuristic, none of them has been compre-
hensive enough to solve it definitively. Nonetheless, the number of efforts in
this direction keeps growing and many researchers/practitioners are now aware
of their negative consequences. Unfortunately, the metaheuristics community
has become divided between two conflicting approaches to continue pushing
the field forward. On the one hand, even though the use of automatic design
methods to create new metaheuristics designs has increased over time and its
benefits have already been shown experimentally in many papers, the use of
this approach still remains scarce in the literature. On the other hand, the idea
of introducing new metaphors is still being used intensively, as evidenced by the
alarming regularity with which new papers proposing “novel” metaheuristics
based on absurd behaviors are published in the literature.



Part II

Analyses of “Novel”
Metaphor-Based Metaheuristics
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Chapter 5

“Novel” Metaheuristics for Discrete
Optimization

In this chapter, we study the intelligent water drops (IWD) metaheuristic and
its relation to ant colony optimization (ACO). We start by describing the source
of inspiration and basic concepts introduced in the two metaheuristics—ACO,
in Section 5.1 and IWD, in Section 5.2. Then, in Section 5.3, we perform
a component-by-component comparison between ACO and IWD, and show
that IWD is, in fact, a particular case of ACO. We also discuss the fact that
the metaphor of “intelligent water drops removing soil from the ground of a
river” that inspired the IWD metaheuristic does not correspond to any scientific
observations about the way erosion works in river systems. Finally, in Section 5.4,
we review published research on IWD, and provide compelling evidence that
most of the ideas that have been proposed to enhance the performance of IWD
were already proposed in the ACO literature.

5.1 Overview of Ant Colony Optimization

Ant colony optimization1 (ACO) (Dorigo 1992b; Dorigo et al. 1991a,b) is a
metaheuristic proposed in the early 1990s that was inspired by the seminal work
by Deneubourg et al. (1990) on the Argentine ant foraging behavior. Denebourg
et al. showed that Argentine ants can find a shortest path between their nest and
a food source by depositing pheromones on the ground and by choosing their
way using a stochastic rule biased by their perceived pheromone intensity.

1This section presents a short overview of ACO that is intended for its comparison with
IWD. For a more comprehensive description of ACO, see Chapter 2.
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Based on Deneubourg’s findings, Dorigo et al. showed that, in analogous
way to real ants, artificial ants that

• move on a graph representation of a discrete optimization problem, where
edges are solution components and where a path on the graph corresponds
to a problem solution,

• deposit virtual pheromones on the graph edges (or equivalently on solu-
tion components), and

• use pheromones to bias the construction of random paths on the graph,

can find high quality solutions by letting their stochastic solution construction
routine be biased by the value of virtual pheromones. Ant System (Colorni et al.
1992; Dorigo et al. 1991b), the first algorithm proposed based on the metaphor
of ants foraging behavior was a combination of three main concepts: (i) many
interactive agents, also called artificial ants, (ii) a reinforcement mechanism to
give a positive feedback to selected solution component,2 and (iii) a constructive
greedy heuristic to build paths on a graph.

The publication of the seminal algorithm (Dorigo 1992b; Dorigo et al. 1991a,b,
1996) was followed by many variants and improvements (Alaya et al. 2007; Bi-
rattari et al. 2006; Blum 2005; Blum and Dorigo 2004; Bullnheimer et al. 1999b;
Cordón et al. 2000; Dorigo and Gambardella 1997a; Dorigo et al. 1996; Gam-
bardella and Dorigo 1995; Guntsch and Middendorf 2002; Maniezzo 1999; Socha
and Dorigo 2008; Stützle and Hoos 1997); most of these works are summarized
in the Ant Colony Optimization book (Dorigo and Stützle 2004). Throughout
all this literature, ACO has been described as a constructive, population-based
metaheuristic composed of three main components: (i) stochastic solution con-
struction, involving the routines needed to construct solutions; (ii) daemon actions,
containing optional routines to improve the solutions constructed by the ants;
and (iii) pheromone update, involving the routines to modify the pheromone
trails in order to ensure the exploration and exploitation of the search space.
The main idea is that artificial ants are probabilistic procedures that construct
solutions iteratively (i.e., by adding one solution component at a time to a
partial solution) based on virtual pheromones and heuristic information.

One iteration of ACO can be described as follows. Starting from an empty
solution, an artificial ant implements the stochastic solution construction rou-

2As explained in (Dorigo et al. 1991b), positive feedback allows ants to generate a process that
reinforces itself, that is, the more ants are following a trail, the more attractive that trail becomes
for being followed.
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tines needed to add solution components until the solution is completed.3 After
the construction phase is over, daemon actions may take place. Daemon actions
are routines that cannot be performed by a single ant. They may consist, for
example, of a local search procedure that improves the solution constructed by
an ant, or of a procedure that deposits an additional amount of pheromone on
solution components that belong to solutions with some desirable characteris-
tics. Finally, pheromone update consists in the modification of the pheromones
with the goal of biasing the construction process in the following iterations
towards better solutions. The pheromone update procedure involves deposit-
ing pheromone on the components belonging to good quality solutions, and
evaporating pheromone in components producing solutions of lower quality.4

Several iterations are executed until a termination condition is verified and the
algorithm stops. This process is shown in Algorithm 5.

Algorithm 5 ACO metaheuristic with its main components

1: set initial parameters
2: while termination condition not met do
3: repeat
4: apply stochastic solution construction
5: apply local pheromone update ▷ Optional
6: until construction process is completed
7: apply daemon actions ▷ Optional
8: apply pheromone update
9: end while

10: return best solution

Virtual pheromones—pheromones for short in the following—and heuris-
tic information are the main sources of information used by artificial ants to
construct solutions stochastically. Pheromones, indicated by τ, are numerical
values associated to solution components that are iteratively modified by ants in
order to mark solution components that produce good solutions. The amount
of pheromones in the solution components can increase using pheromone deposit,
or decrease using pheromone evaporation. While pheromones represents the
knowledge acquired during the algorithm’s execution, the heuristic information,

3The rule for selecting solution components, called transition rule, implemented during the
stochastic solution construction varies among ACO variants.

4In some ACO implementations, the pheromone update can be interleaved with the solution
construction (e.g., see (Dorigo and Gambardella 1997a; Gambardella and Dorigo 1995)), an
example being the offline pheromone update implemented in ACS (Dorigo and Gambardella
1997a).
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indicated by η and also associated to solution components, is a way to include
problem-specific information to guide the search. The use of heuristic infor-
mation greedily bias the selection of components that have a lower cost in the
solution under construction. There are different strategies to weight the relative
importance of parameters τ and η; we discuss some of them in Section 5.3.1.
Finally, in Table 5.1 that appears below, we list the most important ACO variant,
which differ mainly in the way in which stochastic solution construction and
pheromone update are implemented.

5.2 Overview of the Intelligent Water Drops Meta-
heuristic

The intelligent water drops (IWD) metaheuristic was proposed by Shah-Hosseini
(2007) as a new problem solving algorithm for combinatorial optimization. The
author of IWD says that this metaheuristic is based on the observation of rivers
in nature and is explained using a metaphor in which water streams are seen
as groups of individual particles (water drops) removing soil from the ground
of the riverbed. According to the metaphor of the “intelligent water drops
removing soil from the ground of a river”, in their journey from a source to a
destination, water drops prefer paths with less soil; also, on paths with less soil
they move faster, and the faster they move the more soil they remove. Following
this self-reinforced mechanism, the water drops are capable of finding shortest
paths from a source to a destination. In the words of the author:

“In nature, we often see water drops moving in rivers, lakes and seas. As water

drops move, they change their environment in which they are flowing . . . We also

know that the water drops have no visible eyes to be able to find the destination

(lake or river). If we put ourselves in place of a water drop of the river, we feel that

some force pulls us toward itself (gravity).”

(Shah-Hosseini 2007, pp. 3326)

“In the water drops of a river, the gravitational force of the earth provides the

tendency for flowing toward the destination. If there were no obstacles or barriers,

the water drops would follow a straight path toward the destination, which is the

shortest path from the source to the destination. However, due to different kinds of

obstacles in their way to the destination, which constrain the path construction,

the real path has to be different from the ideal path and lots of twists and turns in
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the river path is observed.” . . . “It is assumed that each water drop flowing in a

river can carry an amount of soil... The amount of soil of the water drop increases

while the soil of the riverbed decreases. In fact, some amount of soil of the river bed

is removed by the water drop and is added to the soil of the water drop.”

(Shah-Hosseini 2008, pp. 195)

“A water drop has also a velocity and this velocity plays an important role in the

removing of soil from the bed of the rivers . . . The faster water drops are assumed

to collect more soil than others.”

(Shah-Hosseini 2008, pp. 196)

Shah-Hosseini (2007, 2008, 2009) translated these ideas into a metaheuristic
where water drops: (i) move in discrete steps on a graph representation of the
considered optimization problem, where edges are solution components, and
each solution component j has an associated amount soilj of soil; (ii) modify
the amount of soil on the solution components (graph edges) as a function of
their velocity and of problem specific information called heuristic undesirability;
and (iii) use the amount of soil associated to solution components to bias the
construction of random paths.

The IWD metaheuristic, as described in (Shah-Hosseini 2007, 2008, 2009),
is a constructive, population-based optimization technique composed of three
components: (i) stochastic solution construction, (ii) local soil update, and (iii) global
soil update. In IWD, the water drops have two variables associated: a velocity
and the total amount of soil collected. Moreover, the water drops cooperate
to construct solutions incrementally using a probabilistic rule, called random
selection rule, which is biased by the amount of soil associated to the solution
components.

In one iteration of the IWD metaheuristic, these three components are ap-
plied as follows. First, during stochastic solution construction, each water drop
starts from an empty solution and adds one solution component at a time until
the solution is completed. Interleaved with the stochastic solution construction,
the local soil update involves two actions after a solution component has been
added to a partial solution: (i) a decrease of the soil in the solution component
just added, and (ii) an increase of the soil collected in the water drop. In fact,
every time a water drop adds a new solution component to the solution it is
constructing, it updates its velocity and its total amount of soil collected. Finally,
the global soil update procedure updates the soil in solution components of the
iteration-best water drop (i.e., the water drop that built the best solution in the
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current iteration). The algorithm stops once a termination criterion is met. A
high level description of the metaheuristic is given in Algorithm 6.

Algorithm 6 The intelligent water drops metaheuristic

1: set initial parameters
2: while termination condition not met do
3: repeat
4: apply stochastic solution construction
5: apply local soil update
6: until construction process is completed
7: apply global soil update
8: end while
9: return best solution

It is easy to see that, in IWD, the soil associated to the solution components
plays the same role as the virtual pheromone in ACO: it biases the stochastic
choice of solution components during the stochastic solution construction
process. However, differently from artificial ants in ACO, each water drop
k has two associated variables: velk, that is the velocity of the water drop
and represents the quality of the partial solution that it has built so far; and
collected_soilk, that is the soil collected by the water drop while building a
solution.

At the beginning of each iteration, the initial velocity, velk, of the water
drops is always the same, but this variable is updated for each water drop as a
function of the soil in the components added to its partial solution. Therefore, it
is typically the case that water drops have different velocities at the end of each
iteration. Also, the velocity of a water drop is used to compute the amount of
soil it collects when adding a new solution component.5

The variable collected_soilk is used by the water drop to keep a record of
the soil collected from the solution components added to the solution that it is
constructing. The amount of soil added to collected_soilk is also proportional to
a value called heuristic undesirability6 divided by the water drop velocity. Finally,

5Note that, even though this is counter-intuitive, the amount of soil that a water drop collects
when adding a new solution component to the partial solution is different from the amount of
soil that is removed from the soil variable associated to the added component. For a detailed
example see Appendix A.

6The author calls heuristic undesirability to the inverse of the heuristic information used in
ACO. For example, in the traveling salesman problem, ACO’s heuristic information is commonly
defined as ηij = 1/dij, where dij indicates the distance between city i and city j. In IWD, the
heuristic undesirability is, for the same problem, defined as HUDij = dij.
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as mentioned above, the best water drop updates the solution components at
the end of each iteration using the amount of soil collected in its associated
variable collected_soilbest.

5.3 Comparison Between ACO and IWD

In the previous sections, we have described ACO and IWD starting with their
sources of inspiration and describing how these sources of inspiration were
abstracted as metaheuristic concepts that can be used to solve optimization
problems. In summary, the two metaheuristics consist of the following three
main components:

• stochastic solution construction: to construct solutions biased by a quantity
(pheromone/soil) associated to solution components,

• local update: to improve the search by interleaving the construction mech-
anism with an update of pheromone/soil on the last added solution
component, and

• global update: to provide a positive feedback via modifications of the
pheromone/soil associated to specific solution components.

In this section, we carry out a detailed comparison of the two optimization
techniques in order to clarify whether IWD is in fact a new metaheuristic,
and deserves therefore to be called a novel approach, or should rather be
considered a variant of ACO. To do so, in Table 5.1 we schematically present the
metaheuristic components proposed in some of the best-known ACO variants:
ant system (AS) (Dorigo et al. 1991a,b, 1996), ant system with Q-learning (Ant-Q)
(Gambardella and Dorigo 1995),MAX –MIN ant system (MMAS) (Stützle
and Hoos 2000), ant colony system (ACS) (Dorigo and Gambardella 1997a),
approximate nondeterministic tree-search (ANTS) (Maniezzo 1999); and in the
intelligent water drops (IWD) (Shah-Hosseini 2009).

However, before presenting the component-by-component comparison of
ACO and IWD, we briefly discuss the notions of soil and of water drop’s
velocity. This discussion will help the reader understand the analysis presented
in this section. In section 5.2, we noted that the role played by the soil value
associated to solution components in IWD is very similar to the one played by
pheromones in ACO. However, in high-quality solution components, the value
of pheromones tend to increase over time, whereas the value of soil tend to
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decrease. In other words, in IWD, the best solution components are charac-
terized by low soil values, whereas in ACO they are characterized by large
pheromone values. It is important to clarify this difference, as the comparison
of these two concepts (pheromones and soil) might be prone to confusion. In
practice, what is important to remember is that the construction of solutions
in ACO is biased towards higher pheromone values, while in IWD it is biased
towards lower soil values. Additionally, in IWD, soil can become negative
in high quality solution components, while in ACO pheromones are strictly
positive.

The other concept that deserves some attention is the water drop’s velocity.
This concept does not exist in ACO and, as mentioned in Section 5.2, it comes
from the metaphoric idea that water drops move with certain velocity and
remove soil from the riverbed. In IWD, the velocity velk of a water drop k is
used to compute the amount of soil ∆soilj that the water drop collects when
adding a new solution component j and it is updated according to Equation 5.1:

velk = velk +
av

bv + cv × [soilj]2
, (5.1)

where av, bv, cv are user selected parameters.

Water drops that select “good” solution components (i.e., components that
have a low soil value) tend to be faster, and therefore, a water drop’s velocity
somehow measures the quality of the partial solution under construction. A
water drop’s velocity determines the extent to which the soil will decreased
after a solution component is added to a water drop’s partial solution: faster
water drops remove more soil from the added solution components than slower
water drops. As a consequence, since solution components with less soil have a
higher probability of being selected by another water drop, velocity is also a way
to control the exploration-exploitation capabilities of the algorithm. This can be
done, for example, by selecting the initial value of the water drops’ velocity. If a
low initial velocity is chosen, water drops will tend to have a more exploratory
behavior, while if a high initial velocity is chosen they will tend to exploit more
the soil information.

In the next three subsections we will compare the stochastic solution construc-
tion, the local update and global update metaheuristic components used in IWD
with those used in some of the ACO variants proposed in the literature. In
particular, we will show that:

• the random selection rule used by IWD is a simplification of the random
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proportional rule rule implemented in Ant System (Dorigo 1992b; Dorigo
et al. 1991a, 1996);

• the local soil update of IWD is a special cases of Ant-Q’s local reinforce-
ment (Gambardella and Dorigo 1995); and

• the global soil update of IWD is a special case of Ant Colony System’s
global pheromone trail updating rule (Dorigo and Gambardella 1996, 1997b;
Gambardella and Dorigo 1996).

5.3.1 Stochastic Solution Construction

Ants construct solutions by adding new components probabilistically chosen
using a function of the pheromone values and of the heuristic information. We
refer to this function as transition rule (see second column of Table 5.1). The
transition rule not only states which information will be used by ants to choose
the next solution component, but also how the relative importance of such
information will be weighted. For example, in the transition rule of AS (Dorigo
et al. 1996), the weighting strategy consists in using two parameters α and β that
modulate the value of τ and η, respectively; in ANTS (Maniezzo and Carbonaro
2000), a parameter α ∈ [0, 1] allows to change the relative importance of τ and
η in the transition rule (see Table 5.1). Equation 5.2 and 5.3 show the transition
rules used in Ant System and in IWD:

pk
j =

[τj]
α · [ηj]

β

∑
h∈N f

[τh]α · [ηh]β
, (5.2)

pk
j =

1
ϵ+g(soilj)

∑
h∈N f

( 1
ϵ+g(soilh)

)
, (5.3)

where N f is the set of feasible solution components that can still be added to the
partially built solution, j ∈ N f is a solution component in the search space and
k is one of the m ants/water drops building a solution, and ϵ, in Equation 5.3,
is a small positive constant used to avoid a possible division by zero.

It is easy to see that by setting α = −1 and β = 0 in the transition rule
of Ant System, it becomes the same one used in IWD. Note, however, that
transition rule in IWD only includes the information given by the soil (i.e.,
heuristic information is not used). Additionally, because the value of soil can
become negative in the solution components, IWD applies a function g(·) to
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soilj so that its value in Equation 5.3 remains positive:

g(soilj) =


soilj if min

h∈N f
soilj ≥ 0,

soilj − min
h∈N f

soilj otherwise.
(5.4)

In both ACO and IWD, the initial value of pheromone/soil, as well as other
parameters, such as m, the number of ants/water drops, or the value of α, β, etc.,
are user selected parameters that have to be chosen according to the problem
considered.7

5.3.2 Local Update

The local pheromone update allows ants to update the pheromones not only
after having built a complete solution, but also while constructing it.

An ACO variant implementing local pheromone update is Ant-Q (Gam-
bardella and Dorigo 1995). In Ant-Q’s local pheromone update, pheromones
are updated immediately after a component is added to a partial solution using
the formula shown in Equation 5.5. Comparing Equation 5.5 with IWD’s local
soil update given in Equation 5.6, we can see that the two updates are very
similar:

τj = (1− α) · τj + α ·
[
∆τj + γ ·max

h∈N f
τh
]

(5.5)

soilj = (1− φ) · soilj − φ · ∆soilk
j (5.6)

In particular, if we set the value of γ = 0 in Equation 5.5, the two equations
become virtually identical. However, while α, ∆τj , γ, and φ are fixed parameters,
the value of ∆soilkj in IWD has to be computed using Equation 5.7, involving

the velocity velk of the water drop and the heuristic undesirability (HUDj) of the
solution component j that is being added. ∆soilkj is computed for every water
drop after a solution component is added to the partial solution the water drop
is constructing. First the water drop k updates its velocity velk according to
Equation 5.1 and then ∆soilkj is computed using Equation 5.7:

7Finding values for the parameters of stochastic algorithms that guarantee a good algorithm
performance is known to be a non-trivial task. See (Stützle et al. 2012) for a comprehensive
review of how this problem has been studied in the ACO literature.
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∆soilk
j =

as

bs + cs · [HUDj/velk]2
, (5.7)

where as, bs, cs are user selected parameters. Therefore, the value of ∆soilkj
tends to be larger for solution components with lower soil (because of the
velocity update of Equation 5.1) and for those with low HUDj. Parameter bv, in
Equation 5.1, and parameter bs, in Equation 5.7, are used to avoid a possible
division by zero.

As we discussed in Section 5.3, water drops’ velocity can be seen as an
indicator of the quality of the partial solution constructed so far, that is, faster
water drops have added components with lower soil. However, computing the
desirability of a solution component in terms of the velocity (quality of a partial
solution) and of the heuristic undesirability, as is defined for ∆soilkj , is very
similar to the abandoned idea of ant quantity (see AS local update procedure in
Table 5.1).

As explained in Section 5.2, each water drop k memorizes the amount of
soil collected from the solution components added to the solution that it is
constructing in a variable called collected_soilk. The new value of collected_soilk

is computed by adding the value of ∆soilkj to its current value (which contains
the amount of soil collected from previous solution components), as it is shown
in Equation 5.8:

collected_soilk = collected_soilk + ∆soilk
j , (5.8)

Last, one may also ask if the inspiring metaphor of “intelligent water drops
removing soil from the riverbed” is a realistic model of the process of erosion in
rivers. For example, if soil is removed, it is unclear why then the new amount of
soil is computed by an equation such as Equation 5.6 that uses a decay factor φ,
and not simply by subtracting ∆soilkj . Additionally, the metaphor of water drops
acting as individual particles removing the soil in the riverbeds is unrealistic,
to say the least, since water in a river should rather be seen, and studied, as a
moving fluid. In this sense, if the goal of the author was to test the optimization
capabilities of rivers formation (as it is mentioned repeatedly in (Shah-Hosseini
2007, 2008, 2009)), it would have been a better approach to start with some
of the models available in the scientific literature describing this process (e.g.,
Merritt et al. 2003).
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5.3.3 Global Update

The global pheromone update in ACO is performed at the end of an iteration
once all solutions have been completed. The main goal of this component is to
give a positive feedback by increasing the amount of pheromone associated to
solution components that belong to good solutions; common choices in ACO
variants are to update pheromones that belong to the components of the best
solution sbest found in the current iteration (iteration-best update) or since the
first iteration of the algorithm (global-best update), but other options have been
examined too (Dorigo and Stützle 2004). Solution components that receive a
higher amount of pheromone will have a higher probability of being selected
by other ants in the next iterations.

The global update component in ACS8 and in IWD9 is defined, respectively,
as follows:

τj =

(1− ρ) · τj + ρ · ∆τbest
j if j ∈ sbest

τj otherwise
, (5.9)

soilj =

(1 + ρ) · soilj − ρ · ∆soilbest
j if j ∈ sbest

soilj otherwise
, (5.10)

where the parameter ∆τbest
j is commonly defined as the inverse of the total cost

of the solution sbest, while ∆soilbest
j is proportional to the soil collected by the

best water drop divided by the number of solution components:

∆soilbest
j = collected_soilbest/Nbest − 1 (5.11)

The similarity between the two equations is clear. Equation 5.9 easily
converts into Equation 5.10 by multiplying ρ by −1. However, a more formal
way to see this is via a redefinition of the interval over which the parameter ρ

can vary in Equation 5.9. That is, if we change this interval from its typical value
of [0, 1] to [−1, 0], we also convert Equation 5.9 into Equation 5.10. Because of

8ACS is one of the oldest and best performing ACO variants (Dorigo and Gambardella
1997a); its global update rule is called global pheromone trail updating rule.

9There are two versions of this component in IWD. In the first one (Shah-Hosseini 2007) the ρ
parameter was defined in [0, 1], making Equation 5.10 and 5.9 identical. However, for unknown
reasons, in a later publication (Shah-Hosseini 2009) the interval of variability of parameter ρ was
changed to [−1, 0], leading to a somewhat different behavior of the global update procedure, as
explained here.
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this, the global soil update component is a special case of the global pheromone
trail updating rule proposed in Ant Colony System by Dorigo and Gambardella
(1996).

The global soil update, as defined in (Shah-Hosseini 2009), has different
outcomes depending on the value of ρ and soilj in the solution component.
For simplicity, let us consider first the second summand in the first case of
Equation 5.10, that is, −ρ · ∆soilbest

j . Because ∆soilbest
j is defined as always

positive (see Equation 5.7) and as we have it multiplied by −ρ, the result of this
second summand will always be negative and contribute with a positive feedback
to the solution component, that is, a decrease in the value of soil.

On the other hand, the type of feedback given by the first summand in the
first case of Equation 5.10, (1 + ρ) · soilj, it is more difficult to understand. It
is easy to see that if soilj < 0 the product (1 + ρ) · soilj will be negative, and
therefore, this summand contributes with a positive feedback to the solution
component, which is the desired behavior (i.e., removing soil increases the
probability that future water drops will select the component). However, if
soilj > 0, the resulting value of this summand will be positive, and therefore, it
contributes with a negative feedback to the solution component and the function
of the update in this case is just the opposite of what it should be.

5.4 Modifications of IWD

Very often, after a new metaheuristic is published, different modifications are
proposed to enhance its performance and/or to overcome its drawbacks. In
this section, we review the literature on IWD with a particular focus on the
improvements that have been proposed since its initial publication in 2007. We
provide compelling evidence that all these improvements were already present
in ACO variants. To select the relevant literature, we searched for the string
“intelligent water drop” in the title or in the abstract of the articles indexed in
Scopus (www.scopus.com) and Google Scholar (http://scholar.google.com).
From this set of articles we selected all those published in journals and those
published in conferences that included at least one variant of the original
IWD metaheuristic components. The final set consisted of 7 articles which are
presented and discussed in the following.

1. Duan et al. (2008, 2009) were the first to propose a variant of IWD where
problem specific information is added to IWD’s random selection rule.
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This is a relatively minor modification that, in the case of ACO, was
already present in its very first formulation (Dorigo et al. 1991a). Later,
Booyavi et al. (2014) and Teymourian et al. (2016b) have proposed the use
of a parameter λ to weight the importance of soil with respect to heuristic
information. Also this weighting mechanism is part of most ACO variants,
including some of very first ones (Dorigo and Stützle 2004).

2. Niu et al. (2012) proposed five modifications to enhance the original IWD
implementation; these are: random soil and velocity initialization, conditional
probability computation, bounded local soil update, elite global soil update, and
combined local search.

• Random soil and velocity initialization aim is to improve the diversity of
the initial solutions of the algorithm and, according to the authors,
helps avoiding premature convergence. Unfortunately, the authors
did not test this hypothesis, for example, by comparing the random
initialization with the scheme originally proposed for IWD.

• Conditional probability computation consists of two changes in the
stochastic solution construction procedure: (i) to include the heuristic
information in the random selection rule along with a parameter to
weight its relative importance; and (ii) to select the lower-cost compo-
nent (i.e., greedy selection) with probability φ0 and to use the random
selection rule with the modification described in (i) otherwise. These
two modifications were already proposed in the context of ACO. The
use of a parameter to weight the relative importance of the heuristic
information, modification (i), is part of the random proportional rule
of Ant System (see AS transition rule in Table 5.1), the first ACO
algorithm ever published (Dorigo 1992b; Dorigo et al. 1991a, 1996);
while modification (ii) was used in the pseudo-random proportional rule
of Ant Colony System (see ACS transition rule in Table 5.1) and was
first introduced in (Gambardella and Dorigo 1996).

• Bounded local soil update uses two values, ∆max and ∆min, to set, respec-
tively, the maximum and minimum change in the amount of soil for a
given solution component. This very same idea, in the form of upper
and lower bounds to the value of pheromones, was introduced in the
ACO variant called MAX –MIN Ant System, first proposed in a
Technical Report in 1996 (Stützle and Hoos 1996), and later published
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in (Stützle and Hoos 2000).

• Elite global soil update uses more than one water drop to update the
soil in the global soil update. The idea of using more than one solution
to update the pheromone trails was also explored in the context
of ACO. This was done with Elitist ant system, first proposed in
Dorigo’s PhD thesis (Dorigo 1992b) and then published in (Dorigo
et al. 1996).

• Combined local search adds a local search phase to the IWD algorithm.
As said when describing the ACO metaheuristic in Section 5.1, daemon
actions often consist of a local search that improves the solutions con-
structed by the ants. The first publications to introduce local search
in ACO algorithms are (Dorigo and Gambardella 1997a; Stützle and
Hoos 1997); these were followed by many other (e.g., Gambardella
et al. 1999; Maniezzo and Colorni 1999) and nowadays, the usage of
a local search routine is pretty standard in the best performing ACO
algorithms (Dorigo and Stützle 2004).

3. Msallam and Hamdan (2011) propose to reinitialize the soil and the ve-
locities of all water drops after reaching a certain number of iterations
without improving the global best solution. The very same reinitializa-
tion scheme proposed in (Msallam and Hamdan 2011) was proposed for
MMAS (Stützle and Hoos 1997, 2000) and has been widely used in the
ACO literature (Dorigo and Stützle 2004).

4. Alijla et al. (2014) propose to replace the original (i.e., Equation 5.3)
random selection rule of IWD with two ranking selection methods, one
linear and one exponential. Both selection methods rank in descending
order the feasible solution components according to their value of soil.
In linear selection, the probability of selecting a solution component is
computed using a linear function where a user selected parameter, SP,
controls the steepness of the gradient. In exponential selection, the feasible
components are weighted exponentially according to their ranks. These
two ranking selection methods aim to overcome three shortcomings of
IWD’s random selection rule, that is its inability (i) to accommodate
negative soil values, (ii) to differentiate between solution components with
small soil difference, and (iii) to control local stagnation. Unlike IWD,
ACO algorithms do not present these shortcomings because pheromones
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have always positive values, which avoids shortcoming (i), and there are
mechanisms to bound pheromones lower and upper limit, avoiding the
shortcomings (ii) and (iii).

Although the authors argue that these problems are caused by the way
in which the transition rule has been defined in IWD, shortcomings (ii)
and (iii) are rather the result of having negative soil values and of the
way in which global soil update is defined. That is, IWD has mechanisms
to manage solution components with negative and positive values in the
transition rule (see Equation 5.3 and 5.4); however, this is not the case for
the global soil update (see Equation 5.10) (see the discussion on the global
soil update in Section 5.3.3).

In this review, we have identified the ideas proposed to improve the per-
formance of IWD since its initial publication in 2007. A few articles seek to
overcome drawbacks and limitation of the metaheuristic (Alijla et al. 2014;
Msallam and Hamdan 2011), while others propose modifications to enhance
its exploration-exploitation capabilities (Booyavi et al. 2014; Duan et al. 2008,
2009; Niu et al. 2012; Teymourian et al. 2016a). Although the research on IWD
is not particularly rich, we found that almost everything proposed to modify
this metaheuristic consists of ideas that were first proposed in the context of
ACO. In fact, most of these modifications can be matched directly to well-know
ACO variants that have been in the literature for many years, even before the
first IWD algorithm was proposed.

5.5 Summary

In this chapter, we compared the “novel” intelligent water drops metaheuristic to
ideas previously proposed in the context of ACO. The result from this analysis
shows that IWD is a particular case of ACO. In particular, the random selection
rule of IWD is a simplified version of the random proportional rule of ant
system, the very first ACO algorithm. The local soil update in IWD is a special
case of the local reinforcement that was proposed in the Ant-Q algorithm,
where the only minor difference between IWD and this early ACO variant is
the parameter ∆soilj, which is computed using the water drop’s velocity and
the solution components’ soilj and heuristic undesirability. Last, the global soil
update of IWD is also a special case of an ACO variant, in this case the global
pheromone trail updating rule proposed in Ant Colony System, in which the
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parameter interval of ρ (that in ACO is [0, 1]) is redefined to the interval [−1, 0].
In addition to studying the metaheuristic components proposed in IWD, we
briefly analyzed the rationale behind the definition of ∆soilj and the general idea
over which the local soil update is based. Our conclusion is that the metaphor
of “intelligent water drops removing soil from the ground of a river” is based
on unrealistic assumptions on how erosion works in river systems.

From the review of the literature of IWD, we found that most of the research
done on IWD is just a repetition of research ideas that had been explored in
the context of ACO. Indeed, with only one exception, all the modifications
proposed for the “novel” IWD metaheuristic have a direct correspondence with
a specific modification proposed many years before for an ACO algorithm.





Chapter 6

“Novel” Metaheuristics for
Continuous Optimization

In this chapter, we present a rigorous, component-based analysis of the grey
wolf optimizer (Mirjalili et al. 2014), the moth-flame algorithm (Mirjalili 2015a), the
whale optimization algorithm (Mirjalili and Lewis 2016), the firefly algorithm (Yang
2009), the bat algorithm (Yang 2010), the antlion optimizer (Mirjalili 2015b), and
the cuckoo search (Yang and Deb 2009), which are among the most widespread
“novel” metaphor-based metaheuristic algorithms1 published in the literature.
These algorithms were chosen from the Evolutionary Computation-bestiary
(EC-bestiary) (Campelo and Aranha 2021a) using as sole criteria that they were
proposed for the approximate solution of continuous optimization problems
and that they were highly-cited (data from Google Scholar retrieved on June 12,
2023, shows the following citation counts: grey wolf optimizer: 11,841 citations;
moth-flame algorithm: 3,241 citations; whale optimization algorithm: 8,034 citations;
firefly algorithm: 4,869 citations; bat algorithm: 6,003 citations; antlion optimizer:
2,691 citations; and cuckoo search: 7,729 citations.)

In addition to deconstructing the seven algorithms into their components
and relating them with equivalent components proposed in well-established
techniques, such as particle swarm optimization and evolutionary algorithms, we
analyze the use of the metaphors that inspired these algorithms to understand
whether their usage has brought any novel and useful concepts to the field.
Thus, for each of the metaphors used in these algorithms, we evaluate whether
the following criteria are fulfilled:

1In this chapter, we may also refer to the studied metaheuristics simply as algorithms, since
they already have the words “algorithm” and “optimizer” in their names.
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• Usefulness – Does the metaphor bring useful ideas on how to solve
optimization problems?

• Novelty – Were the ideas brought by the use of the new metaphor novel
in the field of metaheuristics when they were proposed?

The main finding of our analysis is that, despite all these algorithms were
presented as novel approaches, none of them proposes any new ideas; rather,
their authors used variations of the same algorithm components that have been
for years in the literature of metaheuristics, framed them into new metaphors
and published them as new. In particular, we found that the grey wolf, moth-
flame, whale, firefly and bat algorithms use concepts that are the same as those
previously used in the context of particle swarm optimization, while the antlion
and cuckoo algorithms use those of evolution strategies and differential evolution.

From the analysis of the metaphors that inspired the seven algorithms, we
found that they cannot be used to explain the majority of the design choices
in them. The description of the metaphors in the articles are vague for the
most part; important aspects are not mentioned at all or lack sufficient detail
(such as, what exactly is being optimized in the behavior that inspired the
algorithm), while those that are irrelevant for the purpose of designing an opti-
mization algorithm are abundant and overemphasized (e.g., how many species
of fireflies/moths/whales exist and how amazing/fancy/unique they are in the
opinion of the authors). Additionally, we observed that it is common practice for
the authors of this kind of publications to relate metaphors and mathematical
models using (i) ideas that do not belong to the metaphor originally described,
and/or (ii) ideas that radically change the behavior that reputedly inspired the
algorithm.

6.1 Overview of Particle Swarm Optimization

Particle swarm optimization (PSO) (Kennedy and Eberhart 1995) is a population-
based algorithm proposed for the approximate solution of continuous optimiza-
tion problems. In PSO, a swarm of particles, each representing a solution to the
problem at hand, try to identify the most promising areas of the search space
by applying a set of rules that take into account the locations of good solutions
that they and their neighboring particles have visited in the past. To do so, each
particle i knows, at every iteration t, its current position x⃗ i

t , velocity v⃗ i
t , and

personal best position p⃗ i
t , as well as the best position l⃗ i

t of the best particle in
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its neighborhood. The goal of using vectors p⃗t (called cognitive influence) and
vectors l⃗t (called social influence) is to combine the knowledge acquired by each
particle during the search with the knowledge of the best-informed individual
in the neighborhood of the particle.

Depending on the way the neighborhood is defined in the algorithm, it
is possible to create many different population topologies. For example, if
the neighborhood of a particle consists of the two adjacent (i.e., closest) par-
ticles we have the so-called ring topology, while assigning all particles to the
neighborhood of all other particles creates a fully-connected or gbest topology.
In the latter, the local best particle is called the global best and its position is
indicated by g⃗t. When using the ring topology, the information about where
the best-so-far solution is located spreads slowly among particles, while with
the fully-connected or gbest topology the entire swarm knows immediately
the position of the best-so-far solution at each iteration. Along with these two
topologies, many others have been studied in the literature, including wheels,
lattices, stars, and randomly assigned edges (Mendes et al. 2004).

Since its initial publication, PSO has been extensively studied and applied
to many problems, resulting in a plethora of variants that range from little
refinements of the original algorithm to new versions of the algorithm that
contain quite elaborate changes and novel ideas. In the remaining of this section,
we present a number of PSO variants that are relevant to our study.

• Standard PSO (Shi and Eberhart 1998, 1999) — StdPSO. In StdPSO, particles
update their positions using the following rule:

x⃗ i
t+1 = x⃗ i

t + v⃗ i
t+1, (6.1)

v⃗ i
t+1 = ωv⃗ i

t + φ1⃗a i
t ⊙ ( p⃗ i

t − x⃗ i
t ) + φ2⃗b i

t ⊙ (⃗l i
t − x⃗ i

t ), (6.2)

where ω is called inertia weight and controls the effect of the velocity
vector at time t, φ1 and φ2 are called acceleration coefficients and weigh
the relative importance given to the cognitive and social influence, a⃗ i

t
and b⃗ i

t are two random vectors2 used to provide diversity to the particles’
movement, and ⊙ indicates the Hadamard (entrywise) product between
two vectors.

2Note that, in the formulation of the velocity update rule of PSO shown in Equation 6.2,
vectors a⃗ i

t and b⃗ i
t are used instead of the random diagonal matrices Ui

1t and Ui
2t. While both

formulations are equivalent in practice, the use of the formulation in Equation 6.2 makes easier
to understand the comparisons that we make in this chapter.
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• Standard PSO 2011 (Clerc 2011; Zambrano-Bigiarin et al. 2013) — SPSO-2011.
This variant is a modified version of StdPSO that prevents the issue of
rotation variance. The velocity update rule of StdPSO was revised in
SPSO-2011 as follows:

v⃗ i
t+1 = ωv⃗ i

t + x⃗ ′ it − x⃗ i
t , (6.3)

where x⃗ ′ it is a randomly generated point in the hypersphere Hi (⃗c i
t , |⃗c i

t −
x⃗ i

t |) with center c⃗ i
t and radius |⃗c i

t − x⃗ i
t |, and | · | indicates the vector’s L2

norm. The computation of the center c⃗ i
t is defined as follows:

c⃗ i
t = (⃗L i

t + P⃗ i
t + x⃗ i

t )/3 (6.4)

where
P⃗ i

t = x⃗ i
t + φ1⃗a i

t ⊙ ( p⃗ i
t − x⃗ i

t )

L⃗ i
t = x⃗ i

t + φ2⃗b i
t ⊙ (⃗l i

t − x⃗ i
t )

. (6.5)

• Fully informed PSO (Mendes et al. 2004) — FiPSO. In FiPSO, the velocity
update rule is as follows:

v⃗ i
t+1 = χ

(
v⃗ i

t + ∑
k∈T i

t

φ⃗a i
kt ⊙

(
p⃗ k

t − x⃗ i
t
))

, (6.6)

where χ = 0.7298 is a constant value called constriction coefficient (Clerc
and Kennedy 2002), T i

t is the set of particles in the neighborhood of i,
and φ is a parameter. As opposed to the existing PSO variants that use
the best-of-neighborhood model, in which the social influence of a particle
comes from either l⃗ i

t or g⃗t, in FiPSO, a particle is influenced by all of its
neighbors. The social influence model proposed in FiPSO is referred to as
fully informed in the literature of PSO.

• Simple dynamic particle swarms (Peña 2008a,b) — SDPSs. This class of PSO
algorithms do not make use of the randomness induced by vectors a⃗t

and b⃗t in the position update rule of the particles. Also, they are often
implemented without a velocity vector v⃗ i

t . Most SDPSs can be instantiated
from the following generalized position update rule:

x⃗ i
t+1 = x⃗ i

t + ϵ(⃗y− x⃗ i
t ), (6.7)
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where ϵ is a parameter and y⃗ is a vector obtained by combining the
information of two or more particles in the swarm. Examples of how
vector y⃗ can be computed in SDPSs include:

Standard: y⃗ =
u1x⃗ ′ 1t + u2x⃗ ′ 2t

u1 + u2
, (6.8)

Normal: y⃗ = N (
x⃗ ′ 1t + x⃗ ′ 2t

2
, | x⃗ ′ 1t − x⃗ ′ 2t |), (6.9)

where x⃗ ′ 1t and x⃗ ′ 2t are position vectors chosen according to some criterion,
and u1 and u2 are two real parameters whose value is typically set in
the range (0, 1]. SDPSs algorithms vary in all kind of aspects, including
the number of particles participating in the computation of y⃗, which can
be from 1 to all particles and the way in which the current position of a
particle is taken into account in the computation of x⃗ i

t+1.

• Extrapolation PSO (Arumugam et al. 2007, 2009) — ePSO. In ePSO, particles
do not have a cognitive influence component (i.e., vector p⃗t) and parameters
φ1t and φ2t are replaced by two so-called “extrapolation” coefficients. The
position update rule proposed for ePSO is as follows:

x⃗ i
t+1 = g⃗t + φ1t g⃗t + φ2t(g⃗t − x⃗ i

t ), (6.10)

where φ1t = U [0, 1] k1, φ2t = k1ek2Λi
t , k1 = k2 = e−t/tmax , Λi

t = |( f (g⃗t)−
f (x⃗ i

t ))/ f (g⃗t)|, and f (·) refers to the objective function of a minimization
problem. This position update rule combines the information of the global
best solution (⃗gt) with the current position of the particles (⃗x i

t ) and adjusts
the displacement of the particle in terms of the difference between f (g⃗t)

and f (x⃗ i
t ). Because of the way φ1t and φ2t are computed, a particle will

experience a strong attraction towards g⃗t when its quality is much lower
than that of f (g⃗t), and a weak attraction towards g⃗t when its quality is
similar to f (g⃗t).

6.2 Overview of Evolutionary Computation

As we outlined in Chapter 2, the field of evolutionary computation is vast
and includes several approaches, such as evolution strategies (Rechenberg 1971;
Schwefel 1977), genetic algorithms (Goldberg 1989; Holland 1975), genetic program-
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ming (Koza 1992) and differential evolution (Storn and Price 1997). In this section,
we overview the main concepts of evolution strategies and differential evolution,
which are the two metaheuristics that are more relevant for the analyses that
we present in the following sections.

6.2.1 Evolution Strategies

Evolution Strategies (ESs) (Bäck et al. 1991; Bäck and Schwefel 1993; Rechenberg
1971, 1973; Schaffer 1985; Schwefel 1981) are some of the best-known evolution-
ary algorithms proposed to deal mainly with continuous optimization problems.
In ESs, as in the rest of evolutionary algorithms, the idea is to simulate the
process of natural evolution in order to evolve one or several solutions by
iteratively applying the operators of parental selection, recombination, mutation
and survival selection (Michalewicz and Schoenauer 2013). To better illustrate
how ESs work, we can consider the classic (µ + λ)–ES (Schwefel 1981), which is
shown in Algorithm 7.

Algorithm 7 The (µ + λ)-evolution strategy

1: begin
2: t← 0
3: initialize µ parents (solutions)
4: evaluate µ parents
5: while not termination-condition do
6: t← t + 1
7: apply recombination to µ parents to create λ offspring (new solu-

tions)
8: apply mutation to offspring
9: evaluate offspring

10: select µ solutions from the set of (µ-parents + λ-offspring) and use
them as parents for the next iteration

11: end while
12: end

The (µ+ λ)–ES is an algorithm in which a population of µ solutions (parents)
produce λ new solutions (offspring) to generate a population of µ + λ individu-
als. The population is then reduced again to µ solutions that constitute the next
generation. As we show in Algorithm 7, in order to instantiate a (µ + λ)–ES, it
is necessary to choose the specific operators to be used. In the following, we
describe the operators proposed for the (µ + λ)–ES.
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• Parental selection. It refers to the way individuals that will be used to gen-
erate a new set of solutions are selected; the selection can be deterministic
(one or more specific individuals) or probabilistic (individual are selected
based on a probability distribution constructed based on their fitness,
ranking, etc.). In the (µ + λ)–ES, the parental selection operator can be
implemented in many different ways (Bäck et al. 1997; Bäck and Schwefel
1993). One option that has been used is to let each parent generate one
single offspring at each iteration, which results in λ = µ.

• Recombination. The goal of recombination, which is also a type of pertur-
bation, is to create one new solution by combining the information of two
or more solutions taken from the current population. Recombination is of-
ten regarded as an optional component in the (µ + λ)–ES; however, it was
used in the early variants of ES and it can be applied in a variety of ways.
Some of the most common implementations are discrete, intermediate,
global–discrete and global–intermediate recombination (Bäck et al. 1997).

• Mutation. The goal of mutation, which is also a type of perturbation, is to
induce small random variations to all the variable encoded in the solutions.
ESs generate mutations by sampling a random distribution, such as, the
Gaussian distribution, that was used in the original algorithm (Schwefel
1981); the Cauchy distribution, that was introduced in (Kappler 1996) in
1994; and the Lévy distribution introduced in (Iwamatsu 2002; Lee and
Yao 2004) in 2002.

• Survival selection. As opposed to parental selection, survival selection
refers to the mechanism used to choose the solutions that will be elimi-
nated from the population. In (µ + λ)–ES, survival selection operates over
parent-offspring couplings, which means that parents will pass from one
generation to another until they are replaced by an offspring with better
fitness.

6.2.2 Differential Evolution

Differential Evolution (DE) (Price et al. 2005; Storn and Price 1997) is a more
recent EC approach proposed to solve continuous optimization problems. Simi-
larly to ESs, in DE, a population of individuals, each one representing a solution
to the considered problem, is iteratively improved by applying a number evo-
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lutionary operators. DE uses real-valued vectors to represent the individuals,
which are indicated as x⃗ i, for i = 1, . . . , n. The main idea in DE is to use the
mutation and recombination operators to create a new population of solutions,
referred to as “trial vectors”, so that, at each iteration t, each each individual x⃗ i

t
is assigned a corresponding trial vector u i

t . Then, the survival selection operator is
used to decide which of the two vectors (⃗x i

t or u i
t ) will remain in the population

based on its solution quality.

As opposed to most evolutionary algorithms, DE does not make use of a
probability distribution in the mutation operator; rather, it uses a geometric
approach that is similar to the Nelder-Mead simplex search method to create a
new vector, called the mutant vector. The differential mutation operator, as it is
called in the DE terminology, is defined as follows:

m⃗ i
t = x⃗ a

t + β · (x⃗ b
t − x⃗ c

t ), (6.11)

where i indicates the ith individual in the population, β is a scaling factor,
and x⃗ a

t , x⃗ b
t and x⃗ c

t are three vectors chosen from the population, such that
x⃗ a

t ̸= x⃗ b
t ̸= x⃗ c

t and x⃗ a
t ̸= x⃗ i

t .

The application of the differential mutation operator is followed by the
recombination operator (Equation 6.12) and then by the survival selection operator
(Equation 6.13).

u i,k
t =

m i,k
t , if (U [0, 1] ≥ pa) ∨ (k = k i

t,rand)

x i,k
t , otherwise

, ∀k, (6.12)

x⃗ i
t+1 =

u⃗ i
t if u⃗ i

t is better than x⃗ i
t

x⃗ i
t otherwise

, (6.13)

where k = 1, . . . , d allows to iterate between the values of the vectors, U [0, 1] is
a random number sampled from a uniform distribution, pa is a user-selected
parameter in the range [0, 1] that controls the fraction of values copied from the
mutant vector (m⃗ i

t ) into the trial vector (u i
t ), and k i

t,rand is a randomly chosen
dimension that ensures that the trial vector is not a duplicate of the solution x⃗ i

t .
In one iteration of DE, Equation 6.11, 6.12 and 6.13, are applied iteratively to all
the individuals in the population until a termination criterion is met.



6.3. EXPOSING SEVEN “NOVEL” ALGORITHMS INSPIRED BY BESTIAL METAPHORS 77

6.3 Exposing the Grey Wolf, Moth-Flame, Whale,
Firefly, Bat, Antlion, and Cuckoo algorithms

In this section, we analyze the grey wolf, moth-flame, whale, firefly, bat, antlion
and cuckoo algorithms. For each of them, we present (i) the algorithm using
the standard optimization terminology, (ii) a component-based comparison
with existing techniques, and (iii) the metaphor that inspired the algorithm
and discussion on whether it meets the criteria of novelty and usefulness. For
(i) and (ii), we avoid using the vocabulary introduced by the authors of these
algorithms because, as we show after presenting each of them, it is unnecessary
and misleading in many ways. In our view, one of the main reasons why
these algorithms have not been immediately recognized as minor variants
of well-established techniques is that they were presented using metaphor-
based terminologies that obfuscated their similarities with existing approaches.
Therefore, by explaining each algorithm in plain computational terms, we intend
to make clearly visible what ideas are being proposed in them and whether
they are truly novel or not. Also, we believe that presenting first (i) and (ii)
and leaving (iii) at the end allows the reader to better appreciate whether the
metaphor contributes at all to the design of the proposed algorithm. Finally, we
would like to mention to the reader that all seven algorithms discussed here
have publicly available implementations. The ones of the grey wolf, moth-flame,
whale and antlion can be downloaded from https://seyedalimirjalili.com/
and the ones of the firefly, bat and cuckoo from https://nl.mathworks.com/mat
labcentral/profile/authors/2652824.

6.3.1 Grey Wolf Optimizer

The grey wolf optimizer (Mirjalili et al. 2014) (GWO) is an algorithm in which the
three iteration-best solutions in the population are used to bias the movement
of the remaining solutions. This idea is implemented in GWO by defining three
vectors s⃗ k

t (for k = 1, 2, 3) as follows:

s⃗ 1
t = x⃗ best1

t − φt(2 r⃗ 1
t − 1⃗)⊙

(
2 q⃗ 1

t ⊙ x⃗ best1
t − x⃗ i

t
)abs

s⃗ 2
t = x⃗ best2

t − φt(2 r⃗ 2
t − 1⃗)⊙

(
2 q⃗ 2

t ⊙ x⃗ best2
t − x⃗ i

t
)abs

s⃗ 3
t = x⃗ best3

t − φt(2 r⃗ 3
t − 1⃗)⊙

(
2 q⃗ 3

t ⊙ x⃗ best3
t − x⃗ i

t
)abs

, ∀i (6.14)

https://seyedalimirjalili.com/
https://nl.mathworks.com/matlabcentral/profile/authors/2652824
https://nl.mathworks.com/matlabcentral/profile/authors/2652824
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where x⃗ best1
t , x⃗ best2

t and x⃗ best3
t are the three best solutions at iteration t, r⃗ k

t and q⃗ k
t

are two random vectors with values drawn from U [0, 1] that induce perturbation
to the components of s⃗ k

t , φt is a parameter that decreases linearly from 2 to
0, 1⃗ is a vector of all ones, and (·)abs indicates the entrywise absolute value
of a vector. The entrywise absolute value of a vector is a transformation that
can be formally defined as (u⃗)abs = (|ui|, . . . |ud|)T. The position update rule
combining the information of vectors s⃗ k

t is defined as follows:

x⃗ i
t+1 = (⃗s 1

t + s⃗ 2
t + s⃗ 3

t )/3. (6.15)

The Grey Wolf Optimizer is PSO

The mathematical model of GWO is a variant of the one proposed for StaPSO.
To better explain how GWO compares to StaPSO, we consider first the mathe-
matical model of GWO without the perturbation component φt(2 r⃗ k

t − 1⃗), which
is as follow:

s⃗ 1
t = x⃗ best1

t −
(
2 q⃗ 1

t ⊙ x⃗ best1
t − x⃗ i

t
)abs

s⃗ 2
t = x⃗ best2

t −
(
2 q⃗ 2

t ⊙ x⃗ best2
t − x⃗ i

t
)abs

s⃗ 3
t = x⃗ best3

t −
(
2 q⃗ 3

t ⊙ x⃗ best3
t − x⃗ i

t
)abs

, ∀i (6.16)

Both StaPSO (Equation 6.5) and GWO (Equation 6.16) are based on the idea
of (i) defining, for each particle i in the population, a hyper-triangle in the search
space, whose vertices are a function of positions known by i, and (ii) using the
centroid of the hyper-triangle in the computation of i’s new position. The main
difference between the two algorithms is in the way in which the vertices of the
hyper-triangle are computed. While in GWO all particles compute the vertices
using the same three iteration-best solutions, that is, x⃗ best 1

t , x⃗ best 2
t and x⃗ best 3

t , in
StaPSO, each particle uses its local information, that is, vectors x⃗ i

t , p⃗ i
t and l⃗ i

t .
In PSO, the goal of using vectors v⃗ i

t , l⃗ i
t and p⃗ i

t , where l⃗ i
t is different for each

neighborhood and p⃗ i
t is different for each particle, is to include components that

allow to balance the relation between exploration and exploitation of the search
space. Adding particles’ previous velocity v⃗ i

t to their new positions promotes
exploration, whereas attracting particles towards known good solutions, such as
l⃗ i
t and p⃗ i

t , promotes exploitation. In contrast, in GWO, as seen in Equation 6.16,
the entire swarm is attracted towards the same three solutions x⃗ best 1

t , x⃗ best 2
t and

x⃗ best 3
t , which can be useful for intensifying the search in the area defined by

these vectors, but prevents particles from exploring other regions.
Not surprisingly, the authors of GWO found that their first version of the
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algorithm (which is, as far as it is understood in their article, the one using
Equation 6.16) resulted in a poor performing implementation that “is prone
to stagnation in local solutions” (Mirjalili et al. 2014, p. 50). To remediate this
issue, the authors added a second perturbation component to the computation
of vectors s⃗ k

t (Equation 6.14), which includes a random vector r⃗ k
t multiplied by

a linearly decreasing parameter φt. This additional perturbation component
produces both positive and negative random values in the range [−2, 2], deter-
mining a much stronger perturbation to the particles movement than the one
initially defined with vector q⃗ k

t . To avoid particles divergence outside the search
space, the impact of φt(2 r⃗ k

t − 1⃗) in the computation of vectors s⃗ k
t is controlled

by parameter φt whose value decreases linearly from 2 to 0, allowing particles
to move closer and closer to x⃗ best 1

t , x⃗ best 2
t and x⃗ best 3

t towards the end of the
algorithm’s execution.

In addition to the computation of vectors s⃗ k
t , the position update rule of

GWO introduced in Equation 6.15 is the same as the computation of the center
c⃗ i

t in StaPSO—see Equation 6.4. However, in StaPSO, vector c⃗ i
t is the center of a

hyperspherical distribution from which a random vector is generated, whereas
in GWO the computed center becomes the new position of the particle. Because
of this difference, GWO’s position update rule can also be compared with the
standard recombination rule proposed for SDPSs (Equation 6.8) extended to
three particles, where vectors x⃗ ′ 1t , x⃗ ′ 2t and x⃗ ′ 3t correspond to vectors s⃗ k

t and
parameters u1, u2 and u3 are set to 1.

The Metaphor of Grey Wolves Hunting

The authors of GWO say in their original paper (Mirjalili et al. 2014) that they
were inspired by the way in which “grey wolves organize for hunting following
a strict social hierarchy”, where the pack is divided, from top to bottom, in α, β,
δ, and ω wolves. According to their description of grey wolves hunting behavior,
while α wolves usually take part in hunting and they are in charge of guiding
the rest of wolves participating in this activity, the β and δ wolves only take
part in hunting occasionally. In GWO, vector x⃗ best 1

t represents the α wolf, x⃗ best 2
t

represents the β wolf, x⃗ best 3
t represents the δ wolf, and the rest of solutions in

the swarm represent the ω wolves. However, since it is false that the entire
pack always participates in hunting every time, saying that solutions x⃗ best 1

t ,
x⃗ best 2

t and x⃗ best 3
t represent the α, β and δ is inaccurate, as it does not follow

the description of the “strict social hierarchy” of grey wolves that inspired the
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authors when proposing the algorithm.
The authors of GWO mention that there are three phases during hunting,

each one composed of a number of steps: (i) tracking, chasing, and approaching
the prey; (ii) pursuing, encircling, and harassing the prey until it stops moving;
and (iii) attacking towards the prey. However, GWO only considers 2 out of
the 7 steps mentioned: encircling, which is modeled using Equation 6.15, and
attacking, which is modeled by linearly decreasing the value of φt from 2 to 0 in
Equation 6.14. In the imagery of the metaphor, when φt is lower than 1, wolves
concentrate around the prey (therefore attacking it); and when it is greater than
1, they search for other prey. Note that, despite search is not an activity in the
hunting phases of wolves, the authors added this step to the metaphor and
explain it as “the divergence among wolves during hunting in order to find a
fitter prey” (Mirjalili et al. 2014, p. 50).

Based on the description of the “grey wolves hunting” behavior presented by
the authors of GWO and the way this behavior is used as a metaphor to develop
the proposed algorithm, it is clear that the only contribution of the metaphor is
to create confusion and to hide the similarities of the “novel” GWO with PSO.
In particular, GWO does not satisfy the criterion of usefulness because there
are no components in the behavior of grey wolves that can be used as effective
design choices in an optimization algorithm, as evidenced by the fact that the
mathematical model originally derived from this behavior resulted in a poor
performing technique that stagnated prematurely. Also, as it was shown in
the previous section, GWO does not satisfy the novelty criterion because all
the algorithm components of GWO correspond to particular cases of algorithm
components previously proposed for StaPSO and SDPSs.

6.3.2 Moth-Flame Algorithm

In the moth-flame algorithm (Mirjalili 2015a) (MFA), each solution in the popula-
tion is assigned a ranking (ranki

t) based on the quality of its current position (⃗x i
t ),

which determines the specific neighbor of the population that will take part in
the computation of its position update rule; that is, the solution with ranki

t = 1
will compute its new position using the best overall solution g⃗ 1

t , the one with
ranki

t = 2 will use the second best solutions g⃗ 2
t , and so on. Note that the set of

vectors g⃗t is the same as the set of vectors p⃗t in PSO, but ordered according to
their quality, so that g⃗ 1

t corresponds to the vector p⃗t with the highest quality
and g⃗ n

t to the one with the lowest quality. The equation modeling this process
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is
x⃗ i

t+1 = g⃗ ranki
t

t + φt(g⃗ ranki
t

t − x⃗ i
t )

abs, (6.17)

with
φt = eδ cos(2 π δ), (6.18)

where (·)abs denotes the entrywise absolute value, δ = ( −t
tmax
− 2)U [0, 1] + 1 and

tmax is the iteration number at which the algorithm stops. There are two things
to note about Equation 6.18. First, the range in which the value of δ is computed
spans from [−1 1

tmax
, 1] to (−2, 1] as the value of t grows; second, when δ→ −∞,

the value of φt → 0. Therefore, the probability of computing large values for φt

decreases towards the end of the execution of the algorithm, allowing solutions

to move closer and closer to their respective vector g⃗ ranki
t

t .
In MFA, every tmax/n iterations, the variable ranki

t of the worst n − m
solutions is set to ranki

t = m, where m is computed as m = round(n− t (n−1)
tmax

), n
is the population size, and round(·) indicates the round to the nearest integer
function. The goal of doing this is to stop using the p⃗t vector of the n − m
solutions to influence the position update of other solutions. Because of the way
the value of m is computed, the number of solutions influencing the position
update rule of other solutions will decrease over the course of iterations, until
only the global best solution (⃗g 1

t ) is used to influence the movement of the
entire population. It is worth mentioning that, in (Mirjalili 2015a), the equation
used to compute the value of m is given by round

(
(n− t) (n−1)

tmax

)
; however, this

equation is wrong as it produces negative values when t > n.

The Moth-Flame Algorithm is PSO

The moth-flame algorithm is a variant of ePSO, where the only difference is that
MFA uses a model of influence that assigns each particle with the personal best
position of one specific neighbor depending on its ranking. Therefore, with the
exception of the model of influence, the comparison between MFA and ePSO
can be done directly, since it is possible to obtain the mathematical model of
MFA (Equation 6.17) just by setting φ1t = 0 and k1 = 1 in the position update
rule of ePSO (Equation 6.10).

In PSO, the model of influence (also known as selection of social influence
(Mendes 2004) or graph of influence (Clerc 2010)) (MoI) refers to the way in which
particles select other members of the swarm to influence their movement and
it is equivalent to the concept of parental selection in evolutionary algorithms.
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In Section 6.1, we describe the two most popular MoIs, which are the best-of-
neighborhood and the fully informed models. However, there are many other
models proposed in the literature of PSO, including random, in which particles
are influenced by a random neighbor (Kennedy 1999), ranked-fully informed
(Jordan et al. 2008), in which the contribution of each neighbor is weighted
according to its rank—see (Mendes 2004; Montes de Oca 2011) for a detailed
review.

Although, to the best of our knowledge, there is no PSO variant using
exactly the same MoI implemented in the moth-flame algorithm, the idea of
using a rank-based selection is not new at all in the metaheuristics literature.
For example, the ranking selection mechanism used in EAs assigns to each
individual a ranking based on its fitness value that determines the probability
of selecting it for the next generation (Bäck et al. 1997; Grefenstette 2000). In the
deterministic version of the ranking selection, the best individuals are selected
from the population to pass to the next generation with the goal of both always
preserving the best solutions found at any iteration and of biasing the creation
of new solutions through recombination and mutation—see Section 6.2. In MFA,
the best solution found by each particle is kept in its personal best vector (p⃗ i

t )
and the only goal of using rankings is to create a mapping between a particle
and one of its neighbors to bias its movement.

A PSO variant that is similar to MFA in this regard is the rank-based PSO
with dynamic adaptation (PSOrank) (Akbari and Ziarati 2011), where each
particle receives influence from multiple neighbors and the contribution of each
neighbor is weighted according to three criteria: ranking, Euclidean distance,
and total number of neighbors. Similarly to MFA, in PSOrank, the number
of neighbors influencing the particles at each iteration is controlled using a
parameter that decreases linearly according to the number of iterations, so that
all particles are eventually influenced only by the global best solution.

The Metaphor of Moths Navigation

As we showed in the previous section, the moth-flame algorithm is the same as
the ePSO algorithm except for the deterministic rank-based model of influence
component, which is an idea originally proposed in the context of evolutionary
algorithms and that is implemented in MFA in a similar way to PSOrank. There-
fore, the moth-flame algorithm does not meet with the criterion of novelty. In
this section, we analyze the behavior of moths that inspired the algorithm to
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check whether it has any component that can be useful from the point of view
of designing an optimization algorithm.

The author of MFA says that the inspiration for this algorithm is the “navi-
gation method of moths in nature” that allows them to move in a straight line
by maintaining a fixed angle with respect to the moon—a mechanism known
as transverse orientation according to Mirjalili (2015a). For developing MFA, the
author considered the case when moths are attracted to artificial lights, not to
the moon. In this case, moths engage in what the author referred to as “useless
or dead spiral fly path”, which happens because the transverse orientation
method is only useful to fly in a straight line when the light source is very far.
The flight of moths around artificial lights is modeled using Eqs. 6.17 and 6.18,
where the set of current solutions (⃗xt) represent “moths”, their personal best
positions (⃗pt), called “flames”, represent artificial light sources, and the “useless
or dead spiral fly path” behavior is represented by computing the value of φt

using a logarithmic spiral function.
Although the behavior that inspired MFA is moths’ inability to escape from

artificial light sources due to transverse orientation, in the algorithm, the author
prevents this behavior by assigning “moths” (current solutions) to specific
“flames” (personal best solutions) and by gradually stopping the use of the
worst “flames” as the number of iteration grows. This is because, if “moths”
and “flames” are defined as fixed couplings in the algorithm (as they are in
the metaphor), a solution located in a poor quality region of the search space
will most likely be incapable of moving away from that region because the only
influence the solution has is its personal best solution. The author intended to
avoid this problem by changing the specific personal best solution to which a
current solution is assigned. However, this modification puts into question the
motivation to use the metaphor of moths in the first place, since the algorithm
following the “useless or dead spiral fly path” behavior of moths is, in the
words of the author, prone “to be trapped in local optima quickly” (Mirjalili
2015a, p. 232).

After analyzing the “useless or deadly spiral fly path” behavior of moths
that inspired MFA, the mathematical model derived from it, and the resulting
algorithm that is “prone to stagnation quickly”, it is obvious that the metaphor of
“moths navigation” does not meet the criterion of usefulness. Also, considering
the modification of assigning “moths” to specific “flames” that the author
introduced to make the algorithm actually be able to perform optimization,
radically changing the behavior of moths that inspired him to proposed MFA,
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the use of this metaphor of “moths navigation” in the context of optimization is
rather counterproductive.

6.3.3 Whale Optimization Algorithm

The whale optimization algorithm (WOA) (Mirjalili and Lewis 2016) is a combi-
nation of the mathematical models of GWO and MFA algorithms (all of them
proposed by the same authors), in which solutions are updated using one of
three possible position update rules (the three cases of Equation 6.19) that is
chosen on the basis of stochastic criteria. The mathematical model of WOA is
as follows:

x⃗ i
t+1 =


x⃗ k

t − φ1t(2 r⃗t − 1⃗)⊙
(
2 q⃗t ⊙ x⃗ k

t − x⃗ i
t
)abs if Random_Neighbor

x⃗ best
t + φ2t(x⃗ best

t − x⃗ i
t )

abs if ¬Random_Neighbor ∧ Exp_Coefficient

x⃗ best
t − φ1t(2 r⃗t − 1⃗)⊙

(
2 q⃗t ⊙ x⃗ best

t − x⃗ i
t
)abs if ¬Random_Neighbor ∧ ¬Exp_Coefficient

(6.19)
where (·)abs denotes the entrywise absolute value, x⃗ k

t indicates the current
position of a randomly chosen neighbor k at iteration t, and vectors x⃗ best

t , r⃗t,
q⃗t, x⃗ i

t and parameter φ1t are the same ones defined for computing vector s⃗ 1
t in

GWO (see Equation 6.14). In the remainder, we will refer to the three cases of
Equation 6.19 as first rule, second rule and third rule, respectively, to simplify our
analysis.

The computation of φ2t in Equation 6.19 is given by

φ2t = eδ cos(2 π δ), (6.20)

with δ = ( −t
tmax
− 2)U [0, 1] + 1, that is exactly the same as Equation 6.18 proposed

for MFA.

The specific position update rule that a particle will use depends on the
value of the logical variables Random_Neighbor and Exp_Coefficient, which
are defined as follows:

Random_Neighbor :=

TRUE if φ1t(2 r1,t − 1) > 1

FALSE otherwise
,

Exp_Coefficient :=

TRUE if U [0, 1] < 0.5

FALSE otherwise
,

(6.21)
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where r1,t indicates the first element of vector r⃗t. Because of the way the logical
variables Random_Neighbor and Exp_Coefficient are used in Equation 6.19, the
algorithm will select with higher probability the first rule during the first half of
its execution, and either the second rule or the third rule (but not the first one)
with the same probability during the second half. The reason why the first rule
is not selected by the algorithm during the second half of its execution is that
the value of φ1t is lower than 1 and the probability of Random_Neighbor:=TRUE
when φ1t < 1 is 0.

The Whale Optimization Algorithm is PSO

WOA is a PSO algorithm that combines the mathematical models of StaPSO
and ePSO. To explain how WOA compares with StaPSO, let us consider initially
WOA’s first rule and third rule. These two rules differ only in the vector that
is used to bias the particles’ movement: x⃗ k

t (first rule) and x⃗ best
t (third rule).

In Section 6.3.1, where we compared GWO with PSO, we discussed the fact
that the computation of vector s⃗ 1

t in GWO, which is the same as WOA’s third
rule, is defined in the same way as vectors L⃗i

t and P⃗i
t in StaPSO (Equation 6.5),

with the only difference is that there is an additional perturbation component—
φ1t(2 r⃗t − 1⃗)—that was introduced to avoid the premature stagnation issue that
affects GWO. Similarly, WOA’s first rule is a variant of the mathematical model
shown in Equation 6.5, but in this case there is also the difference that the local
best particle (⃗l i

t ) is replaced by a randomly chosen neighbor (⃗x k
t ).

Unlike most PSO variants, WOA does not make use of a velocity vector (⃗v i
t ),

which is an algorithm component that, among others, allows particles to diverge
from moving exactly towards l⃗ i

t or p⃗ i
t and to explore other areas of the search

space. To compensate for the lack of a component such as v⃗ i
t , WOA lets particles

to be occasionally biased by x⃗ k
t (first rule) instead of by x⃗ best

t (second and third
rules). Therefore, although WOA’s first rule is defined in the same way as vectors
L⃗i

t and P⃗i
t in StaPSO, the purpose of having this rule in the algorithm is rather

similar to the one of using vector v⃗ i
t in PSO algorithms—as it allows to introduce

diversity in the solutions. To control the impact of the first rule in the opti-
mization process and let particles converge towards x⃗ best

t , the authors of WOA
defined the value of the logical variable Random_Neighbor as a function of the
linearly decreasing parameter φ1t, which results in Random_Neighbor:=FALSE
in the second half of the algorithm’s execution when φ1t < 1.

Let us now consider the second rule—i.e., x⃗ best
t + φ2t(x⃗ best

t − x⃗ i
t )

abs—that
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allows particles to explore the area of the search space around the iteration-best
solution and that uses the exponential function to compute the value of φ2t.
The ideas involved in the second rule of WOA are the same ideas introduced in
ePSO (Equation 6.10) described in Section 6.1, where particles do not make use
of vectors p⃗t and the value of the acceleration coefficients is computed using the
exponential function. In fact, it is easy to see that the second rule of WOA can be
obtained from the position update rule of ePSO (Equation 6.10) just by setting
φ1t = 0 and k1 = 1, where the only difference is that, in WOA, the displacement
of a particle towards x⃗ best

t is adjusted using a random value (see Equation 6.18),
whereas in ePSO it is adjusted based on the difference between f (x⃗ i

t ) and f (g⃗t).

The Metaphor of Humpback Whales’ Bubble-Net

The authors of WOA say that the inspiration for this algorithm is the “bubble-
net strategy” that humpback whales use for hunting (Mirjalili and Lewis 2016).
According to the description they provided in their paper, this strategy involves
performing two different maneuvers. The first maneuver is called “upward-
spirals” and consists in creating an upward spiral path of bubbles in the
water, while the second maneuver, called “double-loops”, is composed of three
different stages: coral loop, lobtail and capture loop. For developing WOA, the
authors only considered the “upward-spirals” maneuver. The “double-loops”
maneuver and its three stages are not described in the WOA paper.

The authors of WOA modeled the“spirals path of bubbles” created by whales
during the “upward-spirals” maneuver by computing parameter φ2t in WOA’s
second rule (Equation 6.19) using the exponential function. Since φ2t is the only
component in the algorithm that can be justified in terms of the metaphor of
whales, the authors added two more maneuvers to the metaphor originally
presented, one called “shrinking encircling” and the other called “search for
prey”. The “shrinking encircling” maneuver, whose mathematical model and
description are exactly the same ones of the “encircling” step in the grey wolf
optimizer (see Section 6.3.1) published by the same authors two years before
WOA, is used to justify the linearly decreasing value of φ1t in WOA’s first and
third rules and it is based on the idea that “whales can recognize the location
of prey and encircle them”; whereas the “search for prey” maneuver is used
to justify using the position vector of a randomly chosen neighbor k in WOA’s
first rule and it is based on the idea that “humpback whales search randomly
according to the position of each other” (Mirjalili and Lewis 2016, pp. 53–54).
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There are several reasons why the metaphor of “humpback whales hunting”
that inspired WOA does not meet the criteria of usefulness and novelty. First,
since the authors do not provide a complete description of the humpback whales’
“bubble-net strategy” that inspired them, it is impossible to know what exactly
is the optimization behavior they observed in it. Second, the only component
taken from the behavior of humpback whales’ “bubble-net strategy” presented
in the WOA paper is the idea of computing the value of parameter φ2t using
the exponential function; however, as we discussed in the previous section,
this idea was already proposed before in the PSO literature in a variant called
ePSO. Third, the mathematical model of WOA is nothing but a combination of
the ones used in the grey wolf optimizer (Section 6.3.1) and moth-flame algorithm
(Section 6.3.2) algorithms, that were proposed by the same authors in 2014 and
2015, respectively, and that are variants of PSO.

Indeed, concerning the third point, in the WOA paper the authors mention
as follows: “The main difference between the current work [whale optimization
algorithm] and the recently published papers by the authors (particularly GWO
(Mirjalili et al. 2014)) is the simulated hunting behavior with random or the best
search agent to chase the prey and the use of a spiral to simulate bubble-net
attacking mechanism of humpback whales” (Mirjalili and Lewis 2016, pp. 52).
Although the authors acknowledge that there are similarities between WOA
and GWO, they only make a vague mention of the connection between the two
algorithms and fail to mention that the equation that models the spiral in the
whales’ bubble-net mechanism is the exact same equation they used to model
the “useless or deadly spiral fly path of moths” in the moth-flame algorithm
(Mirjalili 2015a).

6.3.4 Firefly Algorithm

In the firefly algorithm (FA) (Yang 2009), at each iteration t, each solution i
in the population updates its position in the search space by moving towards
every other solution that has higher quality than its own. The process to update
solutions in this algorithm is carried out in two steps. In the first step, the
population is sorted bottom-up according to the solutions’ quality, so that the
first solution to be updated is the one with the worst quality and the last one to
be updated is the one with the best quality. In the second step, following the
bottom-up order established before, each solution i determines the set W i

t of
solutions with better quality than its own; sets its initial position m⃗i

t,s0
= x⃗ i

t ; and
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applies the following two equations:

x⃗ i
t+1 = m⃗i

t,s|Wi
t |

, (6.22)

m⃗i
t,s = m⃗i

t,s−1 + φ
w⃗i

t,s,m⃗i
t,s−1

t
(
w⃗ i

t,s − m⃗i
t,s−1

)
+ ξ⃗r i

t,s, (6.23)

where w⃗ i
t,s is an element of the ordered set W i

t , φ
w⃗i

t,s,m⃗i
t,s−1

t is an acceleration
coefficient whose value is computed as a function of the Euclidean distance
between the two intermediate points w⃗ i

t,s and m⃗i
t,s−1, r⃗ i

t,s is a vector whose
components are random numbers drawn from the uniform distribution U [0, 1],
and ξ is a parameter. (In the remainder of this analysis, we will use the shorter
notation φw⃗,m⃗

t as the meaning is clear from the context.) As it can be observed by
the way Equation 6.23 is defined, a solution updates its position by performing
|W i

t | movements, one for each solutions in W i
t , where the position obtained in

movement s− 1 (indicated by m⃗i
t,s−1) is the starting position for the next one

(m⃗i
t,s). Also, it is worth noticing that, since the best quality solution has an

empty set W i
t , the new position of this solution is obtained by adding a random

vector ξ⃗r i
t,s to its current position.

The acceleration coefficient φw⃗,m⃗ is computed as follows:

φw⃗,m⃗ = ι · e−γ|w⃗−m⃗|2 , (6.24)

where |w⃗− m⃗| is the Euclidean distance between solutions w⃗ and m⃗, and γ and
ι are two parameters that allow to control, respectively, the weight given to
|w⃗− m⃗|2 and to the exponential function. Because of the way in which φw⃗,m⃗

is defined, solutions have larger displacements when they are located close to
each other and smaller ones when they are located far away.

The Firefly Algorithm is PSO

FA is a variant of the SDPSs proposed by Peña (2008a,b) using the extrapolation
coefficients of ePSO and the fully informed model of FiPSO. In order to explain
why FA is a combination of these PSO algorithms, we will consider two cases:
|W i

t | = 1 and |W i
t | > 1.

In the first case (i.e., when |W i
t | = 1), a particle updates its position in only

one movement, which allows to combine Eqs. 6.22 and 6.23 into one single
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equation as follows:

x⃗ i
t+1 = x⃗ i

t + φ
i,w⃗i

t
t

(
w⃗ i

t − x⃗ i
t
)
+ ξ⃗r i

t . (6.25)

As it can be easily seen, it is possible to obtain Equation 6.25 from the position

update rule of SDPSs (Equation 6.7) by setting y⃗ = w⃗ i
t , ϵ = φ

i,w⃗i
t

t , and by

computing the value of φ
i,w⃗i

t
t using the strategy proposed in ePSO (Equation 6.10).

The only difference is that, in FA (Equation 6.24), the value of φ
i,w⃗i

t
t is adjusted

in terms of particles’ Euclidean distance, while in ePSO (Equation 6.10) it is
adjusted in terms of the difference between their objective function evaluation.
Except for this minor difference, when |W i

t | = 1, the position update rule of FA
is a special case of the one used in SDPSs with extrapolation coefficients (ePSO).

In the second case (i.e., when |W i
t | > 1), the mathematical model of FA

(that is, Eqs. 6.22 and 6.23) involves the recursive addition of |W i
t | exponentially

weighted vectors. In this case, the mathematical model of FA is the result
of using the same algorithm components mentioned before (i.e., the position
update rule of SDPSs (Equation 6.7) and the extrapolation coefficients of ePSO
(Equation 6.10)) with a particular case of the fully informed model of FiPSO
(Equation 6.6). Differently from FiPSO, where particles add as many vectors as
their number of neighbors, in the version of the fully informed model used in
FA, particles only add the vectors of those neighbors with better quality than
their own.

The Metaphor of Fireflies Flashing/Brightening

Although the author of FA says that the algorithm is inspired by the “flashing
behavior of fireflies”, which consists of short, rhythmic flashes that fireflies pro-
duce (Yang 2009, p.171), the only idea the author used to develop the algorithm
is that “fireflies are attracted towards other brighter fireflies”.

Most of the metaphor of “fireflies brightening” (as opposed to the one of
“fireflies flashing”) is explained in terms of the different set of values that can
be obtained by varying the value of parameter γ (Equation 6.24), for which the
author considered two limit cases. The first case is when γ goes to 0 and the
value of φw⃗,m⃗ goes to 1, making the attraction among fireflies constant regardless
of their distance in the search space. In the imagery of the fireflies metaphor,
this is the case when “the light intensity does not decay in an idealized sky”
and “fireflies can be seen anywhere in the domain” (Yang 2009, p. 174). The
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second case is when γ goes to ∞ and the value of φw⃗,m⃗ goes to 0, which makes
the attractiveness among fireflies negligible and new solutions are created only
by means of the random perturbation ξ⃗r i

t,s (see Equation 6.23). According to the
author, this is the case when fireflies are either “short-sighted because they are
randomly moving in a very foggy region”, or (for reasons not explained in the
paper) “fireflies feel almost zero attraction to other fireflies.”

As we mention before, the firefly algorithm is not really inspired by the
behavior of “fireflies flashing”, but on the phenomenon of light attenuation (i.e.,
the reduction in intensity of a light beam as the beam propagates in matter due
to the joint action of the absorption and scattering of light) and the connection
that the author makes between light intensity and the objective function of an
optimization problem. For the author of FA, since fireflies produce light through
bio-luminescence, they can represent candidate solutions for an optimization
problem, and since the quality of the solution can be associated with the
intensity of the light it emits, it follows that: the “brighter” the “firefly”, the
better the solution it represent and the more “attractive” it becomes to other
“fireflies”.

The reasons why FA does not meet the criterion of usefulness are: (i) it
is unclear what is the optimization behavior that the author observed in the
behavior of “fireflies flashing” that can be used to develop a new optimization
algorithm; (ii) the central elements in the “fireflies flashing” behavior (i.e., short
and rhythmic light flashes) are not considered in the algorithm design of FA; and
(iii) in the metaphor of “fireflies brightening”, the association between “fireflies”
and “brightness” only adds a new, unnecessary terminology to refer to the
concepts of solution and solution quality. In addition to this, FA does not fulfill
the criterion of novelty because, as we showed in the previous section, FA uses
the same ideas that were proposed before in SDPSs, ePSO and FiPSO.

6.3.5 Bat Algorithm

The bat algorithm (BA) (Yang 2010) is a population-based algorithm in which
new solutions are generated in two possible ways: (i) by identifying good search
directions that are estimated based on the position of g⃗t, or (ii) by generating a
random point around g⃗t and accepting it on the basis of stochastic criteria. To
do so, each solution has two parameters associated: ρi

t, which is the probability
of randomly generating a solution around g⃗t that increases over time, and ζ i

t,
which is the probability of accepting the new solution that decreases over time.
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This position update rule of BA is the following:

x⃗ i
t+1 =

g⃗t + ζ̂t r⃗ i
t , if Generate ∧ Accept

x⃗ i
t + v⃗ i

t+1 if (Generate ∧ (¬Accept)) ∨ (¬Generate)
, (6.26)

where ζ̂t is the average of the parameters ζ i
t of all the solutions in the population,

and r⃗ i
t is a vector with values randomly distributed in U [−1, 1]. The logical

variables Generate and Accept are defined as follows:

Generate :=

TRUE if ρi
t > U [0, 1]

FALSE otherwise
,

Accept :=

TRUE if
(

f (⃗z i
t ) < f (g⃗t)

)
∧ (U [0, 1] < ζ i

t)

FALSE otherwise
,

(6.27)

where f (·) refers to the objective function of a minimization problem.

In BA, at each iteration t and with probability ρi
t, a solution i generates a

random point around g⃗t that it keeps in a variable z⃗ i
t . The newly generated

point z⃗ i
t is accepted as the new position of i only when Accept:=TRUE, which

happens when two conditions are met: first, the quality of z⃗ i
t is higher than that

of g⃗t, and second, z⃗ i
t is accepted with probability ζ i

t.

In the case when either Generate:=FALSE (i.e., the random solutions was
never generated) or Accept:=FALSE (i.e., z⃗ i

t was rejected), solution i generates
a velocity vector (⃗v i

t ) that is added to its current position x⃗ i
t , as shown in the

second case of Equation 6.26. Vector v⃗ i
t+1 is computed as follows:

v⃗ i
t+1 = v⃗ i

t + d⃗ i
t ⊙ (g⃗t − x⃗ i

t ) (6.28)

with
d⃗ i

t = φmin + a⃗ i
t (φmax − φmin), (6.29)

where φmin < φmax are two parameters and a⃗ i
t is a vector whose values are

sampled from U [0, 1].
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The equations to update the probabilities ρi
t and ζ i

t are:

ρi
t+1 = ρ0(1− e−β1t′)

ζ i
t+1 =

β2 ζ i
t if Generate ∧ Accept

ζ i
t otherwise

(6.30)

where β1 > 0 and 0 < β2 < 1 are parameters, t′ is an iteration counter that
is updated every time Generate ∧ Accept := TRUE, and ρ0 is the initial value
of parameter ρ. Note that, in Equation 6.30, the value of ρi

t tends to ρ0 and
the value of ζ i

t tends to 0. Also, note that, as the value ζ i
t decreases with the

number of iterations, so does the value of ζ̂t; therefore, for increasing t values,
the solutions generated in the first case of Equation 6.26 will be closer and closer
to g⃗t.

The Bat Algorithm is PSO

The bat algorithm is a simplified variant of the standard PSO algorithm (StdPSO)
combined with a simulated annealing (SA) acceptance criterion (Černý 1985;
Kirkpatrick et al. 1983). First, in order to show that BA is a simplified vari-
ant of StdPSO, we compare Eqs. 6.26, 6.28 and 6.29 of BA with the position
(Equation 6.1) and velocity (Equation 6.2) update rules of StdPSO.

In BA, the second case of Equation 6.26 is exactly the same as the position
update rules in StdPSO (Equation 6.1), that consist in adding a velocity vector
to a particle’s current position. Also, the velocity vector is computed in the
same way in both algorithms. By setting ω = 1 and φ1 = 0, the velocity update
rule of StdPSO (Equation 6.2) simplifies to the one of BA (Equation 6.28). The
perturbation component d⃗i

t in BA (Equation 6.29) is equivalent to the term φ2⃗bi
t

in StdPSO (Equation 6.2). The only difference is that the value of the acceleration
coefficient φ in Equation 6.29 is computed in the range [φmin, φmax] with the
goal of varying the magnitude of the perturbation induced by a⃗ i

t . One of the
first PSO variant using the idea of varying the value of the control parameters of
PSO is the “time-varying acceleration coefficient PSO” (Ratnaweera et al. 2004),
in which the value of φ2 linearly increases from φmin to φmax.

Now, we will compare BA with simulated annealing (SA) (Kirkpatrick et al.
1983), which is a single solution based algorithm for solving combinatorial
optimization problems proposed in the early 80’s. As shown in Equation 6.29,
BA uses the concept of generating new solutions around g⃗t and accepting
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them on the basis of a decreasing probability (parameter ζ i
t). This idea comes

originally from SA, where a parameter called temperature (T) that decreases over
time is used to decided when to accept a worsening solution. In the context of
SA, the so-called cooling scheme is used to control the updates of parameter T
iteration after iteration (Franzin and Stützle 2019). In BA, parameter ζ i

t plays
the same role as parameter T in SA. Also, the model used in BA to update
the value of ζ i

t (Equation 6.30) is the same as the well-known geometric cooling
scheme, which was proposed in the very first version of SA by Kirkpatrick et al.
(1983). One minor difference is that, in BA, the value of ζ i

t is updated only when
a solution is accepted, while in SA the value of T is typically updated at the
end of each iteration.

The Metaphor of Bats Echolocation

The author of BA says that the inspiration for this algorithm is “the behavior
of echolocation that some bats species use to find preys, avoid obstacles and
discriminate between different objects” (Yang 2010, p.66). For developing BA,
the author “idealized” several aspects of this behavior. In the words of the
author, it was assumed that: (i) “all bats use echolocation for sensing distance”,
(ii) “bats are able to differentiate in some magical way between food/prey and
background barriers”, (iii) “bats can automatically adjust the frequency and
rate in which they are emitting sound”, and (iv) “the loudness of their sound
can only decrease from a large value to a minimum constant” (Yang 2010, pp.
67–68).

To explain BA, the author considered that bats have two different flying
modes, which correspond to the two cases in Equation 6.26. In the first mode,
bats fly randomly adjusting their “pulse emission rate” ρi

t and “loudness” ζ i
t.

According to the author, small values for parameter ρi
t and large ones for ζ i

t
represent when “bats are randomly searching for a prey”, while the opposite
case (i.e., large values for ρi

t and small ones for ζ i
t) represent when “bats have

found a prey and temporarily stop emitting any sound” (Yang 2010, p.70). The
mathematical model of bats adjusting their “pulse emission rate” and “loudness”
is given by Equation 6.30. For the second flying mode, which is modeled using
Eqs. 6.28 and 6.29, the authors considered that bats control their step size and
range of movement by adjusting their “sound frequency” (modeled by vector d⃗i

t
in Equation 6.29) and by moving towards the best bat in the swarm; parameters
φmin and φmax represent “the range of frequencies in which bats emit their
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sound”.

As there are so many simplifications and unrealistic assumptions in the
behavior of “bats echolocation” as idealized by Yang (2010), it is impossible
to understand how this behavior was taken into account at all for developing
BA. Consider, for example, the unlikely ideas that bats use the location of the
global best bat while hunting, or that the loudness of their sound can only
decrease, or that they have a “magical” ability to differentiate between food/prey
and background barriers. For this reason, BA does not meet the criterion of
usefulness. Also, as we showed in the previous section, BA uses concepts
originally proposed in StdPSO and SA that were published, respectively, in 1995
and 1983, thereby failing also in the criterion of novelty. Unfortunately, it seems
evident to us that the only goal of using the metaphor of “bats echolocation” has
been to hide the fact that the algorithm is unnecessary as its only contribution
is a bats-inspired terminology to refer to well-known concepts.

6.3.6 Antlion Optimizer

In the antlion optimizer (ALO) (Mirjalili 2015b), a population of µ solutions
are randomly selected for recombination with the global best solution (⃗gt) in
order to produce λ new solutions, with λ = µ. In ALO, at the beginning of
each iteration, each solution in the population P is given a probability of being
selected for recombination with g⃗t as follows:

Pr(x⃗ k
t ) =

fit(x⃗ k
t )

∑|P|z=1 fit(x⃗ z
t )

, (6.31)

where Pr(x⃗ k
t ) is the probability of selecting solution x⃗ k

t ∈ P and fit(·) is a
function that maps the quality of a solution with a real positive value, so that
the better the quality of a solution, the greater the value returned by fit(·).
It is worth noticing that, since g⃗t is an element of P, the solution with higher
probability of being selected for recombination with g⃗t is the solution g⃗t itself.

The equation used to recombine solutions in order to create the set of λ new
solutions is:

x⃗ i
t+1 =

x⃗ ′ kt + g⃗ ′it
2

for i = 1, . . . , λ (6.32)

where x⃗ ′ kt is a vector generated by perturbing solution x⃗ k
t that has been ran-

domly selected with repetitions from P based on the probabilities computed
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using Equation 6.31, and g⃗ ′it is a vector generated by perturbing g⃗t.

The computation of vectors x⃗ ′ kt and g⃗ ′it is done using an elaborated procedure
that involves performing a random walk of s-steps for each dimension of each
vector. This procedure is defined as follows:

uj =

(
Rj

t,s=ϱ − min
(
Rj

t
))
×

(
α

j
t − η

j
t
)

max(Rj
t)− min(Rj

t)
+ η

j
t , for j = 1, . . . , d; for u⃗ ∈ {x⃗ k

t , g⃗t}

(6.33)
where vector u⃗ is a variable used to iterate between vectors x⃗ k

t and g⃗t, Rj
t is a

sequence of ϱ values computed using a 1-dimensional random walk on Z that
starts at 0 and moves +1 or −1 with equal probability at each step s, Rj

t,s=ϱ

indicates the last value in the sequence Rj
t, and functions min(·) and max(·)

return, respectively, the minimum and maximum values in Rj
t. Vectors α⃗t and

η⃗t, which are computed as:

α⃗t =

(x j
u/ψt) + u j if U (0, 1) > 0.5

(−x j
u/ψt) + u j otherwise

, ∀j (6.34)

and

η⃗t =

(xj
l/ψt) + u j if U (0, 1) > 0.5

(−xj
l/ψt) + u j otherwise

, ∀j, (6.35)

allow to use a fraction 1/ψt of the upper (x j
u) and lower (xj

l) bounds of each
dimension of the vector being perturbed to normalize the values of the random
walk Rj

t around them. Finally, to create the population that will be used in the
next iteration, the best µ solutions are selected from the set of µ + λ solutions
at the end of each iteration.

The Antlion Optimizer is an ES

As the reader familiar with evolutionary algorithms must have realized by now,
the algorithm components proposed for ALO are the same as those proposed
in the context of evolution strategies (ESs)—see Section 6.2. In particular, Equa-
tion 6.31 corresponds to the fitness proportional parental selection, Equation 6.32
corresponds to the intermediate recombination, and Equation 6.33 corresponds
to the spherical/isotropic mutation. In fact, as ALO uses the elitist (µ + λ) sur-
vival selection mechanism, it is virtually the same as the (µ + λ)–ES (Schwefel
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1981), where the only difference is that, in ALO, mutation is applied before
recombination, while in the (µ + λ)–ES it is applied after recombination.

Although most of the components in ALO can be easily recognized as evolu-
tionary operators, this may not be necessarily the case for the spherical/isotropic
mutation. The mutation operator implemented in ALO (Equation 6.33) uses
a complex procedure that involves computing a random walk (Equation 6.33)
and two other equations (Eqs. 6.34 and 6.35) to mutate each dimension of
a vector, whereas the procedure implemented in ESs (Equation 2.1) requires
sampling normally distributed values. The 1-dimensional random walk over
Z implemented in ALO (that starts at 0 and adds +1 or −1 with equal prob-
ability at each time step s) is commonly known in the literature as the simple
isotropic random walk (Codling et al. 2008) and its diffusion model is given by
the Gaussian distribution with mean 0 and variance s for a sufficiently large
number of time steps s. Using this fact, the complex procedure proposed for
ALO in Equation 6.33 to compute vectors x⃗ ′kt and g⃗ ′it can be reformulated in a
much simpler and computationally efficient way as follows:

x⃗ ′kt = x⃗ k
t +N

(
0, ψtI

)
, (6.36)

g⃗ ′it = g⃗t +N
(
0, ψtI

)
, (6.37)

where ψt is the time-varying parameter that the authors of ALO introduced in
Eqs. 6.34 and 6.35.

The Metaphor of Antlions Hunting

The author of ALO says that the inspiration for the algorithm is the “intelligent
behavior of antlions in hunting ants in nature” (Mirjalili 2015b, p.81). According
to the description of this behavior provided in the ALO paper, the strategy that
antlions use for hunting consists in the following steps: (i) digging a cone-shaped
pit in the sand, (ii) hiding underneath the sand at the bottom of the pit, and (iii) waiting
for prey to fall in the pit so that they can catch it.

In ALO, the µ solutions at the beginning of each iteration represent “antlions”
and the fitness value of the solutions—computed using fit(·) in Equation 6.31—
represent “the size of the pit in which the antlion constructed and is hidden
at the bottom”. Accordingly, in the imagery of the metaphor, the “fitter” the
“antlion”, the larger its pit and the higher its chances of catching an ant. To model
the behavior of ants randomly moving in the sand, the author used Eqs. 6.33,



6.3. EXPOSING SEVEN “NOVEL” ALGORITHMS INSPIRED BY BESTIAL METAPHORS 97

6.34 and 6.35 that involve performing a random walk on Z. For Mirjalili (2015b),
the computation of vectors x⃗ ′ kt and g⃗ ′it in Equation 6.33 represent the “influence
of antlions pits on the random walk of ants”, and computing the arithmetic
average of those two vectors (Equation 6.32) represents “the final position of the
ant”. Also, when a new solution has higher quality than the one used to create
it—i.e., when f (x⃗ i

t+1) is better than f (x⃗ ′ kt )—this represents the case when “an
ant reaches the bottom of the pit and is caught in the antlion’s jaw” (Mirjalili
2015b, p.83). Finally, the fact that vector g⃗t is always used when recombining
two solutions (Equation 6.32) represents the fact that “each ant can be caught by
an antlion in each iteration and the elite (fittest antlion)” (sic) (Mirjalili 2015b,
p.82).

As the reader should have realized by now, the metaphor of “antlions
hunting” is nothing but a far-fetched way to explain the proposed antlion
optimizer. The “novel” antlion optimizer proposed in 2015 does not meet
the criterion of novelty because, as we showed in the previous section, it is a
variant of the (µ + λ)–ES proposed roughly 35 years before ALO. Also, the
mathematical model derived from the metaphor of “antlions hunting” resulted
in an inefficient procedure to perturb solutions (Eqs. 6.33, 6.34 and 6.35) that
produces the same kind of perturbation as the simple spherical/isotropic mutation
(Equation 2.1). Therefore, ALO does not meet the criterion of usefulness.
Finally, it is worth pointing out that, similarly to what we observed for the other
metaphors analyzed in this chapter, many of them proposed by the same author,
it is impossible to understand what is the optimization process/component
observed by the author in the behavior of antlions that inspired him to propose
this algorithm.

6.3.7 Cuckoo Search

While carrying out our analysis of cuckoo search, we found that the algorithm
proposed in (Yang and Deb 2009, 2010) and the implementation provided by the
authors in Matlab in (Yang 2021) are quite different; moreover, neither of them
really follows the metaphor of the cuckoos that inspired the algorithm. In the
remainder of this section, similarly to how we did for the other six algorithms,
we describe cuckoo search in plain computational terms, compare it with known
approaches, and analyze the metaphor that inspired the algorithm; however,
we present all this information in a slightly different way. After presenting the
implementation of the algorithm, we examine the metaphor of the “cuckoos
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parasitic behavior” and analyze the way it was (mis)used to develop the cuckoo
search algorithm. Then, we highlight the many inconsistencies that exist among
the metaphor, the algorithm and the implementation of cuckoo search. Lastly,
we show that the implementation of cuckoo search in Matlab (which is referred
by its authors as the correct way to implement the algorithm) is equivalent to
the (µ + λ)–ES using the mutation and recombination operators proposed in
DE.

The Implementation of Cuckoo Search

According to the publicly available implementation in Matlab (Yang 2021),
cuckoo search is an iterative, population-based algorithm that consists of the
following four steps.

Step 1 (initialization). Create a set of µ initial solutions x⃗ i
t randomly distributed

in the search space using the following equation:

x i,k
t=0 = U (lbk, ubk), for i = 1, . . . , µ and k = 1, . . . , d, (6.38)

where t is the iteration number, U is a random uniform distribution, lbk

and ubk are the lower and upper limit of dimension k, and d is the number
of dimensions in the problem.

Step 2 (perturbation). Perturb all µ solution x⃗ i
t by adding a random vector r⃗ i

t as
follows:

x⃗ i′
t = x⃗ i

t + α r⃗ i
t , for i = 1, . . . , n, (6.39)

where x⃗ i′
t is the perturbed solution, r⃗ i

t is a random vector whose compo-
nents are sampled from a Lévy distribution Lγ with scale parameter γ,
and α is a parameter that controls the magnitude of the perturbation.

Step 3 (selection). Compare each pair (⃗x i
t , x⃗ i′

t ) on the basis of the objective
function f (·) and select the one that has higher quality. This is formally
done as follows:

x⃗ i
t′ =

x⃗ i′
t , if f (x⃗ i′

t ) is better than f (x⃗ i
t )

x⃗ i
t , otherwise

. (6.40)

Step 4 (recombination). With probability 1− pa, apply recombination to the kth

component of vector x⃗ i
t′ using two randomly selected solutions x⃗ li

t′ ∈ Lt

and x⃗ mi

t′ ∈ Mt, where sets Lt and Mt contain each a copy of the population
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after executing step 3 (selection), i.e., a copy of x⃗ i
t′ for i = 1, . . . , n. Step 4

(recombination) is computed as follows:

x i,k
t+1 =

x i,k
t′ + U [0, 1] · (x li,k

t′ − x mi,k
t′ ), if U [0, 1] ≥ pa

x i,k
t′ , otherwise

, ∀k, ∀i. (6.41)

Solutions x⃗ li

t′ and x⃗ mi

t′ are selected from sets Lt or Mt without replacement,
that is, each solution is used once as x⃗ l

t′ and once as x⃗ m
t′ . Note that it can

be the case that x⃗ li

t = x⃗ mi

t = x⃗ i
t , in which case vector x⃗ i

t is not modified.
After finishing the process of recombination, solutions are evaluated once
again.

The implementation of cuckoo search consists in applying step 1 (initialization)
once and then repeating step 2 (perturbation), step 3 (selection) and step 4
(recombination) iteratively until a termination criterion is met.

The Metaphor of Cuckoos’ Parasitic Breeding Behavior

In the first two articles proposing cuckoo search (Yang and Deb 2009, 2010),
which are the ones typically cited to reference the algorithm,3 the authors de-
scribe the cuckoo search algorithm using as a metaphor the “parasitic breeding
behavior of cuckoos”, a behavior that, according to them and to the reference
that they cite in their article, some species of cuckoos practice. In the words of
the authors:

“Cuckoos are fascinating birds, not only because of the beautiful sounds they can

make, but also because of their aggressive reproduction strategy. Some species such

as the ani and guira cuckoos lay their eggs in communal nests, though they may

remove others’ eggs to increase the hatching probability of their own eggs (Payne

et al., 2005). Quite a number of species engage the obligate brood parasitism by

laying their eggs in the nests of other host birds (often other species). There are

three basic types of brood parasitism: intraspecific brood parasitism, cooperative

breeding and nest takeover. Some host birds can engage direct conflict with the

intruding cuckoos. If a host bird discovers the eggs are not its own, it will either

throw these alien eggs away or simply abandons its nest and builds a new nest

elsewhere. Some cuckoo species such as the new world brood-parasitic Tapera have

evolved in such a way that female parasitic cuckoos are often very specialised in

3(Yang and Deb 2009): 7,729 citations; and (Yang and Deb 2010): 2,843 citations. Source:
Google Scholar. Retrieved: June 12, 2023.
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the mimicry in colour and pattern of the eggs of a few chosen host species (Payne

et al., 2005). This reduces the probability of their eggs being abandoned and thus

increases their reproductivity.”

(Yang and Deb 2009, p. 210) and (Yang and Deb 2010, pp. 331, 332)

“The timing of egg-laying of some species is also amazing. Parasitic cuckoos often

choose a nest where the host bird just laid its own eggs. In general, the cuckoo eggs

hatch slightly earlier than their host eggs. Once the first cuckoo chick is hatched,

the first instinct action it will take is to evict the host eggs by blindly propelling

the eggs out of the nest, which increases the cuckoo chick’s share of food provided

by its host bird (Payne et al., 2005). Studies also show that a cuckoo chick can also

mimic the call of host chicks to gain access to more feeding opportunity.”

(Yang and Deb 2009, p. 210) and (Yang and Deb 2010, p. 332)

To translate the metaphor described above into an algorithm, the authors
simplified the process into three idealized rules. In the words of the authors:

“For simplicity in describing our new Cuckoo Search (Yang and Deb 2009), we

now use the following three idealized rules:

– Each cuckoo lays one egg at a time, and dumps it in a randomly chosen nest;

– The best nests with high quality of eggs (solutions) will carry over to the next

generations;

– The number of available host nests is fixed, and a host can discover an alien egg

with a probability pa ∈ [0, 1]. In this case, the host bird can either throw the egg

away or abandon the nest so as to build a completely new nest in a new location.

For simplicity, this last assumption can be approximated by a fraction pa of the n

nests being replaced by new nests (with new random solutions at new locations).”

(Yang and Deb 2010, p. 332)

In addition to these rules, the description of cuckoo search is limited to one
equation that is used to generate new solutions as follows:

“When generating new solutions x⃗(t+1) for, say, a cuckoo i, a Lévy flight is
performed.

x⃗ (t+1)
i = x⃗ t

i + α⊗ Lévy(λ) (6.42)

” (Yang and Deb 2009, p. 211) and (Yang and Deb 2010, p. 333).

The authors of cuckoo search refer to Equation 6.42 as “Lévy flights” because
it makes use of the Lévy distribution to sample random numbers. Note that,
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because of the use of the metaphor of cuckoos, the authors introduced new
terminology, in particular, they used three different words (eggs, nests and
cuckoos) to refer to a candidate solution to the problem—see the three idealized
rules above.

However, this terminology is not clear and the authors are not consistent
with its use. If we consider the first rule: “Each cuckoo lays one egg at a time, and
dumps it in a randomly chosen nest” that is modeled using Equation 6.42, it is
understood that x⃗ t

i is the position of the cuckoo, the term α⊗ Lévy(λ) that is

added represents the distance the cuckoo flew, and x⃗ (t+1)
i is the nest to which

the cuckoo arrived and deposited the egg. However, in (Yang and Deb 2009,
p. 211), the terminology seems to be used differently:

“For simplicity, we can use the following simple representations that each egg in a

nest represents a solution, and a cuckoo egg represent a new solution, the aim is

to use the new and potentially better solutions (cuckoos) to replace a not-so-good

solution in the nests.”

According to this “representation”, what the authors refer to as an egg and a
cuckoo is inverted with regard to their first rule and to Equation 6.42; that is,
in the excerpt above, the egg represents the initial solution x⃗ t

i and the cuckoo
represents the new and potentially better solution x⃗ (t+1)

i .
The most serious problem with the metaphor, however, comes from the

second rule, which says that “The best nests with high quality of eggs (solutions)
will carry over to the next generations”. While the metaphor of the cuckoos’ parasitic
behavior describes a process in which cuckoos lay their eggs in the nest of other
birds and some of these eggs survive and some others do not (as specified in
the third rule), there is no mention of a selection mechanism to get rid of the
low quality eggs that were laid in the different nests. However, by including
the second rule as part of the rules that define the cuckoo search algorithm
and saying that these rules are taken from their cuckoos metaphor, the authors
implied that selection is part of the cuckoos metaphor when it is not.

Inconsistencies Among the Components of Cuckoo Search

There are three important components that should help understanding how
cuckoo search works: the metaphor, the algorithm description and its implemen-
tation. Unfortunately, we discovered that the concepts brought forward by the
metaphor are hardly used in the algorithm and that the algorithmic procedure
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proposed for cuckoo search in (Yang and Deb 2009, 2010) and the implementation
provided by its authors in Matlab in (Yang 2021) are quite different.

Differences between metaphor and algorithm — The authors of cuckoo search say
that they were inspired by the cuckoos’ parasitic reproduction behavior, that is, by
the cuckoos’ strategy of laying eggs in the nest of other birds; and by the fact
that cuckoos’ eggs laid in the nests of other birds are sometimes identified by
those other birds, that can either remove them from the nest or abandon them
in the nest. They translated this behavior into a set of rules as follows:

i at each iteration, each cuckoo lays one egg in a randomly chosen nest;
ii the number of nests is fixed and each nest can host only one egg;

iii the best quality eggs at the end of iteration t will pass to iteration t + 1;
iv with probability pa, an egg is removed from the nest and replaced by a

new one in a new location.

However, in the cuckoos’ parasitic reproduction behavior there is no mecha-
nism that allows the cuckoos to select the best “quality” eggs that survive and
therefore it cannot be used to “inspire” rule iii. Indeed, by including this rule
as part of the algorithm description, the authors made the cuckoos’ parasitic
reproduction behavior look as an optimization process, when this is not the
case. Also note that the central idea in rule iii is no other than the evolutionary
concept of “the survival of the fittest”, which was originally introduced to the
field of stochastic optimization by the evolutionary computation community
and, as we describe in detail below, it is one of several concepts used in cuckoo
search that belong to the (µ + λ)–evolution strategy (Schwefel 1981).

Differences between algorithm description and algorithm implementation — In (Yang
and Deb 2009, 2010), the authors of cuckoo search provided the pseudocode
of the algorithm (reported in Algorithm 8) and, in (Yang 2021; Yang and Deb
2010), an example of its correct implementation. In the following, we present
the many differences we found between these two components. We do so by
comparing Algorithm 8 to steps 1–4 that correspond to the implementation of
the algorithm in Matlab—see (Yang 2021) for details.4

The first difference to note between steps 1–4 and what is depicted in
Algorithm 8, is that, in Algorithm 8, there is not a for loop to iterate over all the
µ solutions in the population. Therefore, differently from step 2 (perturbation), in

4We remind the reader that the code of the algorithm is also publicly available in the
Appendix: Demo Implementation of (Yang and Deb 2010) in the version published in the arXiv
repository: arXiv:1005.2908.

arXiv:1005.2908
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Algorithm 8 Cuckoo search algorithm as published in (Yang and Deb 2009,
2010)

1: begin
2: Objective function f (x⃗), x = (x1, . . . , xd)

T

3: Initial population of n hosts nests x⃗i(i = 1, 2, . . . , n)
4: while (t < MaxGenerations) or (stop creiterion) do
5: Get a cuckoo (say i) randomly by Lévy flights
6: Evaluate its quality/fitness Fi
7: Choose a nest among n (say j) randomly
8: if (Fi > Fj) then
9: Replace j by the new solution

10: end if
11: Abandon a fraction (pa) of the worse nests [and build new ones at

new locations via Lévy flights]
12: Keep the best solutions (or nests with quality solutions)
13: Rank the solutions and find the current best
14: end while
15: Postprocess results and visualization
16: end

Algorithm 8, Equation 6.39 is applied only to one solution i randomly selected
from the population at every iteration (line 5 of Algorithm 8).

The second difference has to do with step 3 (selection). In this step, after a
solution x⃗ i

t has been perturbed using Equation 6.39, either the perturbed solu-
tion x⃗ i′

t or the initial solution x⃗ i
t is accepted as x⃗ i

t′ depending on its quality—see
Equation 6.40. However, in Algorithm 8 this is done differently. In Algorithm 8,
the condition in the if statement (line 8 of Algorithm 8) says that if f (x⃗ i′

t ) is
better than f (x⃗ j

t ), where x⃗ j
t is a randomly chosen solution, then x⃗ j

t is replaced
by the perturbed solution x⃗ i′

t . Clearly, since j is chosen randomly, it may or may
not correspond to i.

The last and most important difference we found concerns step 4 (recombi-
nation) and the original corresponding algorithm instruction indicated in line
11 of Algorithm 8. First, according to the rules derived from the metaphor by
the authors, solutions are supposed to be removed randomly, but in line 11
of Algorithm 8 this is done deterministically. Second, although the authors
do not give precise directions on how to implement line 11 of Algorithm 8,
from what it is written in this line, it is understood that the solutions are first
ranked (otherwise it is not possible to know which ones are the worst) and
then Equation 6.39—that is, the equation of the “Lévy flights”—is applied to
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the worst (pa × n) solutions. However, in the Matlab implementation, line 11 of
Algorithm 8 is implemented using Equation 6.41, that recombines two randomly
selected solutions and uses them to perturb the solution vector probabilistically
and dimension-wise.

It is therefore unclear whether the authors definition of cuckoo search is the
one presented in the paper (i.e., Algorithm 8) or in the Matlab implementation.
Indeed, in (Yang and Deb 2010, p. 3)5, they write:

“A demo version is attached in the Appendix (this demo is not published in the

actual paper, but as a supplement to help readers to implement the cuckoo search

correctly).”

The Cuckoo Search is an ES

We can easily see that cuckoo search is an evolution strategies, namely the (µ+ λ)–
ES (Schwefel 1981) with two minor modifications. To explain in detail these
two modifications, in Algorithm 9, we report the cuckoo search algorithm as
implemented by its authors (see steps 1–4 in Section 6.3.7).

Algorithm 9 Cuckoo search as implemented in (Yang 2021)

1: begin
2: t← 0
3: initialize µ cuckoos (solutions) ▷ Eq. 6.38
4: evaluate µ cuckoos
5: while not termination-condition do
6: t← t + 1
7: apply mutation to µ cuckoos to create µ eggs (new ▷ Eq. 6.39

solutions)
8: evaluate eggs
9: select µ solutions from the set of (µ-cuckoos + µ-eggs) ▷ Eq. 6.40

10: apply recombination to the µ selected solutions ▷ Eq. 6.41
11: evaluate the µ selected solutions and use them as cuckoos

for the next iteration
12: end while
13: end

As we discussed above in Section 6.2, in order to instantiate the (µ + λ)–
ES, it is necessary to choose the specific type of parental selection, mutation,
recombination and survival selection to be used. The same is true for cuckoo

5This quote is taken from the version of (Yang and Deb 2010) that is published in the arXiv
repository in arXiv:1005.2908.

arXiv:1005.2908


6.3. EXPOSING SEVEN “NOVEL” ALGORITHMS INSPIRED BY BESTIAL METAPHORS 105

search. In the following, we discuss one by one the way the EC operators have
been selected in cuckoo search.

• Parental selection — As it can be seen in lines 3, 7 and 9 of Algorithm 9 and
lines 3, 7 and 10 of Algorithm 7, both the (µ + λ)–ES and cuckoo search
use the same parental selection mechanism. That is, at each iteration, µ

parents generate λ offspring, with µ = λ.

• Survival selection — In the (µ + λ)–ES, survival selection operates over
parent-offspring couplings, which means that parents will pass from one
generation to another until they are replaced by an offspring with better
fitness. As it can be seen in Algorithm 9, line 9 and Equation 6.40, cuckoo
search uses the same survival mechanism than the (µ + λ)–ES to select
between cuckoo–egg couplings.

• Mutation — Both ESs and cuckoo search generate mutations by sampling
a random distribution. While cuckoo search uses the Lévy distribution,
in ESs, there are a number of possible options: the Gaussian distribution,
that was used in the original algorithm (Schwefel 1981); the Cauchy
distribution, that was introduced in (Kappler 1996) in 1994; and the Lévy
distribution introduced in (Iwamatsu 2002; Lee and Yao 2004) in 2002.
Therefore, the mutation operator used by cuckoo search is exactly the
same as in ESs.

• Recombination In cuckoo search, recombination—see Algorithm 9, line 10
and Equation 6.41—differs in two aspects from the way this operator is
traditionally implemented in ESs.

The first difference is that the specific recombination mechanism imple-
mented in cuckoo search was originally defined for differential evolution
(see Section 6.2). In particular, if we set β = U [0, 1] in Equation 6.11 of DE,
the recombination operator proposed in Equation 6.41 becomes the same
as the creation of the trial vector in Equation 6.12.

The second difference is that in cuckoo search recombination is applied
at the end of the while loop—line 10 of Algorithm 9; differently, in
(µ + λ)–ES, recombination is applied at the beginning of the loop—line 7
of Algorithm 7. Similarly to ESs, the recombination operator is optional in
cuckoo search, since it can be removed from the algorithm implementation
by setting parameter pa = 0 in Equation 6.41; in this case cuckoo search
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is exactly the same as the (µ + λ)–ES. However, when parameter pa > 0,
the two algorithms become equivalent starting from iteration 2; in fact, in
Algorithm 9 parental selection and recombination (line 10) are followed by
mutation (line 7) and then by survival selection (line 9). As cuckoo search
does not follow the normal order in which the four main components of
evolutionary algorithms are used, solutions have to be evaluated twice at
each iteration of the while loop, which results in wasting computational
time.

6.4 Summary

In this chapter, we presented a rigorous, component-based analysis of seven
widespread metaphor-based metaheuristics—grey wolf optimizer (GWO), moth-
flame algorithm (MFA), whale optimization algorithm (WOA), firefly algorithm (FA),
bat algorithm (BA), antlion optimizer (ALO), and cuckoo search (CS)—in which
we first identified the ideas proposed in each of them, and then, we compared
them with those that have been proposed in the context of particle swarm
optimization (PSO) and evolution strategies (ESs). We showed that, although
the seven metaheuristics were presented as “novel” approaches by their authors,
they lack any novelty, as GWO, MFA, WOA, FA, BA are variants of PSO, and
ALO and CS are variants of ESs. Also, we evaluated the metaphors that inspired
the seven metaheuristics according to the criteria of usefulness and novelty that
we defined, and found that none of the metaphors have been useful to develop
a novel optimization algorithm, nor is there a sound motivation that justifies
their use.

As discussed in chapter 4, the publication of metaphor-based algorithms
has detrimental effects to the field of metaheuristics, such as creating confusion
in the literature, hindering our understanding of the existing metaheuristic
algorithms, and making it troublesome to compare algorithms both conceptually
and experimentally. Unfortunately, despite the ample evidence suggesting that
the only purpose of framing algorithms into new metaphors is to conceal their
similarities with other techniques published before and to make it difficult to
see that there is nothing really novel in them, proving that this is the case for all
(or a great majority) of them would be very challenging due to the myriad of
algorithms of this kind already published and the fact that more appear all too
often. Therefore, it is urgent that metaphor-based algorithms are not published
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anymore unless their authors (i) present the algorithms using the standard
optimization terminology, and (ii) are able to show that the new behavior leads
to new ideas that are useful in optimization.





Part III

Designing Metaheuristics
Automatically
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Chapter 7

Metaheuristic Software Frameworks

A metaheuristic software framework (MSF) is a parameterized software tool
that contains the design space of a metaheuristic. In other words, it is a
software implementation of the components of a metaheuristic and of the
many different ways in which they can be combined to create metaheuristic
implementations. To automatically generate a metaheuristic implementation,
the MSF is used in combination with an automatic configuration tool (ACT),
which, as explained in Chapter 3, iteratively executes the MSF with different
configurations and evaluates its performance on a set of problem instances
until a configuration for the MSF (which, in this case, represents a concrete
metaheuristic implementation) is found that satisfies the needs of the user.

It is important to differentiate between the concepts of automatic configu-
ration and automatic design. The former refers to the task of fine-tuning the
parameter values of an already defined metaheuristic design, while the latter
refers to composing new metaheuristic designs by recombining their compo-
nents in new ways in addition to fine-tuning their parameters values. This
distinction between automatic configuration and automatic design is useful as
they have different objectives. The goal in automatic configuration is to find
a well-performing parameter setting for a considered metaheuristic without
changing the components of its implementation. On the other hand, in auto-
matic design, the goal is typically to explore new combinations of components
and parameter settings never considered before.

111
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7.1 Automatic Design Using MSFs

Most MSFs proposed in the early days, with very few exceptions (such as
ParadisEO (Cahon et al. 2004; Keijzer et al. 2002) and (Durillo et al. 2010)
that we discuss below), only enabled the use of ACTs to perform automatic
configuration tasks. If the users were interested in performing also automatic
design tasks using these MSFs, they had to make major adaptations to the
code of the MSF in order to extend its metaheuristic design space with new
components and rules to combine them. In the worst case scenario, a complete
re-implementation of the MSF was necessary. Today, the way the design of
MSFs is approached has changed dramatically. Differently from their earlier
counterparts, most modern MSFs strive to have a flexible, modular design that
allows users to apply them to solve different kinds of problems and to easily
extend them with new metaheuristic components and rules to combine them.

Metaheuristic componentsRules for combining componentsMetaheuristic design space embedded in the MSF
Parameterized MSF interface

Problem instances Automatic ConfigurationTool
Effective metaheuristic implementation

User-defined stopping criterion

Figure 7.1: General approach for combining modular MSFs and ACTs.

The general approach for combining MSFs with flexible, modular design and
the use of ACTs to instantiate ad hoc metaheuristic implementations for specific
problems or problem instance distributions is shown in Figure 7.1. The goal of
this approach is to enable the automated solution of new problems instances
by letting the configuration tool find an effective metaheuristic implementation.
Therefore, human intervention is necessary only in those cases in which one
wishes to add new metaheuristic components to the MSF; fortunately, this task
is typically rather easy thanks to the modular design of the MSFs.

Often, the main challenge in the creation of MSFs is the definition of the
rules that control the way the different metaheuristic components can be com-
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bined. There are two main ways to do so: algorithm templates and grammar-based
programming. Algorithm templates (or top-down design) consists in creating a
parameterized algorithm template in which the metaheuristic components are
represented as possible alternatives in a typically fixed algorithmic procedure.
Differently, in grammar-based programming (or bottom-up design) the correct
combination of components is checked against a grammar, that is, a set of
“production rules” that are applied repeatedly. The main difference between
the two approaches is that algorithm templates can be much easier to define
than grammars but provide limited flexibility in the metaheuristic implementa-
tion’s design (such as components recursion), whereas using grammar-based
programming can be conceptually more difficult but allows to create designs
that are much more complex (Mascia et al. 2014).

7.2 Main MSFs Available in the Literature

As shown in Table 1, there are several MSFs proposed in the literature that
enable the use of automatic design of metaheuristics. In the table, the MSFs can
be categorized by the main kind of metaheuristic components that are included
in the software framework and the type of problems they can be used to tackle.
Note that the last four MSFs in the table are of a more general nature as they
include components from multiple different metaheuristics. It is worth noting
that the list in Table 1 is not exhaustive. Indeed, in a recently published paper
(Dréo et al. 2021), some of the current maintainers of ParadisEO identified other
47 MSFs that are available on the web. However, many of them are either closed
source, unmaintained, and/or were not aimed at designing new metaheuristic
implementations (i.e., they only enable the use of automatic configuration
and therefore they only optimize the value of numerical parameters). In the
following, we discuss some of the MSFs listed in Table 1, paying particular
attention to ParadisEO, HeuristicLab, jMetal and EMILI, which currently are
some of the most comprehensive and actively maintained.

ACO-TSP-QAP — ACO-TSP-QAP (López-Ibáñez et al. 2017) is MSF for
ACO that allows to solve instances of the traveling salesman problem (TSP) and
the quadratic assignment problem (QAP). ACO-TSP-QAP provides a unified
implementation of the following ACO variants, Ant system (AS),MAX –MIN
ant system (MMAS), Elitist ant system (EAS) (Dorigo 1992b), Rank-based ant
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system (RAS) (Bullnheimer et al. 1999a), Ant colony system (ACS) and Best-
worst AS (BWAS) (Cordón et al. 2000), while keeping a clear separation between
the problem-specific components—such as the representation of the solutions
and constraints of the problem—and the ones with general applicability—such
as pheromone update rules, restart mechanisms, and local search procedure.

MOACO — The multiobjective ACO software framework (MOACO) (López-
Ibáñez and Stützle 2012) allows to tackle multiobjective combinatorial opti-
mization problems. In MOACO, the authors synthesize the metaheuristic
components of several multiobjective ACO implementations proposed in the
literature into a single generalized algorithm template that allows to combine
them in many different ways. Similarly to ACO-TSP-QAP, MOACO keeps a
separation between metaheuristic components operating at different levels of
the metaheuristic design, particularly between those at a multiobjective level,
such as the use of multiple pheromone matrices, and those at a single-objective
level, such as the pheromone initialization, updating and evaporation. The
goal of separating components in this way is to be able to focus the design
process on finding performing combinations of multiobjective components,
while delegating the single-objective details to an effective, already designed
ACO implementations, such asMMAS or ACS.

UACOR — UACOR (Liao et al. 2014a) is unified software framework for
ACO on continuous domains (UACOR) that includes metaheuristic components
of three popular ACO variants proposed for the approximate solution of contin-
uous optimization problems, namely ACOR (Socha and Dorigo 2008), DACOR

(Leguizamón and Coello 2010), and IACOR-LS (Liao et al. 2011). UACOR was
build using a modular design that allows the use of automatic configuration
tools, in this case irace, to generate high-performing continuous ACO imple-
mentations. The experimental study of UACOR showed that the automatically
generated ACO implementations were, in fact, either competitive or superior
than state-of-the-art techniques, such as the popular CMA-ES with incremental
population (Auger and Hansen 2005).

ABC-X — ABC-X (Aydın et al. 2017a) is a MSF for the artificial bee colony
algorithm (ABC) (Karaboga et al. 2005; Karaboga and Basturk 2007), that was
developed by integrating and extending the ideas proposed in a number of
ABC variants. The authors of ABC-X defined a generalized mathematical model
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for the main search equation of ABC that allows to instantiate a large number
of existing variants and to create many new ones never proposed before. The
performance of ABC-X was evaluate on a large set of continuous functions and
it was found to be better than the state-of-the-art of ABC.

ParadisEO — ParadisEO (Cahon et al. 2004; Dréo et al. 2021; Keijzer et al.
2002) is a well-known MSF whose initial development dates back to the early
2000’s. This MSF includes four main modules that allow users to compose
metaheuristic designs, namely: evolving object for population-based metaheuris-
tics, moving objects for local search algorithms, estimation of distribution objects
for estimation of distribution algorithms, and multiobjective evolving objects for
multiobjective optimization. Some of the key features of ParadisEO are: (i)
it has a high runtime speed (as it is implemented in C++), (ii) it integrates
a state-of-the-art benchmarking and profiling tool called IOHprofiler (Doerr
et al. 2018) that allows to simplify the process of comparing and evaluating
implementations against a benchmark, and (iii) it has an active community of
maintainers. ParadisEO has been applied to solve optimization problems for
more than two decades. However, in its early days it was manually configured
and its use in the context of automatic design is something that has been in-
vestigated much more recently in the literature (Dréo et al. 2021). To the best
of our knowledge, the first work in this direction is (Aziz-Alaoui et al. 2021),
where the authors studied 19 genetic algorithms for the W-model problem that
were automatically generated using ParadisEO and irace; among the several
findings of the authors are that the implementations automatically generated
by irace were able to outperform all manually created baseline algorithms and
that the fast computations that ParadisEO is able to provide allow to tackle
large design spaces in short wall-clock times.

HeuristicLab — HeuristicLab (Wagner and Affenzeller 2005) is an optimiza-
tion software system developed in the early 2000’s that incorporates an MSF. In
its current version 3.3, released in 2010, the MSF of HeuristicLab has modules
for instantiating many different machine learning and metaheuristic algorithms
(e.g., genetic programming, evolutionary computation, particle swarm optimiza-
tion, and simulated annealing). In addition to providing an MSF, HeuristicLab
also has a number of useful features: (i) it uses a meta-model that allows to
represent arbitrary optimization algorithms; (ii) it allows to manipulate and
define metaheuristic designs via a graphical user interface; (iii) it gives easy
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access to many problems instances that can be used for benchmarking purposes;
and (iv) it provides interactive charts for results analysis. It should be noted
that, while ParadisEO and EMILI (described below) are implemented in C++,
HeuristicLab is implemented in C# and is therefore slower. Except for one paper
addressing the algorithm selection problem (Beham et al. 2018), we could not
find any work specifically targeting the automatic design of metaheuristics
using HeuristicLab.

jMetal — jMetal (Durillo et al. 2010), developed in 2009, is an optimization
software system implemented in Java that incorporates an MSF in addition to
several other useful features. jMetal is focused on multiobjective optimization
problems, and therefore, it allows to instantiate many state-of-the-art meta-
heuristics of this kind, such as NSGA-II (Deb et al. 2002), GDE3 (Kukkonen
and Lampinen 2005), and IBEA (Zitzler and Künzli 2004). However, in its
current version, jMetal also includes components from a number of single-
objective algorithms, such as differential evolution, particle swarm optimization,
and CMA-ES. The main features of jMetal are that (i) it provides a simple
graphical user interface that allows to set the parameters of the metahueristic
implementation; (ii) it gives access to five popular testbeds that can be used
for benchmarking purposes (e.g., ZDT (Zitzler et al. 2000), DTLZ (Deb et al.
2005), and WFG (Huband et al. 2006)); (iii) it makes available some of the most
widely used quality indicators used in multiobjective optimization, namely
hypervolume (Zitzler and Thiele 1999), spread (Deb et al. 2002), generational
distance (Van Veldhuizen and Lamont 1998), inverted generational distance
(Van Veldhuizen and Lamont 1998), and epsilon (Knowles et al. 2006); and (iv)
it offers support for performing experimental studies, including the automatic
generation of LATEX tables, statistical pairwise comparison using the Wilcoxon
test, and R boxplots. There are several examples of the use of jMetal for au-
tomatically creating metaheuristic implementations in the literature (see for
example (Nebro et al. 2019) and (Doblas et al. 2022)).

EMILI — EMILI (Pagnozzi and Stützle 2019), whose initial development
dates back to 2015, is an MSF that implements metaheuristic-specific and
problem-specific components for stochastic local search algorithms. In its
current version, EMILI is mostly used for single-solution metaheuristics (e.g., it-
erated local search, tabu search, simulated annealing, etc.), but its design makes
it easily extensible to population-based metaheuristics. The main particularity
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of EMILI is its architecture, which uses a grammatical representation to validate
possible combinations of algorithm components: the components that make up
the metaheuristic implementation and the order in which they will be executed
are checked against a grammar and then encoded as a character string, so that
only valid combinations are produced. Then, EMILI translates the character
string into a parametric form that can be executed by an ACT. Other impor-
tant features of EMILI are: (i) that it implements a strict separation between
algorithm-related components and problem-related components, and (ii) that it
allows to consider algorithms as recursive metaheuristic components. So far,
the two most relevant works using EMILI to automatically create metaheuristic
designs and implementations are: (Pagnozzi and Stützle 2019), which is focused
on hybrid stochastic local search algorithms for permutation flowshop problems;
and (Franzin and Stützle 2019), which is focused on simulated annealing for
the quadratic assignment and permutation flowshop problems.

7.3 Summary

The creation of MSFs with flexible, modular design that can be used together
with an ACTs is a promising research direction in the field of metaheuristics. The
goal of this approach is twofold: first, to reduce the need for manual (human)
intervention in the design process of metaheuristic implementation; and second,
to allow users to easily instantiate high-performing, ad hoc implementations
for specific problems or problem instance distributions. In the next chapter,
we describe in detail PSO-X, which is a MSF for particle swarm optimization
that was created in the context of this research work. PSO-X has a design that
is similar to UACOR and ABC-X, and is currently the most complete MSF
proposed in the literature for PSO.



Chapter 8

PSO-X: A Flexible, Modular
Framework for Particle Swarm
Optimization

Particle swarm optimization (PSO) has been the object of many studies and
modifications for more than 25 years. Ranging from small refinements to the
incorporation of sophisticated novel ideas, the majority of the modifications
proposed to this metaheuristic have been the result of a manual process in
which developers try new designs based on their own knowledge and expertise.
However, as discussed in great detail in Chapter 3, manually introducing
changes is very time consuming and makes the systematic exploration of the
metaheuristic design space a difficult process.

In this chapter, we present PSO-X, a metaheuristic software framework (MSF)
specifically designed to integrate the use of automatic configuration tools (ACTs)
into the process of generating PSO implementations. Our framework embodies
a large number of metaheuristic components developed over more than 25 years
of research that have allowed PSO to deal with a large variety of problems,
and uses irace, a state-of-the-art configuration tool, to automatize the task of
selecting and configuring PSO implementations starting from these components.
We show that irace is capable of finding high performing instances of PSO
implementations never proposed before.

119
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8.1 Preliminaries

8.1.1 Main Concepts of PSO

Particle swarm optimization (Eberhart and Kennedy 1995; Kennedy and Eber-
hart 1995) is a randomized optimization algorithm where a set of “particles”
search for approximate solutions of continuous optimization problems. In PSO
each particle moves in the search space by repeatedly applying velocity and
position update rules. Each particle i has, at every iteration t, three associated
vectors: the position x⃗ i

t , the velocity v⃗ i
t , and the personal best position p⃗ i

t . The
vector x⃗ i

t is a candidate solution to the optimization problem considered whose
quality is evaluated by the objective function f (·).

In addition to these vectors, each particle i has a set Ni of neighbors and
a set Ii of informants. Set Ni contains the particles from which i can obtain
information, whereas Ii ⊆ Ni contains the particles that will indeed provide
the information used when updating i’s velocity. The way the sets Ni—which
define the topology of the swarm (Kennedy and Mendes 2002)—and the sets
Ii—which we refer to as models of influence—are defined are two important
design choices in PSO. Sets Ni can be defined in many different ways producing
a large number of possible different topologies; the two extreme cases are the
fully-connected topology, in which all particles are in the neighborhood of all
other particles, and the ring topology, where each particle is a neighbor of
just two adjacent particles. Examples of other partially connected topologies
include lattices, wheels, random edges, etc. The model of influence can also
be defined in different ways, but the vast majority of implementations employ
either the best-of-neighborhood which contains the particle with the best personal
best solution in the neighborhood of i (which includes particle i itself), or the
fully informed model, in which Ii = Ni.

In the standard PSO (StaPSO) (Shi and Eberhart 1998), the rule used to
update particles’ position is

x⃗ i
t+1 = x⃗ i

t + v⃗ i
t+1, (8.1)

where the velocity vector v⃗ i
t+1 of the ith particle at iteration t + 1 is computed

using an update rule that involves v⃗ i
t , p⃗ i

t , and l⃗ i
t . The vector l⃗ i

t indicates the
best among the personal best positions of the particles in the neighborhood of
i; formally, it is equal to p⃗ k

t where k = arg minj∈Ni{ f ( p⃗ j
t )}. Note that when a



8.1. PRELIMINARIES 121

fully-connected topology is employed, vector l⃗ i
t becomes the global best solution

and is indicated as g⃗t.

The velocity update rule of StaPSO is defined as follows:

v⃗ i
t+1 = ωv⃗ i

t + φ1Ui
1t
(

p⃗ i
t − x⃗ i

t
)
+ φ2Ui

2t
(⃗
l i
t − x⃗ i

t
)
, (8.2)

where ω is a parameter, called inertia weight, used to control the influence of the
previous velocity, and φ1 and φ2 are two parameters known as the acceleration
coefficients that control the influence of ( p⃗ i

t − x⃗ i
t ) and (⃗l i

t − x⃗ i
t ). The goal of

vectors ( p⃗ i
t − x⃗ i

t ) and (⃗l i
t − x⃗ i

t ), respectively known as the cognitive influence
(CI) and the social influence (SI), is to attract particles towards high quality
positions found so far. Ui

1t and Ui
2t are two d × d diagonal matrices whose

diagonal values are random values drawn from U (0, 1]; their function is to
induce perturbation to the CI and SI vectors.

The rule to update the personal best position of particle i is

p⃗ i
t+1 =

x⃗ i
t+1, if (( f (x⃗ i

t+1) < f ( p⃗ i
t )) ∧ (x⃗ i

t+1 ∈ S))

p⃗ i
t otherwise.

(8.3)

8.1.2 Previous Work on the Automatic Design of PSO

Compared to the number of works devoted to other widely used metaheuristics,
such as ant colony optimization (López-Ibáñez and Stützle 2012), evolutionary
computation (Bezerra et al. 2016; Nobel et al. 2021), and artificial bee colony
(Aydın et al. 2017b), there are very few previous work attempting the automatic
design of particle swarm optimization implementations. The two most relevant
of these works are (Miranda and Prudêncio 2015; Poli et al. 2005), where the
authors used grammatical evolution (GE) to evolve novel velocity update rules
in PSO. The main limitation of these works is the low number of different
components that can be combined. In (Poli et al. 2005), only the social and
cognitive components of the velocity update rule can be automatically designed;
while, in (Miranda and Prudêncio 2015), the list of components includes also
the topology and swarm size, but the grammar that defines the rules to combine
components is based on the standard version of PSO and makes difficult to
include recent metaheuristic components.

To overcome these limitation, we propose PSO-X, a flexible, component-
based framework containing a large number of metaheuristic components
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previously proposed in the PSO literature. In PSO-X each metaheuristic com-
ponent can assume a set of different values and PSO-X generates a specific
PSO implementations by selecting a value for each possible component. To
do so, PSO-X uses a generalized algorithm template that is flexible enough
to combine the metaheuristic components in many different ways, and that is
sufficient to synthesize many well-known PSO variants published in the last
two decades. Most of the flexibility in PSO-X is achieved through the use of a
generalized velocity update rule—the core component of PSO. The goal of using
a generalized velocity rule is to facilitate the abstraction of the elements typically
used in this metaheuristic component, in order to allow the combination of
concepts that operate at different levels of the metaheuristic implementation
design. For example, with our template and the generalized velocity update
rule, a high-level component such as the type of distribution of all next possible
particle positions can interact with specific types of perturbation and a number
of strategies to compute their magnitude.

PSO-X provides two important benefits when implementing PSO: first, the
possibility of easily creating many different implementations combining a wide
variety of metaheuristic components from a single framework; second, the
possibility of using automatic configuration tools to tailor implementations
of PSO to specific problems according to different scenarios. Our aim is to
show that developing PSO implementations using PSO-X is more efficient and
produces implementations capable of outperforming their manually designed
counterparts. To assess the effectiveness of our PSO-X framework, we compare
the performance of six automatically generated PSO implementations with
ten of the best known variants proposed in the literature over a set of fifty
benchmark problems for evaluating continuous optimizers.

8.1.3 Automatic Algorithm Configuration Using irace

We employed a state-of-the-art offline configuration tool called irace (López-
Ibáñez et al. 2016). This tool has been shown to be capable of dealing with the
task of selecting, configuring and generating high-performing metaheuristic
implementations by finding good configurations whose performance can be gen-
eralized to unseen problem instances. To do so, irace implements a procedure
called iterated racing (López-Ibáñez et al. 2016), which is based on the machine
learning model selection approach called racing (Maron and Moore 1997) and
on Friedman’s non-parametric two-way analysis of variance. Iterated racing
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consists of the following steps. First, it samples candidate configurations from
the parameter space. Second, it evaluates the candidate configurations on a set
of instances by means of races, whereby each candidate configuration is run on
one instance at a time. Third, it discards the statistically worse candidate config-
urations identified using a statistical test based on Friedman’s non-parametric
two-way analysis of variance by ranks. During the configuration process, which
is done sequentially and uses a given computational budget, irace adjusts
the sampling distribution in order to bias new samplings towards the best
configurations found so far. When the computational budget is over, irace
returns the configuration that performed best over the set of training instances.
irace is capable of handling the different types of parameters included in our
framework, that is, numerical (e.g., ω, φ1 or φ2,), categorical (e.g., topology),
and subordinate parameters, that is, parameters that are only necessary for
particular values of other parameters (e.g., when the size of the population
changes in the implementation, it is necessary to configure the maximum and
minimum number of particles in the swarm, but not when the size remains
constant.)

8.2 Design Choices in PSO

Many metaheuristic components have been proposed for PSO over the years
(Bonyadi and Michalewicz 2017; Poli et al. 2007) with the goal of improving
its performance and enabling its application to a wider variety of problems.
We have categorized these metaheuristic components into five different groups:
(1) those used to set the value of the main control parameters, (2) those that
control the distribution of particles positions in the search space, (3) those used
to apply perturbation to the velocity and/or position vectors, (4) those regarding
the construction and application of the random matrices, and (5) those related
to the topology, model of influence and population size.

Group (1) comprises the time-varying and adaptive/self-adaptive parameter
control strategies used to compute the value of ω, φ1 and φ2. Time-varying
strategies take place at specific iterations of the implementation’s execution;
while adaptive and self-adaptive strategies use information related to the op-
timization process (e.g., particles average velocity, convergence state of the
algorithm, average quality of the solutions found, etc.) to adjust the value
of the parameters. Because the value of ω, φ1 and φ2 heavily influences the
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exploration/exploitation behavior of PSO, parameter control strategies for this
metaheuristic are abundant in literature (Harrison et al. 2016). In particular, a lot
of attention has been given to control strategies focused on adjusting the value
of ω, which is intrinsically related to the local convergence of the algorithm.1

Locally convergent implementations not only guarantee to find a local
optimum in the search space, but also prevent issues such as (i) swarm explosion,
which happens when a particle’s velocity vector grows too large and the particle
becomes incapable of converging to a point in the search space (Clerc and
Kennedy 2002); and (ii) poor problem scalability, which means that the algorithm
performs poorly on high dimensional problems (Bonyadi and Michalewicz 2014).
In fact, the poor problem scalability issue has become very relevant in the last
years because of the increasing number of problems involving large dimensional
spaces where PSO is applicable. It has been observed that unwanted particles
roaming in high dimensional spaces is a substantial part of this issue and that,
in variants such as StaPSO, parameter values for ω, φ1 and φ2 that perform well
in low dimensional spaces will most likely perform poorly in large dimensional
ones (Oldewage et al. 2020). A number of strategies have been proposed to
address this issue, such as reinitialization (García-Nieto and Alba 2011), group-
based random diagonal matrices (Zyl and Engelbrecht 2016) and perturbation
mechanisms (Bonyadi and Michalewicz 2014).

In group (2) are the metaheuristic components used to control the distribu-
tion of all next possible positions (DNPP) of the particles. The chosen DNPP
determines the way particles are mapped from their current position to the
next one. We consider the three main DNPP proposed in the literature—the
rectangular (used in StaPSO), the spherical (used in SPSO-2011 (Clerc 2011))
and the additive stochastic, which comprises the recombination operators pro-
posed for simple dynamic PSO implementations (Peña 2008b). Although some
DNPP mappings suffer from transformation variance—which happens when the
algorithm performs poorly under mathematical transformations of the objec-
tive function, such as scale, translation, and rotation2—there are a number of
metaheuristic components that have been developed to prevent this issue.

Group (3) is composed of the metaheuristic components that allow to apply

1In this context, convergence means that, as the number of iterations grows larger, the
probability of particles reaching a stable position in which x⃗ i

t = p⃗ i
t = g⃗t and V⃗ i

t = 0 for all i
approaches 1. See (Bonyadi and Michalewicz 2017; Trelea 2003).

2Scale variance means that the performance of the algorithm is affected by uniformly scaling
all variables of the problem, while translation and rotation variance mean that the performance of
the algorithm is dependent on how the coordinated axes are placed in the search space.
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perturbations to the particles velocity/position vectors. In general, in PSO
perturbation mechanisms can be informed or random. Informed perturbation
mechanisms receive a position vector as an input (typically p⃗ i

t or x⃗ i
t ) and

use it to compute a new vector that replaces the one that was received. The
typical way in which informed mechanisms work is by using the components
of the input vector as center of a probability distribution and mapping random
values around them; however, other options found in the literature include
computing the Hadamard product between the input vector and a random
one, or randomly modifying the components of the input vector. Differently,
random perturbation mechanisms add a random value to a particle’s position
or velocity. Perturbation mechanisms proposed for PSO are used to improve the
diversity of the solutions (Bonyadi and Michalewicz 2014; Xinchao 2010), avoid
stagnation (Lehre and Witt 2013), and avoid divergence (Bergh and Engelbrecht
2002). Additionally, some of these mechanisms allow to modify the DNPP of the
particles; an example is the mechanism proposed in (Bonyadi and Michalewicz
2014), where a Gaussian distribution is used to map random points on spherical
surfaces centered around the position of the informants.

One of the main challenges in most perturbation mechanisms is to determine
the perturbation magnitude: a strong perturbation may prevent particles from
efficiently exploiting high quality areas of the search space, while a weak one
may not produce any improvement at all. In order to allow convergent imple-
mentations to take advantage of the perturbation mechanism, some magnitude
control strategies take into account the state of the optimization process to
adjust the magnitude at run time. An example is (Bergh and Engelbrecht 2002),
where a parameter decreases the perturbation magnitude when the best solution
found so far has been constantly improving, whereas increases it when the
algorithm is stagnating. Another example is (Bonyadi and Michalewicz 2014),
where the magnitude is computed based on the Euclidean distance between
the particles so as to decrease it as particles converge to the best solution found
so-far.

The metaheuristic components in group (4) corresponds to the random
matrices, whose function, similarly to some perturbation mechanism of group
(3), is to provide diversity to particles movement. The main difference between
the random matrices and the perturbation mechanisms described above is that
the former can be used to produce changes in the magnitude and direction of the
CI and SI vectors, while the latter allow only to apply perturbation to individual
positions used in the computation of the CI and SI. In StaPSO, the random
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matrices (Ui
1 and Ui

2, see Equation 8.2) are usually constructed as diagonal
matrices with values drawn from U (0, 1); however, in some implementations of
StaPSO (e.g., (Bonyadi and Michalewicz 2017)), the matrices are replaced by two
random values ri

1 and ri
2—in this case particles oscillate linearly between p⃗ i

t and
l⃗ i
t without being able to move in different directions, preventing transformation

variance (Bonyadi and Michalewicz 2017) but affecting the performance of
the algorithm. Using random rotation matrices3 (RRMs), instead of random
diagonal matrices, is another way to address transformation variance in PSO.
RRMs allow to apply random changes to the length and direction of the vectors
in the velocity update rule without being biased towards some particular
reference frame. The two main methods that have been used to create RRMs
in the context of PSO are exponential map (Wilke et al. 2007) and Euclidean
rotation (Bonyadi et al. 2014).

The last group of metaheuristic components we identified in our work, group
(5), includes the topology, model of influence and population size. The topology
plays an important role in the way PSO modulates its exploration-exploitation
capabilities. In addition to the well-known fully-connected, ring and von
Neumann topologies, there are other topologies that have been explored in the
PSO literature, such as hierarchical and small-world network. In (Montes de
Oca et al. 2009), a topology that decreases connectivity over time was proposed.
Concerning the model of influence, besides the best-of-neighborhood and the
fully informed, another option is the ranked fully informed model of influence
(Jordan et al. 2008), in which the contribution of each informant is weighted
according to its rank in the neighborhood. Concerning population size, it has
recently been proposed to increase or decrease the number of particles according
to some metrics (Hsieh et al. 2008; Montes de Oca et al. 2010). The number of
particles in the swarm has an impact on the trade-off between solution quality
and speed of the implementation (Bonyadi and Michalewicz 2017; Montes de
Oca et al. 2010). In general, a large population should be used as it can produce
better results. However, a small population may be the best option when the
objective function evaluation is expensive or when the number of possible
function evaluations is limited.

3A rotation matrix is an orthogonal matrix whose determinant is 1.
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8.3 Designing PSO Implementations From an Algo-
rithm Template

In this section, we explain the way in which the metaheuristic components
reviewed in the previous section can be combined using the PSO-X framework.
In the reminder of the chapter, we use Sans Serif font to indicate the name of
the metaheuristic components and of their options as implemented in PSO-X.

8.3.1 Algorithm Template for Designing PSO Implementations

Algorithm 10 Algorithm template used by PSO-X

Require: set of parameters
1: swarm← Initialize(Population, Topology, Model of influence)
2: repeat
3: for i← 1 to size(swarm) do
4: v⃗ i

t+1 ← ω1 v⃗ i
t + ω2 DNPP(i, t) + ω3 Pertrand(i, t)

5: apply velocity clamping ▷ optional
6: x⃗ i

t+1 ← x⃗ i
t + v⃗ i

t+1
7: end for
8: for i← 1 to size(swarm) do
9: compute f (x⃗ i

t )
10: update p⃗ i

t using Equation 8.3
11: end for
12: apply stagnation detection, particles reinitialization ▷ optional
13: if type(Population) ̸= Pop-constant then
14: swarm← UpdatePopulation(swarm, Population)
15: end if
16: if type(Topology) = Top-time-varying or type(Population) ̸= Pop-constant

then
17: swarm← UpdateTopology(swarm, Topology, Model of influence)
18: end if
19: until termination criterion is met
20: return global best solution

Algorithm 10 depicts the PSO-X’s algorithm template. A swarm of particles
(swarm) is created using the Initialize() procedure that assigns to each particle a
set Ni, a set Ii, an initial position and an initial velocity based on the Population,
Topology and Model of influence indicated by the framework user. Additionally,
the Initialize() procedure creates and initializes any variable required to use the
metaheuristic components included in the implementation. The two for cycles
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of lines 3 to 7 and lines 8 to 11 corresponds to the standard implementation of
PSO—except for line 4 that shows our generalized velocity update rule (GVUR),
defined as follows:

v⃗ i
t+1 = ω1 v⃗ i

t + ω2 DNPP(i, t) + ω3 Pertrand(i, t), (8.4)

where DNPP represents the type of mapping from a particle’s current position
to the next one, and Pertrand represents an additive perturbation mechanism.

The parameter ω1 is the same as the inertia weight in StaPSO (see Equa-
tion 8.2) and its value can be computed using the strategies that have been
developed for this purpose (the list of the strategies available to compute its
value are shown in Table B.4 of Appendix B). The parameters ω2 and ω3 control
the influence that will be given to the DNPP and Pertrand components; their val-
ues can be set equal to ω1 or be computed using the random component, where
ω2, ω3 ∼ U [0.5, 1], or the constant component, where ω2, ω3 are user selected
constants in the interval [0, 1]. We use three independent ω parameters so that
it is easy to disable any of the GVUR components. For example, a velocity
free PSO can be easily obtained by setting ω1 = 0. After all particles have up-
dated their position, two procedures can take place: UpdatePopulation(), that
increases/decreases the size of the swarm according to the type of Population
employed; and UpdateTopology(), that connects newly added particles to a set
of neighbors, or disconnect particles when the topology connectivity reduces
over time.

All implementations that can be created using Algorithm 10 and combin-
ing metaheuristic components with different functionalities, such as different
DNPPs or topologies, are considered valid implementations by PSO-X. This
allows enough flexibility to explore many new designs without increasing too
much the computational complexity of the implementations. In particular,
in PSO-X, we do not allow the recursive use of components, as it is done in
component-based framework using grammars (Stützle and López-Ibáñez 2019).
In Table B.2 of Appendix B we show the metaheuristic components and parame-
ters in the framework, their domain and type, and the condition(s) under which
each parameter is used in PSO-X.
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8.3.2 DNPP Component

The six options defined in PSO-X for the DNPP component are DNPP-rectangular,
DNPP-spherical, DNPP-standard, DNPP-discrete, DNPP-Gaussian and DNPP-Cauchy–
Gaussian.

The DNPP-rectangular option is defined as follows:

DNPP-rectangular =
n

∑
k∈Ii

t

φk
t Mtxk

t
(
Pertinfo( p⃗ k

t )− x⃗ i
t
)
, (8.5)

where Mtx and Pertinfo are, as mentioned before, high-level representations of
the different types of random matrices and informed perturbation mechanisms
used in PSO. The DNPP-rectangular is by far the most commonly used in imple-
mentations of PSO, including StaPSO (Shi and Eberhart 1998), the constriction
coefficient PSO (Clerc and Kennedy 2002), the fully informed PSO (Mendes et al.
2004), etc. In the standard application of DNPP-rectangular (i.e., as in StaPSO),
each term added in Equation 8.5 is a vector located on a hyper-rectangular
surface whose side length depends on the distance between p⃗ k

t and x⃗ i
t . How-

ever, when the perturbation component of DNPP-rectangular is an informed
Gaussian—as in the locally convergent rotationally invariant PSO (LcRPSO)
(Bonyadi and Michalewicz 2014)—or a random rotation matrix (RRM)—as in
the diverse rotationally invariant PSO (DvRPSO) (Wilke et al. 2007)—the surface
on which the different vectors computed in Equation 8.5 are located becomes
hyperspherical or semi-hyperspherical, respectively.

Another option is DNPP-spherical (Clerc 2011), where a vector located on
a hyper-sphere is used in the computation of a particle new position. The
equation to compute the DNPP-spherical option is the following:

DNPP-spherical = Hi
(⃗
c i

t , |⃗c i
t − x⃗ i

t |
)
− x⃗ i

t , (8.6)

where H(⃗c i
t , |⃗c i

t − x⃗ i
t |) is a random point drawn from a hyperspherical dis-

tribution with center c⃗ i
t and radius |⃗c i

t − x⃗ i
t |. The center c⃗ i

t is computed as
follows:

c⃗ i
t =

x⃗ i
t + L⃗ i

t + P⃗ i
t

3
, (8.7)

where
P⃗ i

t = x⃗ i
t + φ1tMtxt

(
Pertinfo( p⃗ i

t )− x⃗ i
t
)
, (8.8)
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L⃗ i
t = x⃗ i

t +
n

∑
k∈Ii

t\{i}
φk

2tMtxk
t
(
Pertinfo( p⃗ k

t )− x⃗ i
t
)
, (8.9)

and φk
2t =

φ2t
|Ii

t\{i}|
. The main difference between DNPP-spherical and the standard

implementation of DNPP-rectangular is that the hypersphere Hi
(⃗
c i

t , |⃗c i
t − x⃗ i

t |
)

is invariant to rotation around its center, whereas DNPP-rectangular is rotation
variant unless another component is used to overcome this issue—e.g., a Gaus-
sian perturbation, as done in the LcRPSO variant. While the DNPP-spherical
and the LcRPSO combining the DNPP-rectangular with a Gaussian perturbation
component use the same idea, they work in a different way. In the DNPP-
spherical DNPP, there is a single vector mapped randomly in the hypersphere
H(⃗c i

t , |⃗c i
t − x⃗ i

t |) and the informants of i participate only in the computation
of vector L⃗ i

t (see Equation 8.9)4; whereas in the LcRPSO variant, there are n
different vectors, one for each informant of i, each mapped on a spherical
surface, and the new velocity of the particle is obtained by adding all n vector,
as shown in Equation 8.5.

The DNPP-standard, DNPP-discrete, DNPP-Gaussian and DNPP-Cauchy–Gaussian
options belong to the class of simple dynamic PSO implementations (Li and
Yao 2011; Peña 2008b) and have the form q⃗ i

t − x⃗ i
t , where vector q⃗ i

t is computed
differently in each option:

DNPP-standard : q⃗ i
t =

φ1 p⃗ ′ it + φ2 p⃗ ′ kt
φ1 + φ2

(8.10)

DNPP-discrete : q⃗ i
t = ηd p⃗ ′ it + (1− ηd) p⃗ ′ kt ) (8.11)

DNPP-Gaussian : q⃗ i
t = N (

p⃗ ′ it + p⃗ ′ kt
2

, | p⃗ ′ it − p⃗ ′ kt |) (8.12)

DNPP-Cauchy–Gaussian : q⃗ i
t =

p i,j
t + C(1)|p′ i,jt − p′ k,j

t | if U [0, 1] ≤ r

p k,j
t +N (0, 1)|p′ i,jt − p′ k,j

t | otherwise
(8.13)

where ηd ∼ U{0, 1} is a discrete random number drawn from a Bernoulli distri-
bution, C(1) is a random number generated using a Cauchy distribution with
scaling parameter 1, N (0, 1) is a random number from a Normal distribution
with mean 0 and variance 1, and r is a parameter that allows the user to select
the probability with which the Cauchy or the Normal distributions are used in

4In the original definition of Equation 8.9, vector L⃗ i
t was defined considering a best-of-

neighborhood model of influence. In this article, we have extended the computation of L⃗ i
t to an

arbitrary number of informants.



8.3. DESIGNING PSO IMPLEMENTATIONS FROM AN ALGORITHM TEMPLATE 131

Equation 8.13. Vectors p⃗ ′ it and p⃗ ′ kt are computed using p⃗ ′ it = Pertinfo( p⃗ i
t ) and

p⃗ ′ kt = Pertinfo( p⃗ k
t ) with k ∈ Ii.

Unlike options DNPP-standard, DNPP-discrete and DNPP-Gaussian, where the
mapping between particles i and k is deterministic, in DNPP-Cauchy–Gaussian,
the value of the jth dimension of q⃗ i

t is computed with probability r using p⃗ i
t

and a Cauchy distribution; and with probability 1− r using p⃗ k
t and a Normal

distribution. Although we kept the original definition of these DNPPs for the
most part, we did two modifications: we included the Pertinfo component (i.e.,
vectors p⃗ ′ it and p⃗ ′ kt instead of p⃗ i

t , p⃗ k
t ) and the possibility of using a random

informant model of influence (MoI-random informant), which consists in choosing
a random particle from Ni and use it as informant.

8.3.3 Pertrand and Pertinfo Components

The two types of perturbation components included in PSO-X are: Pertinfo,
which modifies an input vector; and Pertrand, which generates a random vector
that is added to the velocity vector. Pertinfo, as explained in Section 8.3.2, is a
component used by the DNPP component. Differently, Pertrand is used directly
in the generalized velocity update rule.

Table 8.1: Options for computing Pertinfo and Pertrand components in
PSO-X when they are used in the implementation

Component Option Definition

Pertinfo *


none —
Pertinfo-Gaussian N (⃗r, σt)

Pertinfo-Lévy Lγt (⃗r, σt)

Pertinfo-uniform r⃗ + (⃗s⊙ r⃗), with s⃗ ∼ U [−bt, bt]

Pertrand **


none —
Pertrand-rectangular τt (1− 2 · U (0, 1))
Pertrand-noisy U [−δt/2, δt/2]

* In the options for computing Pertinfo: r⃗ is the input vector; N (⃗r, σt) is a Normal
distribution with mean r⃗ and variance σt; Lγ (⃗r, σt) is a Lévy distribution with
mean r⃗, variance σt, and scale parameter γt; and bt is a real parameter.

** In the options for computing Pertrand: τt and δt are two real parameters.

As shown in Table 8.1, both Pertinfo and Pertrand are optional components in
PSO-X that can be omitted from the implementation using the none option. The
options for Pertinfo, when the component is present in the implementation, are
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Pertinfo-Gaussian, Pertinfo-Lévy, and Pertinfo-uniform. Pertinfo-Gaussian and Pertinfo-
Lévy compute a random vector by using a probability distribution whose center
and dispersion are given by the input vector r⃗ and by the parameter σt that
controls the magnitude of the perturbation. Similarly, in Pertinfo-uniform, the
perturbation magnitude depends on a parameter bt, that controls the interval
in which a random vector s⃗ will be generated using a uniform distribution.
Regarding the Pertrand component, both Pertrand-rectangular and Pertrand-noisy
employ a random uniform distribution to generate a random vector; the mag-
nitude of the perturbation is controlled in this case by parameters τt and δt,
respectively.

In Pertinfo-Lévy, the value of γt can be used to switch between a Gaussian and
a Cauchy distribution (Richer and Blackwell 2006). That is, when γt = 1, the
Lévy distribution is equivalent to the Gaussian distribution, and when γt = 2,
it is equivalent to the Cauchy distribution. In PSO-X, the value of γt is obtained
sampling from the discrete uniform distribution U{10, 20}:

γt = U{10, 20}/10.

This allows to vary the probability of generating a random value in the tail
of the distribution. This way of computing the value of γt is similar to the
one used in (Li and Yao 2011) for computing the DNPP-Cauchy–Gaussian option
assuming r = 0.5 to give the same probability to each case—see Equation 8.13.

Since the perturbation magnitude (PM) plays a critical role in the effective-
ness of perturbation components, setting its value (either offline or at run-time)
is often challenging. In PSO-X we implemented four strategies for computing
the PM that can be used with any of the Pertinfo and Pertrand components. These
strategies are PM-constant value, PM-Euclidean distance, PM-obj.func. distance, and
PM-success rate.

The PM-constant value strategy (Xinchao 2010) is the simplest and consists in
using a value that remains constant during the execution of the implementation.
This strategy guarantees that the perturbation magnitude is always greater than
zero—a condition that has to be verified for all perturbation strategies. However,
the main problem with the PM-constant value strategy is that using the same
value may not be effective for the different stages of the optimization process.
For example, particles that are farther away from the global best solution may
benefit from a large PM value in order to move to higher quality areas, while for
those particles that are near the global best solution, a small PM value would
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make exploitation easier.

The PM-Euclidean distance strategy (Bonyadi and Michalewicz 2014) consists
in using the Euclidean distance between the current position of particle i and
the personal best of a neighbor k. This strategy is defined as follows:

PMi,k
t =

ϵ · PMi,k
t−1 if x⃗ i

t = p⃗ k
t

ϵ ·
√

∑d
j=1(x⃗ i,j

t − p⃗ k,j
t )2 otherwise

, (8.14)

where 0 < ϵ ≤ 1 is a parameter used to weigh the distance between x⃗ i
t and p⃗ k

t .

The PM-obj.func. distance is very similar to the PM-Euclidean distance, but the
distance between particles is measured in terms of the quality of the solutions.
The equation to compute the PM using PM-obj.func. distance is

PMi
t =

m · PMi
t−1 if p⃗ i

t = l⃗ i
t

m · f (⃗l i
t )− f (x⃗ i

t )

f (⃗l i
t )

otherwise
, (8.15)

where 0 < m ≤ 1 is a parameter. For particles whose quality is very similar
to that of the local best, the PM will be small, enhancing exploitation; and for
those whose quality is poor compared to that of the local best, the PM will be
large allowing them move to far areas of the search space.

The mechanism implemented in PM-success rate (Bergh and Engelbrecht
2002) to compute the PM takes into account the success rate of the swarm in
terms of improving the best solution’s quality. The value of the PM is adjusted
depending on the number of consecutive iterations in which the swarm has
succeeded (#successes) or failed (#failures) to improve the best solution found so
far, where iteration t→ t + 1 is a success if f (g⃗t+1) < f (g⃗t), a failure otherwise.
The PM-success rate strategy is defined as follows:

PM =


PM · 2 if #successes > sc

PM · 0.5 if #failures > fc

PM otherwise

, (8.16)

where the threshold parameters sc and fc are user defined.
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8.3.4 Mtx Component

The options for the Mtx metaheuristic component in PSO-X are Mtx-random
diagonal, Mtx-random linear, Mtx-exponential map, and Mtx-Euclidean rotation. The
Mtx-random diagonal and Mtx-random linear options are both d × d diagonal
matrices whose values are drawn from a U (0, 1); the only difference between
them is that, in Mtx-random linear, one random value is repeated d times in
the matrix diagonal, whereas, in Mtx-random diagonal, the matrix contains d
independently sampled values.

The Mtx-exponential map (Wilke et al. 2007) option is based on an approxima-
tion method called exponential map whereby RRMs can be constructed avoiding
matrix multiplication, which is computationally expensive. Mtx-exponential map
is defined as:

Mtx-exponential map = I +
maxβ

∑
β=1

1
β!

( απ

180
(

A− AT)), (8.17)

where I is the identity matrix, α is a scalar representing the rotation angle, and
A is an n× n random matrix with uniform random numbers in [−0.5, 0.5]. To
keep the computational complexity low we set maxβ = 1.

The Mtx-Euclidean rotation (Bonyadi et al. 2014) rotates a vector in any combi-
nation of planes.5 An Mtx-Euclidean rotation for rotating axis xi in the direction
of xj by the angle α is given by a matrix [rmn] with rii = rjj = cos α, rij = − sin α,
rji = sin α, and the remaining values are set to 1 if they are on the diagonal
or to zero otherwise. Since [rmn] is an identity matrix except for the entries at
the intersections between rows i and j and columns i and j, the multiplication
between [rmn] and v⃗ is done as follows:

[rmn] v⃗ =


vkrii + vjrji if k = i

vkrjj + virij if k = j

vk otherwise

, (8.18)

where vk indicates the kth entry of vector v⃗. We use Mtx-Euclidean rotationall to
indicate when Mtx-Euclidean rotation is used to rotate a vector in all possible
combination of planes, and Mtx-Euclidean rotationone to indicate when it is used

5For a d-dimensional vector u⃗, there is a composition of d(d− 1)/2 dimensional rotation
matrices built up in order to rotate u⃗ in all possible combinations of planes. See (Bonyadi et al.
2014, Appendix III) for further details.
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to rotate in only one plane.
The strategies to compute the rotation angle are α-constant, α-Gaussian and α-

adaptive. In α-constant, the value of α is defined by the user, whereas in α-Gaussian
and α-adaptive, it is obtained by sampling values from N (0, σ). The value of σ

when the Gaussian distribution is used can be a user defined parameter, as in
α-Gaussian, or be computed using an adaptive approach, as in α-adaptive, which
is defined as follows:

σ =
ζ × irt√

d
+ ρ, (8.19)

where ζ and ρ are two parameters and irt is the number of improved particles
in the last iteration divided by the population size.

The last option for the Mtx component is Mtx-Increasing group-based (Zyl
and Engelbrecht 2016) that divides a random diagonal matrix into gt groups
and every element in each group has the same value, generated uniformly ran-
dom. The number of groups at each iteration is computed using the following
equation:

gt =
d− 1

tmax − 1
× (t− 1) + 1, (8.20)

where d is the number of problem dimensions and tmax is the iteration number
at which the implementation stops. Note the implementation starts with gt = 1
and the number increases over time until there are gt = d groups, which is
equivalent to gradually transforming an Mtx-random linear component into a
Mtx-random diagonal one.

8.3.5 Topology, Model of Influence and Population Compo-
nents

In addition to the well-known options for the Topology component discussed in
Section 8.1.1 and 8.2 and showed in Table 8.2, we implemented in PSO-X the
Top-hierarchical and Top-time-varying options.

In Top-hierarchical (Janson and Middendorf 2005), particles are arranged in
a regular tree—i.e., a tree graph with a maximum branching degree (bd) and
height (h)—where they move up and down based on the quality of their p⃗t

vector, and sets Ni contain only the particles that are in the same branch of
the tree as particle i but in a higher position. The topology is updated at the
end of each iteration starting from the root node, and consists of each particle
comparing the quality of its p⃗t vector with that of its parent and switching
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places when it has higher quality.

The Top-time-varying (Montes de Oca et al. 2009) is a topology that reduces
its connectivity over time: it starts as a fully-connected topology and every κ

iterations a number of edges is randomly removed from the graph until the
topology is transformed into a ring. The value of κ, which controls the velocity
at which the topology is transformed, is a multiple of the number of particles
in the swarm, so that the larger the value of κ the faster the topology will
be disconnected. Additionally, the number of edges to be removed follows
an arithmetic regression pattern of the form n− 2, n− 3, . . . , 2, where n is the
swarm size.

The options for the Model of influence component are MoI-best-of-neighborhood,
where sets Ii contains i and the local best particle in the neighborhood of i; the
MoI-fully informed, where sets Ii = Ni; MoI-ranked fully informed, which is similar
to the MoI-fully informed, but particles in Ii are ranked according to their quality
so that the influence of a particle with rank r is twice the influence of a particle
with rank r − 1; and MoI-random informant, which allows particles to select a
random neighbor from Ni to form set Ii.

The options for the Population component are Pop-constant, Pop-time-varying
and Pop-incremental. In Pop-time-varying (Hsieh et al. 2008), there is a maximum
(popmax) and minimum (popmin) number of particles that can be in the swarm at
any given time. Particles are added or removed according to two criteria: (i)
add one particle if the best solution found has not improved in the previous
k consecutive iterations and the swarm size is smaller than popmax; and (ii)
remove the particle with lowest quality if the best solution found has improved
in the previous k consecutive iterations and the swarm size is larger than popmin.
Whenever criterion (i) is verified, but the swarm size is equal to popmax, the
particle with lowest quality is removed before adding the new random particle.

In Pop-incremental (Montes de Oca et al. 2010), the implementation starts
with an initial number of particles (popini) and, at each iteration, there are ξ new
particles added to the swarm until a maximum number is reached (pop f in).

The initial position of newly added particles (xnew) can be computed using
Init-random or Init-horizontal. In Init-random,

xnew,j = U [lbj, ubj],

where lbj and ubj are the lower and upper bound of the jth dimension of the
search space. In Init-horizontal, an horizontal learning approach is applied to
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xnew,j after it has been randomly initialized in the search space:

x′new,j = U [lbj, ubj],

xnew,j = x′new,j + U [0, 1) · (g j
t − x′new,j).

Using a dynamic population requires that the topology is updated in order
to assign newly added particles to a neighborhood or to reconnect particles that
were connected to a particle that was removed. This is handled as follows:

(i) Particles are added to a fixed topology—the topology is extended by connect-
ing a newly added particle with a set of neighbors randomly chosen. In
Top-hierarchical, new particles are always placed at the bottom of the tree.

(ii) Particles are added to a time-varying topology—we assign Ĉi
t neighbors to

every new particle, where Ĉi
t is the average number of neighbors that

every particle in the swarm has at iteration t.
(iii) Particles are removed—the topology is repaired to ensure that every particle

has the right number of neighbors.

Table 8.2: Available options in PSO-X for Population, Topology and Model of
influence metaheuristic components

Component Option

Topology



Top-ring
Top-fully-connected
Top-Von Neumann
Top-random edge
Top-hierarchical
Top-time-varying

Model of influence


MoI-best-of-neighborhood
MoI-fully informed
MoI-ranked fully informed
MoI-random informant

Population


Pop-constant
Pop-time-varying
Pop-incremental

Initialization
{

Init-random
Init-horizontal
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8.3.6 Acceleration Coefficients

The four strategies that can be used to computed the acceleration coefficients
(ACs) in PSO-X are: AC-constant, AC-random, AC-time-varying and AC-extrapolated.
In AC-random, the value of φ1t and φ2t is drawn from U [φmin, φmax], where
0 ≤ φmin ≤ φmax ≤ 2.5 are user selected parameters. The AC-time-varying
strategy is the one proposed in (Ratnaweera et al. 2004), where φ1 decreases
from 2.5 to 0.5 and φ2 increases from 0.5 to 2.5. In the AC-extrapolated strategy,
proposed in (Arumugam et al. 2009), the value of the acceleration coefficients is
a function of the iteration number and particles quality computed as follows:

φ1 = e−(t/tmax.)

φ2 = e(φ1·Λi
t)

(8.21)

where Λi
t = |( f (⃗l i

t ) − f (x⃗ i
t ))/ f (⃗lt)| adjusts the value of φ2 in terms of the

difference between f (x⃗ i
t ) and f (⃗l i

t ). This means that when f (⃗l i
t ) ≪ f (x⃗ i

t ), the
step size of the particle will be larger, and when f (⃗l i

t ) ≊ f (x⃗ i
t ) it will be smaller.

8.3.7 Re-initialization and Velocity Clamping

The last group of components in PSO-X are those that have been proposed with
the goal of avoiding performance issues that affect PSO, such as divergence and
stagnation.

The first ones is stagnation detection (Schmitt and Wanka 2013). It is used to
perturb the velocity vector of a particle when its current position is too close to
the global best solution, and the velocity magnitude is not large enough to let
the particle move to other parts of the search space. That is, when ||⃗v i

t ||+ ||⃗gt −
x⃗ i

t || ≤ µ, where µ > 0 is a user defined threshold for the perturbation to occur.
When the stagnation condition is verified, the velocity vector of the particle is
randomly regenerated as follows:

v⃗ i
t = (2⃗r− 1) · µ,

where r⃗ ∼ U (0, 1].
The second component, particles reinitialization (García-Nieto and Alba 2011) is

used to regenerate the position vector of the particles in case of early stagnation
or ineffective movement is occurring. Early stagnation is considered to be
affecting the implementation when the standard deviation of the p⃗t vectors
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is lower than 0.001. In this case, each entry of the particles position vector is
randomly reinitialized with probability 1/d. The second criterion, which tries to
identify when particles are moving ineffectively, consists in detecting when the
overall change of g⃗t is lower than 10−8 for 10 · d/pop iterations and regenerating
particles positions using the following equation:

x i,j
t+1 = (gj

t − x i,j
t )/2 for j = 1, . . . , d.

The last ones is velocity clamping (Eberhart and Kennedy 1995; Eberhart and
Shi 2000) and consists in restricting the values of each dimension in the velocity
vector of a particle within certain limits to prevent overly large steps. This is
done using the following equation:

v⃗ j
t+1


vmax if v⃗ j

t+1 > vmax

−vmax if v⃗ j
t+1 < −vmax

v⃗ j
t+1 otherwise

, (8.22)

where v j
max and −v j

max are maximum and minimum allowable value for the
particle’s velocity in dimension j. The value v j

max = ubj−lbj

2 is set according to
the lower lbj and upper ubj bounds for dimension j on the search space.

8.4 Experimental Procedure

8.4.1 Benchmark Problems

We conducted experiments on a set of 50 static benchmark continuous functions
belonging to the CEC’05 and CEC’14 “Special Session on Single Objective
Real-Parameter Optimization” (Liang et al. 2005; Suganthan et al. 2005), and
to the Soft Computing (SOCO’10) “Test Suite on Scalability of Evolutionary
Algorithms and other Metaheuristics for Large Scale Continuous Optimization
Problems” (Herrera et al. 2010). A detailed description of the benchmark
functions can be found in the given references and in the supplementary
material (Camacho-Villalón et al. 2021) of the article.

The test set of continuous functions—Table 8.3—is composed of 12 unimodal
functions ( f1−12), 14 multimodal functions ( f13−26), and 24 hybrid composition
functions ( f27−50). With the exception of f41, none of the hybrid composition
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functions is separable, and the ones from f42−50 include also a rotation in the
objective function.

8.4.2 Experimental Setup

The computational budget used with irace was of 50 000 executions for creating
the PSO-X algorithms and of 15 000 executions for tuning the parameter of
the PSO variants included in our comparison. The reason for using different
budgets is that there are 58 parameters involved in the creation of the PSO-X
algorithms, and only between 5 and 10 parameters in the tuning of the PSO
variants. The functions employed for creating and configuring the algorithms
with irace (i.e., the training instances) used d = 30, and the ones used for
our experimental evaluation used d = 50 and d = 100, depending on the
scalability of each function. In order to present statistically meaningful results,
we perform 50 independent runs of each algorithms on each function and report
the median (MED) result—to measure the quality of the solutions produced
by the algorithms—and the median error (MEDerr) with respect to the best
solution found by any of the algorithms.

In all cases, the algorithms were stopped after reaching 5 000× d objective
function evaluations (FEs). Both the tuning and the experiments were carried
out on single core Intel Xeon E5-2680 running at 2.5GHz with 12 Mb cache size
under Cluster Rocks Linux version 6.0/CentOS 6.3. The PSO-X framework was
codified using C++ and compiled with gcc 4.4.6.6 The version of irace is 3.2.

8.5 Analysis of the Results

The analysis of the results is divided into two parts. In the first part, we
analyze the performance and capabilities of six automatically generated PSO-X
algorithms, named PSO-Xall, PSO-Xhyb, PSO-Xmul, PSO-Xuni, PSO-Xcec and PSO-
Xsoco. Each of these PSO-X algorithms has been created using a set of training
instances composed of different functions. For PSO-Xall, we used all the fifty
functions ( f1−50), whereas for PSO-Xuni we used only the unimodal functions
( f1−12), for PSO-Xmul only the multimodal ones ( f13−26) and for PSO-Xhyb only
the hybrid compositions ( f27−50). In the case of PSO-Xcec and PSO-Xsoco, we used
the entire set of functions of the CEC’05 and SOCO’10 test suites, respectively.

6The source code of PSO-X can be downloaded from http://iridia.ulb.ac.be/supp/Ir
idiaSupp2021-001/PSO-X.zip.

http://iridia.ulb.ac.be/supp/IridiaSupp2021-001/PSO-X.zip
http://iridia.ulb.ac.be/supp/IridiaSupp2021-001/PSO-X.zip
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Table 8.3: Benchmark functions

f# Name Search Range Suite

f1 Shifted Sphere [-100,100] SOCO
f2 Shifted Rotated High Conditioned Elliptic [-100,100] CEC’14
f3 Shifted Rotated Bent Cigar [-100,100] CEC’14
f4 Shifted Rotated Discus [-100,100] CEC’14
f5 Shifted Schwefel 22.1 [-100,100] SOCO
f6 Shifted Rotated Schwefel 1.2 [-65.536,65.536] SOCO
f7 Shifted Scfewels12 noise in fitness [-100,100] CEC’05
f8 Shifted Schwefel 2.22 [-10,10] SOCO
f9 Shifted Extended f10 [-100,100] SOCO
f10 Shifted Bohachevsky [-100,100] SOCO
f11 Shifted Schaffer [-100,100] CEC’05
f12 Shchwefel 2.6 Global Optimum on Bounds [-100,100] CEC’05
f13 Shifted Ackley [-32,32] SOCO
f14 Shifted Rotated Ackley [-100,100] CEC’14
f15 Shifted Rosenbrock [-100,100] SOCO
f16 Shifted Rotated Rosenbrock [-100,100] CEC’14
f17 Shifted Griewank [-600,600] SOCO
f18 Shifted Rotated Griewank [-100,100] CEC’14
f19 Shifted Rastrigin [-100,100] SOCO
f20 Shifted Rotated Rastrigin [-100,100] CEC’14
f21 Shifted Schwefel [-100,100] SOCO
f22 Shifted Rotated Schwefel [-100,100] CEC’14
f23 Shifted Rotated WeierStrass [-100,100] CEC’05
f24 Shifted Rotated Katsuura [-100,100] CEC’14
f25 Shifted Rotated HappyCat [-100,100] CEC’14
f26 Shifted Rotated HGBat [-100,100] CEC’14
f27 Hybrid Function 1 (N = 2) [-100,100] SOCO
f28 Hybrid Function 2 (N = 2) [-100,100] SOCO
f29 Hybrid Function 3 (N = 2) [-5,5] SOCO
f30 Hybrid Function 4 (N = 2) [-10,10] SOCO
f31 Hybrid Function 7 (N = 2) [-100,100] SOCO
f32 Hybrid Function 8 (N = 2) [-100,100] SOCO
f33 Hybrid Function 9 (N = 2) [-5,5] SOCO
f34 Hybrid Function 10 (N = 2) [-10,10] SOCO
f35 Hybrid Function 1 (N = 3) [-100,100] CEC’14
f36 Hybrid Function 2 (N = 3) [-100,100] CEC’14
f37 Hybrid Function 3 (N = 4) [-100,100] CEC’14
f38 Hybrid Function 4 (N = 4) [-100,100] CEC’14
f39 Hybrid Function 5 (N = 5) [-100,100] CEC’14
f40 Hybrid Function 6 (N = 5) [-100,100] CEC’14
f41 Hybrid Composition Function [-5,5] CEC’05
f42 Rotated Hybrid Composition Function [-5,5] CEC’05
f43 Rotated H. Composition F. with Noise in Fitness [-5,5] CEC’05
f44 Rotated Hybrid Composition F. [-5,5] CEC’05
f45 Rotated H. Composition F. with a Narrow Basin for the Global Opt. [-5,5] CEC’05
f46 Rotated H. Comp. F. with the Gbl. Opt. On the Bounds [-5,5] CEC’05
f47 Rotated Hybrid Composition Function [-5,5] CEC’05
f48 Rotated H. Comp. F. with High Condition Num. Matrix [-5,5] CEC’05
f49 Non-Continuous Rotated Hybrid Composition Function [-5,5] CEC’05
f50 Rotated Hybrid Composition Function [-5,5] CEC’05
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Unlike the SOCO’10 test suite, the CEC’05 competition set includes many rotated
objective functions and more complex hybrid compositions. The idea of using
different training instances is to try to identify the metaheuristic components
that result in higher performance when tackling functions of different classes.

In the second part, we compare the performance of our automatically gen-
erated PSO-X algorithms with ten well-known variants of PSO. We used two
versions of each PSO variant: one whose parameters were tuned with irace
(indicated by “tnd”) and the other that uses the default parameter settings pro-
posed by the original authors (indicated by “dft”). The PSO variants included
in our comparison are the following:

1. Enhanced rotation invariant PSO (Bonyadi et al. 2014) (ERiPSO)—a variant
that uses the AC-random strategy, Mtx-Euclidean rotation and α-adaptive.

2. Fully informed PSO (Mendes et al. 2004) (FiPSO)—a traditional PSO
variant that uses the constriction coefficient velocity update rule7 (CCVUR)
and the MoI-fully informed.

3. Frankenstein’s PSO (Montes de Oca et al. 2009) (FraPSO)—a PSO variant
that uses Top-time-varying, MoI-fully informed and ω1 = linear decreasing.

4. Gaussian “bare-bones” PSO (Kennedy 2003) (GauPSO)—a variant that
uses the DNPP-Gaussian option of the DNPP-additive stochastic as the only
mechanism to update particles positions.

5. Hierarchical PSO (Janson and Middendorf 2005) (HiePSO)—a variant
based on Top-hierarchical that can be implemented using either ω1 =

linear decreasing or ω1 = linear increasing.

6. Incremental PSO (Montes de Oca et al. 2010) (IncPSO)—a variant of PSO
that uses the CCVUR and Pop-incremental with Init-horizontal.

7. Locally convergent rotation invariant PSO (Bonyadi and Michalewicz 2014)
(LcRPSO)—a more recent variant of PSO in which the Pertinfo-Gaussian
component is used together with the PM-Euclidean distance strategy, Mtx-
random linear and the AC-random strategy.

7This rule is define as: v⃗ i
t+1 = χ

(
v⃗ i

t + φ1Ui
1t( p⃗ i

t − x⃗ i
t ) + φ2Ui

2t (⃗l
i
t − x⃗ i

t )
)
, where χ = 0.7298 is called

constriction coefficient (Clerc and Kennedy 2002). It can obtained from Equation 8.4 by setting
ω1 = ω2 = 0.7298 and using the DNPP-rectangular option.
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8. Restart PSO (García-Nieto and Alba 2011) (ResPSO)—a variant of StaPSO
using velocity clamping and particles reinitialization.

9. Standard PSO (Shi and Eberhart 1998) (StaPSO)—the PSO algorithm
described in Section 8.1.1 that uses Equation 8.1, 8.2 and 8.3.

10. Standard PSO 2011 (SPSO11)—a variant of StaPSO that uses the DNPP-
spherical option.

In Table 8.4, we show the parameter configuration of the versions that we
used in the comparison. Note that, with the goal of simplifying their description,
we have only mentioned the components that are different in these algorithms
from those in StaPSO. This means that, unless specified otherwise, we assumed
that the following components and parameters setting are used in their im-
plementation: Pop-constant, Top-fully-connected with MoI-best-of-neighborhood,
DNPP-rectangular with Mtx-random diagonal and Pertinfo = Pertrand = none,
ω1 = constant, ω2 = 1.0, ω3 = 0 and AC-constant.

8.5.1 Comparison of Automatically Generated PSO Algorithms

The metaheuristic components in the automatically generated PSO-X algorithms
are listed below, and their configuration is given in Table 8.5.

• PSO-Xall: Pop-incremental with Init-random, Top-fully-connected with MoI-
best-of-neighborhood, DNPP-rectangular with Pertinfo-Lévy and PM-success
rate, Mtx-random diagonal and velocity clamping.

• PSO-Xhyb: Pop-constant, Top-Von Neumann with MoI-best-of-neighborhood,
DNPP-rectangular with Pertinfo-Lévy and PM-success rate, Mtx-random diagonal
and velocity clamping.

• PSO-Xmul: Pop-incremental with Init-horizontal, Top-time-varying with MoI-
best-of-neighborhood, DNPP-rectangular with Pertinfo-Lévy and PM-success
rate, Mtx-random linear and stagnation detection.

• PSO-Xuni: Pop-incremental with Init-random, Top-fully-connected with MoI-
best-of-neighborhood, DNPP-rectangular with Pertinfo-Lévy and PM-success
rate, Mtx-random diagonal and velocity clamping.

• PSO-Xcec: Pop-constant, Top-Von Neumann with MoI-best-of-neighborhood,
DNPP-rectangular with Pertinfo-Lévy and PM-success rate, Pertrand-noisy with
PM-success rate and Mtx-random diagonal.
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Table 8.4: Parameter settings of the ten PSO variants included in the experi-
mental comparison.

Algorithm Settings

ERiPSOdft

pop = 20, ω1 = 0.7213475, AC-random, φ1min = 0, φ1max = 2.05,
φ2min = 0, φ2max = 2.05, Mtx-Euclidean rotationall with α-adaptive
and ζ = 30 and ρ = 0.01.

FiPSOtnd
Top-ring, pop = 20, ω1 = ω2 = 0.729843788, Mtx-random diagonal,
φ1 = 2.1864 and φ2 = 2.3156.

FraPSOdft
κ = 60, pop = 60, ω1 = linear decreasing, ω1min = 0.4, ω1max = 0.9,
tschd = 600, φ1 = 2.0 and φ2 = 2.0.

GauPSOtnd
Top-time-varying with MoI-random informant, κ = 150 pop = 30,
ω1 = 0 and DNPP-additive stochastic DNPP-Gaussian.

HiePSOtnd
bd = 2, pop = 114, ω1 = linear increasing, ω1min = 0.3284,
ω1max = 0.8791, φ1 = 2.1105 and φ2 = 1.0349.

IncPSOtnd
Top-time-varying, κ = 2360, Init-horizontal, popini = 5, pop f in = 295,
ξ = 10, ω1 = ω2 = 0.729843788, φ1 = 1.9226 and φ2 = 1.0582.

LcRPSOdft

pop = d, ω1 = 0.7298, AC-random, φ1min = 0, φ1max = 1.4962,
φ2min = 0, φ2max = 1.4962, Mtx-random linear, Pertinfo-Gaussian
with PM-Euclidean distance and ϵ = 0.46461/d0.79.

ResPSOtnd
Top-ring with MoI-fully informed, pop = 10, ω1 = linear decreasing,
ω1min = 0.2062, ω1max = 0.6446, φ1 = 1.5014, φ2 = 2.2955.

SPSO11tnd
Top-time-varying with κ = 1085, pop = 155, ω1 = 0.6482, φ1 =
2.2776, φ2 = 2.1222.

StaPSOtnd
Top-Von Neumann, pop = 34, ω1 = 0.6615, φ1 = 2.3706, φ2 =
0.8914.

* As reminder for the reader, ζ and ρ are parameters of α-adaptive; σ is
a parameter of α-Gaussian; κ is a parameter of Top-time-varying; tschd is a
parameter of ω1 = linear decreasing; bd is a parameter of Top-hierarchical;
ξ is a parameter of Pop-incremental; and ϵ is a parameter of PM-Euclidean
distance.

• PSO-Xsoco: Pop-constant, Top-ring with MoI-ranked fully informed, DNPP-
rectangular with Pertinfo-Gaussian and PM-success rate, Mtx-random diagonal
and velocity clamping.

In Table 8.6, we report the median of the results obtained by the algorithms
on each function. At the bottom of the table, we show the number of times each
algorithm obtained the best result among the six (“Wins”), the average median
value (“Av.MED”), the average ranking of the algorithm across all 50 functions
(“Av.Ranking”), and whether the overall performance of any of the compared
algorithm was significantly worse (“+”) or equal (“≈”) than the best ranked
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Table 8.5: Parameter settings of the six automatically created PSO-X algorithms.

Algorithm Settings

PSO-Xall

popini = 4, pop f in = 20, ξ = 8, ω1 = convergence-based, a =
0.7192, b = 0.9051, ω2 = random, AC-constant, φ1 = 1.7067, φ2 =
2.2144, PM = 0.438, sc = 11 and fc = 40.

PSO-Xhyb

pop = 41, ω1 = adaptive based onvelocity, ω1min = 0.119, ω1max =
0.1378, λ = 0.608, ω2 = 1.0 AC-random, φ1min = 1.0429, φ1max =
2.1653, φ2min = 1.0429, φ2max = 2.3275, PM = 0.5333, sc = 28 and
fc = 42.

PSO-Xmul

κ = 300, popini = 3, pop f in = 50, ξ = 2, ω1 = success-based,
ω1min = 0.4, ω1max = 0.9, AC-constant, φ1 = 0.92, φ2 = 1.6577,
PM = 0.5114, sc = 2 and fc = 33.

PSO-Xuni

popini = 10, pop f in = 58, ξ = 3, ω1 = adaptive based onvelocity,
ω1min = 0.3531, ω1max = 0.7095, λ = 0.4832, ω2 = ω1, AC-random,
φ1min = 1.4217, φ1max = 2.051, φ2min = 0.8626, φ2max = 1.4609,
PM = 0.9865, sc = 38 and fc = 11.

PSO-Xcec

pop = 42, ω1 = self-regulating, ω1min = 0.1673, ω1max = 0.2317,
η = 0.2468, ω2 = random, ω3 = random, AC-random, φ1min =
1.8684, φ1max = 1.9233, φ2min = 0.2802, φ2max = 1.5143, PM1 =
0.4837, sc1 = 29, fc1 = 45, PM2 = 0.8139, sc2 = 30 and fc2 = 43.

PSO-Xsoco

pop = 19, ω1 = adaptive based onvelocity, ω1min = 0.6564,
ω1max = 0.8201, λ = 0.2959, AC-constant, φ1 = 0.7542, φ2 =
1.9235, PMt=0 = 0.8907, sc = 22 and fc = 49.

* As reminder for the reader, ξ is a parameter of Pop-incremental; a and b are
parameters of ω1 = convergence-based, λ of ω1 = adaptive based onvelocity,
and η of ω1 = self-regulating; sc and fc are parameters of PM-success rate;
and κ is a parameter of Top-time-varying;.

algorithm according to a Wilcoxon’s rank-sum test at 0.95 confidence interval
with Bonferroni’s correction. PSO-Xall was the algorithm that ranked best of
the six followed by PSO-Xcec and PSO-Xhyb, while PSO-Xsoco was the one that
returned the best median result in the higher number of cases. The symbol “+”
next to some of the median values in Table 8.6 indicates the cases where we
found a statistical difference function-wise in favor of PSO-Xall according also
to a Wilcoxon-Bonferroni test with α = 0.05. PSO-Xuni, which ranked last of
the six, was the algorithm that performed statistically worse than PSO-Xall in
most functions (26 out of 50 functions), while PSO-Xmul, PSO-Xcec, PSO-Xhyb,
and PSO-Xsoco were worse in 23, 19, 17, and 14 functions, respectively. In the
following we examine the performance of the six PSO-X algorithms across
the different function classes in our benchmark set, focusing on those that are
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specific to a function class, and the effect of their algorithm differences in their
performance.

Comparison of the PSO-X Algorithms on Specific Function Classes

In order to know whether our PSO-X algorithms are able to obtain better results
in specific function classes, we analyze their performance according to the
average ranking (Av.Ranking) they obtained in the unimodal ( f1−12), multimodal
( f13−26), hybrid composition ( f27−50) and rotated ( frotated = f2−4,6,14,16,18,20,22−26,

42−50) functions. The Av.Ranking gives us an indication of how good or bad is
the performance of an algorithm across the different classes based on the result
of the winner of each function. In Table 8.7, we present this information together
with the algorithms average median error (Av.MEDerr). In our analysis, we pay
particular attention to the results of PSO-Xuni, PSO-Xmul, PSO-Xhyb and PSO-Xcec,
that are the algorithms we would expect to obtain better results because of the
functions used for creating them.

As shown in Table 8.7, according to the median solution quality, the per-
formance of the algorithms is weakly correlated with the class of functions
used with irace. Although PSO-Xmul ranked first in its function class of spe-
cialization, PSO-Xuni was outperformed by all the algorithms in the unimodal
functions, PSO-Xhyb was outperformed by PSO-Xall in the hybrid compositions,
and PSO-Xcec was outperformed by PSO-Xhyb and PSO-Xmul in the rotated
functions. An analysis of the results using the average median error of the
algorithms shows similar results, although, in this case, the performance of
PSO-Xuni and PSO-Xmul was weakly correlated to the class of functions used in
their training sets.

There are a few possible reasons why the use of different sets of functions
did not have a stronger effect on the performance of our algorithms. The first
one is the way in which we separated the functions, that captures some features
of the functions, but neglects others, such as separability, noise, and different
combination of objective functions transformations.8 Another possible reason is
the presence of slightly overfitted models during the creation of these algorithms
with irace. The effect of overfitting can be observed more clearly for PSO-Xuni

than for the rest of algorithms. For a number of functions (e.g., f6,12) the median
solution obtained by PSO-Xuni was significantly better than that of the other

8Note, for example, that there are rotated functions in the training set of the six PSO-X
algorithms, except for PSO-Xsoco that includes only translations.
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algorithms, which contributes to lower the value of the Av.MED and Av.MEDerr
metrics, but not to improve its ranking in its respective classes of specialization.
Among the possible causes for the overfitting are the use of training sets with
different number of instances (PSO-Xuni has 12 instances, while the best ranked
algorithm, PSO-Xall, has 50) and of a exceedingly large computational budget
used with irace.

PSO-X Algorithm Differences

The first thing to note about the design of the six PSO-X algorithms is that, de-
spite they were created using different sets of functions, they all share the same
core components, i.e., DNPP-rectangular with Pertinfo-Lévy or Pertinfo-Gaussian.
This combination of components, as we discusses in Section 8.3.2, has the abil-
ity of making the implementation rotation invariant, which is an important
characteristic given that 22 out of the 50 functions in our benchmark test set
have a rotation in their objective function. In all cases, the strategy to control
the perturbation magnitude (PM) was PM-success rate and, with the exception
of PSO-Xuni, they all have a parameter setting where fc is larger than sc. This
setting allows to decrease rapidly the PM when particles have been constantly
improving the global best solution, but makes harder to switch back to a larger
PM if the algorithm happens to stagnate. In this sense, PSO-Xall, PSO-Xhyb, PSO-
Xmul, PSO-Xcec and PSO-Xsoco are biased towards exploitation, and PSO-Xuni

towards exploration.

Although PSO-Xhyb and PSO-Xcec obtained similar results in most functions
and ranked almost the same across the whole benchmark set, the performance
of PSO-Xcec was better in the CEC’05 hybrid compositions ( f41−50), and worse
in functions f27, f30, f31 and f34 that belong to the SOCO’10 test suite. Based
on the components and parameter setting in PSO-Xhyb and PSO-Xcec, this
difference can be attributed to the Pertrand component that is present only in
PSO-Xcec. The Pertrand component was advantageous for PSO-Xcec to tackle the
more complex search spaces of the CEC’05 hybrid compositions, where the
algorithm performed its best, but affected its solutions quality in most of the
SOCO’10 test suite hybrid compositions. Another interesting comparison can
be done between PSO-Xall (ranked first) and PSO-Xuni (ranked last). These two
algorithms have the exact same components and differ only in the population
size, which is roughly three times larger in PSO-Xuni compared to PSO-Xall;
parameter ω1, which is equal to ω2 in PSO-Xuni and random in PSO-Xall; and
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parameters fc and sc, whose value is inverted in PSO-Xuni compare to PSO-Xall

(see Table 8.4). Data from Table 8.6 shows that the configuration of PSO-Xuni

is quite performing to tackle functions with large plateaus and quite regular
landscapes, such as Elliptic ( f2), Schwefel ( f6, f8, and f12) or Rosenbrock ( f15 and
f16), where PSO-Xuni was the best performing of the six. However, when PSO-
Xuni faced less regular and multimodal landscapes, its performance declined
significantly. Given the large number of parameters in PSO-X compared to most
PSO variants in the literature, framework users could be interested in obtaining
information about the sampling distribution of the parameters and the way in
which they interact with each other. We present this information in Section B.2.2
of Appendix B, where we have included a number of plots and charts generated
using the data gathered from the configuration process with irace.

Table 8.6: Median results of the PSO-X algorithms in f1−50 with d = 50.

f # PSO-Xall PSO-Xuni PSO-Xmul PSO-Xhyb PSO-Xcec PSO-Xsoco

f1 0.00E+00 0.00E+00 9.90E-09+ 0.00E+00 0.00E+00 0.00E+00
f2 1.78E+06 1.18E+06 3.50E+06+ 2.89E+06+ 3.01E+06+ 8.33E+06+

f3 2.10E+03 6.49E+03 2.09E+03 1.78E+03 2.37E+03 3.07E+03
f4 1.46E+04 2.31E+04+ 3.91E+04+ 1.49E+04 2.35E+04+ 1.65E+04
f5 3.76E-09 1.05E-03+ 2.49E-04+ 5.69E-03+ 2.96E-07+ 1.55E-02+

f6 5.54E-04 5.25E-06 3.17E+01+ 2.64E+01+ 2.73E+00+ 5.64E+01+

f7 1.96E+04 4.15E+04+ 1.83E+04 1.45E+04 9.10E+03 3.80E+03
f8 0.00E+00 0.00E+00 7.04E-04+ 0.00E+00 0.00E+00 0.00E+00
f9 2.76E+01 1.89E+02+ 1.84E+02+ 7.98E+01+ 3.49E+01 5.36E-03
f10 0.00E+00 1.05E+00+ 4.89E-07+ 0.00E+00 0.00E+00 0.00E+00
f11 2.86E+01 1.95E+02+ 1.77E+02+ 7.94E+01+ 4.64E+01 1.07E-02
f12 9.86E-05 1.86E-05 2.65E+01+ 6.27E-02+ 1.87E-01+ 3.03E-02+

f13 -1.44E-16 -1.44E-16 5.18E-05+ -1.44E-16 -1.44E-16 -1.44E-16
f14 2.11E+01 2.00E+01 2.00E+01 2.00E+01 2.00E+01 2.12E+01+

f15 4.60E+01 3.35E+01 4.64E+01 4.42E+01 4.39E+01 4.19E+01
f16 4.78E+01 4.70E+01 4.70E+01 4.70E+01 4.70E+01 4.70E+01
f17 7.40E-03 1.63E-19 2.03E-09 1.63E-19 1.63E-19 5.42E-20
f18 1.63E-19 3.79E-19 1.10E-06 1.05E-12 1.20E-13 1.08E-12
f19 1.24E+01 1.40E+02+ 3.11E+01+ 1.14E+02+ 8.71E+01+ 1.41E+02+

f20 2.63E+02 2.43E+02 2.03E+02 1.95E+02 2.18E+02 2.39E+02
f21 2.44E+04 2.56E+04+ 2.34E+04 2.54E+04+ 2.51E+04+ 2.86E+04+

f22 2.86E+04 2.90E+04 2.79E+04 2.82E+04 2.81E+04 3.47E+04+

f23 3.60E+01 3.37E+01 2.78E+01 3.52E+01 3.74E+01 2.29E+01
f24 2.63E-01 7.06E-01+ 6.10E-02 7.48E-01+ 6.20E-01+ 3.53E+00+

* The symbol + that appears next to the median value indicates the
cases where there is a statistical difference in favor of PSO-Xall.
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Table 8.6 Continued.

f # PSO-Xall PSO-Xuni PSO-Xmul PSO-Xhyb PSO-Xcec PSO-Xsoco

f25 6.60E-01 6.20E-01 4.10E-01 4.67E-01 4.48E-01 4.37E-01
f26 3.40E-01 7.77E-01+ 3.22E-01 2.92E-01 2.94E-01 3.40E-01
f27 1.89E+01 1.21E+02+ 3.97E+01+ 1.34E-09 3.08E+01+ 2.01E+01
f28 5.52E+01 1.47E+02+ 1.06E+02+ 1.18E+02+ 1.10E+02+ 6.50E+01
f29 1.40E+01 7.97E+01+ 3.39E+01+ 6.52E+01+ 5.99E+01+ 6.18E+01+

f30 6.36E-13 1.63E-07+ 6.61E-04+ 0.00E+00 1.33E-07+ 0.00E+00
f31 2.80E+01 2.49E+02+ 1.09E+02+ 6.28E+01+ 1.41E+02+ 4.02E+01
f32 1.79E+02 3.89E+02+ 2.68E+02 2.90E+02 2.87E+02 7.17E+01
f33 1.92E+01 7.79E+01+ 4.26E+01+ 6.32E+01+ 6.41E+01+ 9.75E+00
f34 3.81E-18 1.34E-07+ 4.20E-04+ 2.50E-19 5.15E-08+ 0.00E+00
f35 1.27E+04 1.23E+04 1.23E+04 1.23E+04 1.23E+04 1.23E+04
f36 1.49E+05 2.61E+05+ 1.22E+05 1.52E+05 1.48E+05 3.32E+06+

f37 3.90E+01 4.77E+01+ 4.05E+01 5.35E+01+ 5.23E+01+ 5.99E+01+

f38 1.65E+05 3.10E+05+ 2.14E+05 2.51E+05+ 2.70E+05+ 4.61E+05+

f39 5.28E+00 5.49E+00 4.24E+00 4.50E+00 4.30E+00 5.43E+00
f40 1.08E+01 1.74E+01+ 1.61E+01+ 1.44E+01+ 1.28E+01+ 9.58E+00
f41 3.46E+02 4.00E+02+ 3.37E+02 2.98E+02 2.24E+02 3.51E+02
f42 2.00E+02 2.23E+02 1.20E+02 1.09E+02 9.44E+01 2.77E+02
f43 2.25E+02 3.16E+02 3.01E+02 2.38E+02 2.35E+02 3.09E+02
f44 9.55E+02 9.34E+02 9.25E+02 9.25E+02 9.27E+02 9.29E+02
f45 9.56E+02 9.34E+02 9.25E+02 9.28E+02 9.25E+02 9.29E+02
f46 9.59E+02 9.33E+02 9.25E+02 9.28E+02 9.25E+02 9.29E+02
f47 8.02E+02 1.02E+03+ 1.01E+03+ 1.02E+03+ 1.02E+03+ 1.01E+03+

f48 9.68E+02 9.58E+02 9.34E+02 9.09E+02 9.18E+02 9.22E+02
f49 9.76E+02 1.02E+03+ 1.02E+03+ 1.02E+03 1.02E+03 1.01E+03
f50 9.42E+02 9.84E+02+ 1.11E+03+ 9.57E+02 9.85E+02 9.38E+02

* The symbol + that appears next to the median value indicates the
cases where there is a statistical difference in favor of PSO-Xall.

8.5.2 Comparison with Other PSO Algorithms

We also compared the algorithms generated using PSO-X with ten traditional
and recently proposed PSO variants. As mentioned before, for each algorithm
we collected data using both a default (dft) version—that uses the parameter
settings proposed by the authors—and a tuned (tnd) version—whose parameters
were configured with irace. Based on a Wilcoxon-Bonferroni test at α = 0.05,
we selected the best performing of the two versions of each algorithm. However,
since the computed p-values were larger than 0.05 for ERiPSO, FraPSO and
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Table 8.7: Average ranking (Av.Ranking) and average median error (Av.MEDerr)
obtained by the PSO-X algorithms in f1−12 (unimodal), f13−26 (multimodal), f27−50
(hybrid) and frotated with d = 50.

f # PSO-Xall PSO-Xuni PSO-Xmul PSO-Xhyb PSO-Xcec PSO-Xsoco

f1−12
Av.Ranking 2.83 4.25 4.83 3.67 3.75 3.83
Av.MEDerr 1.30E+05 8.21E+04 2.75E+05 2.22E+05 2.32E+05 6.75E+05

f13−26
Av.Ranking 3.27 4.54 3.15 3.62 3.54 3.69
Av.MEDerr 2.63E+02 3.75E+02 1.45E+02 3.04E+02 2.79E+02 9.55E+02

f27−50
Av.Ranking 1.9 4.58 3.1 2.58 4.66 4.2
Av.MEDerr 6.04E+03 1.63E+04 6.89E+03 9.58E+03 1.02E+04 1.45E+05

frotated
Av.Ranking 3.91 4.36 3.05 2.77 3.14 4.09
Av.MEDerr 7.01E+04 4.31E+04 1.49E+05 1.20E+05 1.26E+05 3.68E+05

f1−50
Av.Ranking 3.24 4.68 3.54 3.42 3.38 3.68
Av.MEDerr 3.42E+04 2.80E+04 6.94E+04 5.81E+04 6.09E+04 2.34E+05

SPSO11, we selected the version that obtained the lower median value across
the 50 functions. In Table 8.8, we show the median of the 50 runs executed by
each algorithm for each function and, in Table 8.9, we show the mean ranking
obtained by each algorithm according to the different classes in which we
separated the functions in the benchmark set. To complement the information
given in the tables, in Section B.4 of Appendix B, we present the distribution of
the results obtained by the 16 compared algorithms using box plots.

In terms of the median solution quality, except for PSO-Xuni, the performance
of the automatically generated PSO-X algorithms was better than any of the
PSO variants in our comparison. PSO-Xcec obtained the best ranking followed
by PSO-Xmul and PSO-Xhyb, and it was also the algorithm that returned the best
median value in most functions. Regarding the performance of the algorithms
on specific problems classes, PSO-Xcec obtained the best ranking according to
the Av.MED result in the unimodal and rotated functions, PSO-Xmul the best one
in the multimodal functions, and PSO-Xall the best one in the hybrid functions;
whereas the algorithms that obtained the lower Av.MEDerr were LcRPSOdft

in the unimodal and rotated functions, and PSO-Xmul in the multimodal and
hybrid composition functions. To put these results in context, in Table 8.9, we
have used boxes to highlight the results of the PSO variants whose ranking was
equally good, or better, than any of the PSO-X algorithms.
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Note that only IncPSOtnd and StaPSOtnd were capable of outperforming the
results obtained by some of the PSO-X algorithms, specially in the rotated func-
tions, where those two algorithms were as competitive as those automatically
generated. However, in the case of the hybrid composition functions the results
are quite compelling in favor of PSO-X, since even the worst automatically
generated algorithm performed significantly better than any of the PSO vari-
ants. This is a very strong point in favor of our PSO-X algorithms not only
because half of the functions in our benchmark set are hybrid compositions,
but also because these kinds of functions are the hardest to solve and the most
representative of real-world optimization problems.

According to Wilcoxon pair-wise tests between PSO-Xcec and the PSO vari-
ants using the data presented in Table 8.8, the median solution values obtained
by FinPSOtnd, StaPSOtnd and IncPSOtnd are not statistically different from PSO-
Xcec. FinPSOtnd was the best performing of the PSO variants in the unimodal
functions, and IncPSOtnd in the multimodal and rotated functions. The three
PSO variants have some commonalities regarding their design, including that
they all use low connected topologies (Von Nemann and ring) during most of
their execution (see Table 8.4) and, in the case of FinPSOtnd and IncPSOtnd, they
both use the CCVUR. While our experimental results show that only IncPSOtnd

and StaPSOtnd are clearly better than one of our algorithms (PSO-Xuni) across
the whole benchmark set, the three PSO variants (FinPSOtnd, StaPSOtnd and
IncPSOtnd) produced results that are competitive with the PSO-X algorithms in
some specific classes of functions. Finally, it is worth pointing out that none of
the default versions of the PSO variants that we included in our comparison
(that is, ERiPSOdft, FraPSOdft and LcRPSOdft) performed as well as the ones
that were configured with irace in terms of median solution quality. It is
particularly interesting the case of StaPSO and FinPSO, whose performance
improved dramatically after the configuration process. However, it is extremely
common to see these two variants implemented with default parameters in
many papers proposing and comparing new algorithms.

8.5.3 Are PSO-X implementations convergent?

Local convergence is one of the most salient characteristics of high-performing
PSO implementations. It prevents unwanted roaming (which often results in
particles leaving the search space) and allows particles to improve the initial
solutions for any number of dimensions. Creating convergent implementation
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using PSO-X is possible because (i) the value of the three main parameters
of PSO (ω1, φ1 and φ2) is limited within the theoretical region where local
convergence is expected to occur,9 and (ii) in PSO-X are implemented both a
number of algorithm components that have been shown to result in particles
local convergence (e.g., DNPP-spherical, Pertinfo-Gaussian, Pertinfo-Lévy, etc.) and
strategies that limit the magnitude of the velocity vector (velocity clamping).

As it can be observed in Table 8.4 and 8.5, the six PSO-X algorithm that
PSO-X automatically created use the two main algorithm components proposed
for the LcRPSO (i.e., DNPP-rectangular and Pertinfo-Gaussian).10 In (Bonyadi
and Michalewicz 2014), it was formally and experimentally demonstrated that
LcRPSO is locally convergent because the Pertinfo-Gaussian component satisfies
the local convergence condition, which ensures that the mapping between the
input vector r⃗ and the perturbed vector N (⃗r, σt) is located in any definable
region of the search space—see (Bonyadi and Michalewicz 2014, Appendix 1)
for the formal definition of this condition. Although our PSO-X algorithms
are six different specializations of LcRPSO, by using a number of algorithm
components that were found to be good design choices during the configuration
process, they exhibit better performance than any of the variants considered in
this study. We believe this shows the power of combining automatic configu-
ration and component-based framework to create high-performing algorithm
implementations.

8.6 Summary

In this chapter, we presented PSO-X, a flexible, automatically configurable
framework that combines metaheuristic components and automatic configura-
tion tools to create high performing PSO implementations. Six PSO algorithms
were automatically created from the PSO-X framework and compared with
ten well-known PSO variants published in the literature. The results obtained
after solving a set of 50 benchmark functions with different characteristics and
complexity showed that the automatically created PSO-X algorithms exhibited
higher performance than their manually created counterparts.

In PSO-X, we have incorporated many relevant ideas proposed in the litera-

9In Section B.2 of Appendix B, we report the value of these parameters for the six PSO-X
algorithms and the ten PSO variants and the conditions for order-1 stability.

10Note that, in addition to Pertinfo-Gaussian, it is possible to use the Pertinfo-Lévy component,
since the Lévy distribution is a generalization of the Gaussian
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ture for the PSO algorithm, including: different topologies, models of influence
and ways of handling the population; several strategies to set the value of
the algorithm parameters; a number of ways to construct and apply random
matrices; and various kinds of distributions of particles positions in the search
space. With PSO-X, we seek to provide a tool that can simplify the application
of PSO to tackle continuous optimization problems, and also to bring clarity on
the main design choices available when implementing it.

In addition to this, even though it was not among the goals for proposing
PSO-X, it is indeed possible to use this framework to instantiate some of the
“novel” metaphor-based metaheuristics that we have discussed in Chapter 6. For
example, the grey wolf optimizer algorithm can be easily instantiated from PSO-X
by using the DNPP-spherical component, the firefly algorithm by using the DNPP-
standard, AC-extrapolated and MoI-fully informed components, the bat algorithm by
using the AC-time-varying component, etc. In our opinion, the fact that these
“novel” metaheuristics can be instantiated from PSO-X just by selecting specific
metaheuristic components proposed for PSO shows, in a very compelling way,
that the behaviors that inspired the “novel” metaheuristics were completely
unnecessary from the beginning, as they did not bring anything new to the
field. Unfortunately, the only function of the metaphors was to hide the fact
that the proposed ideas had been already proposed in the PSO literature.

Finally, it is worth mentioning one obvious limitation in our work: since
PSO is a intensively studied algorithm with hundreds of variants, including
in PSO-X the totality of the ideas proposed for this algorithm is challenging.
Hence, a continuous effort must be done to keep adding new algorithms to
PSO-X so that implementations remain competitive with the state of the art.
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Chapter 9

Too Many Metaphors, Too Little
Automatic Design: Is the Field of
Metaheuristics Moving in the Right
Direction?

In this chapter, we address various aspects of the field of metaheuristics in an
attempt to understand whether the field is moving in the right direction or not.
We present arguments for both a positive and a negative answer. We start by
discussing the difficulties of finding metaphors that lead to truly innovative
algorithms. Then, we discuss the rationale often presented by the authors
of “novel” metaphor-based algorithms as their motivation to propose more
algorithms of this kind, which is based on a wrong understanding of the No-
Free-Lunch theorems for optimization. We conclude this chapter by discussing
how to improve three foundational aspects of the field, namely the focus of the
research, the way metaheuristics implementations are benchmarked, and the
creation of new metaheuristics.

9.1 Why Some Metaphors Work While Others Do
Not?

In the period of time comprised between the late 1960s and the beginning of
2000s, the field of metaheuristics was characterized by a rapid growth in the
number of new methods proposed to tackle complex optimization problems

159
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and by many experimental and theoretical studies of such methods investigat-
ing their properties and ways to extend their capabilities (Corne et al. 1999;
Gendreau and Potvin 2019; Sörensen et al. 2018). The field also witnessed the
introduction of a few very successful techniques inspired by natural phenomena
such as evolutionary algorithms (Fogel et al. 1966; Holland 1975; Rechenberg 1971;
Schwefel 1977, 1981), where the inspiration is the phenomenon of evolution
by natural selection and survival of the fittest; simulated annealing (Černý 1985;
Kirkpatrick et al. 1983), inspired by the metal annealing process whereby atoms
reorganize themselves so as to minimize an energy function; ant colony optimiza-
tion (Dorigo 1992b; Dorigo et al. 1991b), inspired by the foraging behavior of
ants; and particle swarm optimization (Kennedy and Eberhart 1995), inspired by
the dynamics and social interaction in bird flocks. These methods not only at-
tracted the attention of scientists and practitioners interested in solving relevant
problems for which other methods fail to provide satisfactory results, but also
led to one of the most widespread beliefs in the field, that is, that “nature is a
never ending source of inspiration” to tackle complex optimization problems.

Even though there are some examples of natural behaviors that have been
useful to design new and efficient optimization algorithms, the truth is that
finding a natural behavior that leads to both useful and novel ideas on how to
solve optimization problems turns out to be very difficult. The first difficulty
comes from the fact that one can be blinded by the desire of introducing a
successful novel algorithm and not realize that the considered behavior is
irrelevant for the purpose of designing of an optimization algorithm. A clear
example of this is given by the “novel” algorithms analyzed in Chapters 5 and 6.
Most of these “novel” algorithms are based on interesting behaviors exhibited
by different species of animals; however, when these behaviors were abstracted
as concepts to be used in an optimization algorithms, they turned out to be
either totally useless in optimization or to lead to the same ideas that were
already proposed in the past.

Indeed, the second difficulty is the difficulty of finding something that is
truly novel in the field of optimization. Clearly, there is no guarantee whatso-
ever that just by looking for inspiration in nature, or elsewhere, one can find
something that, when abstracted as an optimization algorithm, is both useful
and novel. In fact, it can be the case that an original, scientifically motivated, and
properly abstracted behavior results in an optimization algorithm whose design
is equivalent to one already proposed in the literature. An example of this is
the biogeography-based optimization (Simon 2008), which, as its author showed in
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a later study (Simon et al. 2011), is “a generalization of a genetic algorithm with
global uniform recombination”, an algorithms first proposed in the 1960s.

9.2 Metaphor-based Algorithms Motivated by Theo-
retical Research

In papers proposing “novel” metaphor-based metaheuristics, it is common to
find a mention of the No-Free-Lunch (NFL) theorems formulated by Wolpert
and Macready (1997) as the theoretical foundation motivating the metaheuristic,
such as in the following examples:

“Obviously, the No Free Lunch theorem makes this field of study highly active

which results in enhancing current approaches and proposing new meta-heuristics

every year. This also motivates our attempts to develop a new meta-heuristic with

inspiration from grey wolves.”

(Mirjalili et al. 2014, pp. 46–47)

“Some of the most popular algorithms in this field are: Genetic Algorithms

(GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO),

Differential Evolution (DE), Evolutionary Programming (EP). Although these

algorithms are able to solve many real and challenging problems, the so-called No

Free Lunch theorem allows researchers to propose new algorithms.”

(Mirjalili 2015b, p. 81)

“According to the “no-free-lunch” (NFL) theory, it is difficult to employ a single

meta-heuristic algorithm in striving to solve all possible optimization problems.”

. . . “This has been a motive for the researchers in this field, as well as ourselves, to

look for new and innovative nature-inspired methods to solve and show superior

scores on the current and new hard real-life problems. The door is still open, and

here we present a novel meta-heuristic algorithm based on human behavior with

the very famous tale of Ali Baba and the forty thieves, as our inspiration targeting

numerical optimization problems.”

(Braik et al. 2022)

However, even though the main implication of the NFL is that “all search
heuristics have the same performance when averaged over the uniform distri-
bution over all possible objective functions”, the assumptions that lead to this
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implication have been criticized as restrictive and unrealistic. Indeed, it has been
demonstrated that the NFL is unrealistic in black-box optimization scenarios
(i.e., where the objective function can be queried but its definition remains
unknown) and that the theorems do not hold for multi-objective problems and
continuous domains—being this latter the domain of application of the three
algorithms in the quotations above. A detailed discussion of the implications of
the NFL in problems that are relevant in practice can be found in (Auger and
Teytaud 2007, 2010) and in the references cited in these papers.

However, beyond the real implications of the NFL, it is obvious that faster
and more performing optimization algorithms are necessary to tackle the ever
more challenging optimization problems arising in all fields and disciplines.
For the vast majority of the researchers in the field of metaheuristics, develop-
ing better optimization algorithms requires to understand the weaknesses and
strengths of the existing ones before finding new sources of inspiration. Unfor-
tunately, rather than contributing to improve the state of the art, the hundreds
of “novel” metaphor-based algorithms already published in the literature are
leading the field astray, creating confusion, and making the use of unscientific
practices to seem normal in a scientific field. Moreover, as illustrated in the
quotations above, the authors of metaphor-based metaheuristics seem to think
that advancing the field means introducing more and more absurd metaphors
and develop more and more “novel” algorithms, despite the growing evidence
clearly pointing to the fact that this approach is greatly inefficient and has many
negative consequences.

9.3 Where Do We Go From Here?

In their 2017 contribution to the Handbook of Metaheuristics, “A history of
metaheuristics”, Kenneth Sörensen, Marc Sevaux, and Fred Glover (2018) posed
as a possibility that the next transition in the development of metaheuristics
would be towards a scientific period. Even though it seems paradoxical to call for
a scientific period in a scientific field, the reason for this is both unfortunate and
simple: there is an increasing amount of research published in the literature that
is anything but scientific. Most of this unscientific research is related to the trend
of the “novel” metaphor-based metaheuristics that we discussed in Chapter 4.
This trend has been particularly difficult to stop due to the fact that there is
a relatively large active community “researching” these kinds of algorithms.
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Sadly, and to make matters worse, a pretty high number of papers have been
published that present the “novel” metaheuristics in a positive way, ignoring
the well-founded criticisms and/or taking such criticisms out of context.1

We strongly believe that, once the metaheuristics community as a whole
begins to look at the trend of the “novel” metaphor-based metaheuristics and
related research with scientific eyes, the trend will soon be stopped, many
published papers proposing “novel” metaheuristics will be withdrawn from
journals and conferences, and the whole thing will become a cautionary tale of
something that we should avoid in the future. Another reason to call for a more
scientific view is to try and unify an increasing body of research that seems
to be moving in opposite directions. Adopting a scientific view as baseline
for a field that is still expanding due to an active research community is the
best way to prevent the (re)appearance of detrimental trends in which personal
beliefs can override rational thinking. In addition to the aforementioned paper
by Sörensen et al. (2018), there have been a few other calls for the adoption of a
more scientific view in the field.

One of the most recent attempts to steer the metaheuristics community
towards a more scientific direction has been the “Metaheuristics in the Large”
community project (Swan et al. 2022). In this project, several prominent re-
searchers presented their long-term vision for the field, which consists of
three main conceptual underpinnings: (i) extensible and re-usable framework
templates—which refers to the concept of modern MSFs as described in Chap-
ter 7 of this thesis; (ii) white-box problem descriptions—which refers to the use
of analytic information to guide the metaheuristic selection/construction in an
informed manner; and (iii) remotely accessible frameworks, components and
problems—which refers to the creation of service-oriented architectures that
enable the widespread re-use of data and programs.

Another attempt to refocus the course of the field is a recent open letter
titled “Metaphor-based metaheuristics, a call for action: the elephant in the room”
(Aranha et al. 2022), which brought together around 100 researchers in the
field that subscribed to the goal of putting a limit to the publication of “novel”
metaphor-based metaheuristics by adopting concrete actions, such as calling for
scientific journals to establish clear editorial policies concerning how to manage
articles presenting this type of metaheuristics. This open letter has been one of

1See, e.g., K. Rajwar, K. Deep and S. Das. An exhaustive review of the metaheuristic
algorithms for search and optimization: taxonomy, applications, and open challenges. Artificial
Intelligence Review. Springer, 2023.
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the most compelling efforts conducted so far to increase the awareness about
the problem of the “novel” metaphor-based metaheuristics.

While the vision presented in these documents has been an important step
towards steering the field into a healthier direction, there is still much to be
done in this regard. In particular, it seems that more efforts are needed to bring
together the metaheuristics community to address the various issues that have
remained unresolved for years. The next sections discuss three fundamental
ways that we suggest might prove to be decisive in removing from the field
of metaheuristics the less scientific approaches. In particular, we discuss the
need (i) to increase the amount of research that is either experimentally- or
theoretically-driven; (ii) to improve the way metaheuristics are bechmarked;
and (iii) to change the current mainstream approach to create metaheuristics.

9.3.1 Rethinking the Focus of the Research

As a field of study, metaheuristics are first and foremost an applied science that
deals with the design and application of optimization algorithms2 that work
well (often much better than well) regardless of the complexity of the problems.
As such, the field has always had a strong bias towards application-oriented
research and has extensively used “competitive testing”3 to make claims about
the algorithms’ performance (Hooker 1996). However, even though competitive
testing allows to answer the question “Which of the considered algorithms will
provide the best solution quality for the problem at hand?”, it does not allow to delve
deeper into the reasons that lead to the observed results. Therefore, when it
comes to advancing the field and to increasing our knowledge of why some
techniques work well on some problems and not on others, it is key to reduce
the asymmetry between the amount of research that is application-oriented and
the one that is experimentally- or theory-driven.

Studying the interplay between the computational models underlying a
metaheuristic and its performance on different problems classes is important
not only from a research perspective, but also from a practical one. Exper-

2In the remainder of this chapter, when discussing general aspects of the field, we use the
more general term “optimization algorithms” instead “metaheuristics”.

3Competitive testing consists in evaluating the performance of the compared algorithms so
as to determine the “winner” of the competition, that is, the algorithm that performs better
than any of its competitors on a given set of problem instances and for a given performance
measure (Bartz-Beielstein et al. 2020). However, it does not provide any information about what
causes the differences in performances.
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imental and theoretical analyses allow, for example, (i) to understand how
extensible are the ideas involved in a metaheuristic, and therefore, to know
how they can be used to address other problems; (ii) to guide the development
of new metaheuristic components that can further improve the metaheuristic
performance or solve issues that have been identified so far; and (iii) to define
guidelines for creating metaheuristic implementations, i.e., useful indications of
the different ways in which metaheuristic components can be combined, so that
new designs can be created and tested more easily.

Fortunately, in the last few years, things seem to have been changing for the
better in this area, as it is nowadays much more frequent to find application-
oriented papers that introduce new optimization algorithms motivated by
empirical evidence or theoretical findings. Unfortunately, there are still many
important challenges to be overcome that concern the way research itself is
conducted in this field, starting by the methodological practices that we use to
draw conclusions from experimental studies.

9.3.2 Rethinking the Way We Benchmark Metaheuristics

It was Carl Sagan who popularized the phrase “extraordinary claims require
extraordinary evidence” (Sagan 1979). In the field of metaheuristics, there is
great variety in the way evidence (i.e., data) is collected and used to draw con-
clusions about the metaheuristics’ performance—a process commonly referred
to as benchmarking (Bartz-Beielstein et al. 2020). For example, at one end of the
spectrum there are articles about the “novel” metaphor-based algorithms, that,
although do not lack extraordinary claims, are often textbook examples of poor
scientific practice (see the discussion in Chapter 4). At the other end of the
spectrum there are researchers creating new tools to evaluate the metaheuris-
tics’ performance (Eftimov et al. 2020) and investigating new methodologies to
compare metaheuristics based on modern techniques, such as the use of deep
statistical analyses (Eftimov et al. 2017).

In general, even though there are a number of state-of-the-art methodologies
and tools available in the literature to evaluate optimization algorithms (Derrac
et al. 2011; Eftimov et al. 2017; R Development Core Team 2008; Sheskin 2011),
they are not always used to evaluate the metaheuristics’ performance. For exam-
ple, it is still frequent to see structurally biased metaheuristics that are evaluated
on biased tests sets (Kudela 2022) and flawed experimental methodologies
that present unfair comparisons, do not guarantee reproducibility, and neglect
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important performance metrics (Bartz-Beielstein et al. 2010; Campelo and Taka-
hashi 2019; García-Martínez et al. 2017; Hooker 1994, 1996; López-Ibáñez et al.
2021). These issues, however, happen more often on some publication venues
than in others. Therefore, to really tackle these issues, higher scientific standards
would need to be implemented and systematically enforced by all the different
outlets in which the literature of metaheuristics is published.

Recently, a number of researchers came together and put forward a set of
guidelines and best practices to benchmark optimization algorithms with the
aim of addressing the poor benchmarking practices often used in the field
(Bartz-Beielstein et al. 2020). Among the guidelines and best practices they
have proposed are: (i) clearly specifying the goal of the benchmark study
and design it accordingly; (ii) using benchmarks that are comprehensive on
both the size, difficulty and diversity of the problems; (iii) using manual or
automatic techniques to configure the parameters of the metaheuristics; (iv)
using sound statistical methodologies in order to decide what experiments
should be conducted, how many times each experiment should be repeated,
which data should be gathered and how it should be processed, analyzed,
interpreted, and presented; and (v) avoiding generalizing the results without
having enough evidence to do it or without defining clear bounds within which
such generalization apply.

It is impossible to overstate the importance that the research focused on
improving the way metaheuristics are compared and evaluated has in this field,
which involves the often underestimated effort of creating/updating testbeds on
a regular basis in order to reflect the complexity found in ever changing realistic
scenarios (Hansen et al. 2021). However, moving from theory to practice has
proven to be quite challenging for a field that is experimental in nature and has
been focused mostly on testing metaheuristics as if they were horses in a race
for most of its history. Indeed, despite the many efforts devoted to improve the
experimental practices used in the field (Bartz-Beielstein et al. 2010; Campelo
and Takahashi 2019; García-Martínez et al. 2017; Hooker 1994, 1996), adopting
such practices has not yet being widely done, particularly in some of the venues
where “novel” metaphor-based metaheuristics are regularly published.

9.3.3 Rethinking the Way We Create Metaheuristics

Based on what we have discussed in this thesis, it seems only natural to argue
in favor of moving from manual to automatic design as the main way to
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create metaheuristics. This includes promoting the research that focuses on the
creation of flexible, automatically configurable MSFs that can be extended with
new metaheuristic components so that other researchers/practitioners can use
them in different contexts. Additionally, it is key to promote the research on
automatic design methods and their application to develop implementations
that are tailored for the specific needs of the user. The long-term goal of this
approach is to fully automatize the process of creating metaheuristics, such that,
when a new problem arises, an effective metaheuristic implementation can be
automatically created in a timely and unbiased way.

In addition to adopting the automatic design paradigm as the main way to
create new metaheuristics, we also advocate here for harnessing the advances
in machine learning (ML) to further boost the development of performing
metaheuristics. Several research trends have emerged that explore ways of
integrating ML into metaheuristics (Gambella et al. 2021; Karimi-Mamaghan
et al. 2022; Song et al. 2019; Talbi 2021). Different levels of integration have
been identified in the literature (Karimi-Mamaghan et al. 2022; Talbi 2021), such
as problem level integration—where ML can aid in recomposing the objective
function and constraints of the problem or in decomposing the search space;
high-level (algorithm-level) integration—where ML is used to select a suitable
algorithm from an algorithms portfolio; and low-level (component-level) integra-
tion—where ML is used to automate the task of selecting and fine-tuning the
algorithm components that perform best for a particular problem.

In recent years, metaheuristics designers have also begun to make use of
data analytics tools (e.g., functional ANOVA (Hooker 2012), forward selection
(Hutter et al. 2013) and ablation (Fawcett and Hoos 2016)), which are at the core
of data science, to obtain knowledge about the algorithms’ performance from
the data collected during the design process. The productive synergy created
between ML and metaheuristics has resulted not only in new ways to design
and implement increasingly effective algorithms, but also in new ways to study
these techniques and understand why specific designs are performing whereas
others are not.

9.4 Summary

In this chapter, we tried to answer the question of whether the field of meta-
heuristics is moving in the right directions or not. To us, as well as to many other
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researchers in the metaheuristics community, the right direction is one where
there is a balance among the different type of research (application-oriented and
experimentally- and theoretically-driven), where new ideas are properly tested
and compared, where the more efficient and less biased approaches replace
those that are inefficient and more biased, and where the use of unscientific
practices is either nonexistent or rare. Unfortunately, the issue of the “novel”
metaphor-based metaheuristics is not only pushing the field of metaheuristics
away from these ideals, but also creating many new problems in its wake that
the metaheuristics community will have to sort out. Regardless, there are many
reasons to be optimistic about the future of this field and to believe that the
more robust and scientific approaches will win out over the less scientific ones.



Chapter 10

Conclusions and Future Work

10.1 Conclusions

In the last decades, metaheuristics have been the method of choice to find
approximate solutions to many difficult optimization problems. However, even
though they have allowed important advances in the optimization field, the
way the majority of metaheuristics are created to this day is still the same as
in the early days—that is, they are the result of a time-consuming, error-prone
process, in which a human designer manually creates the different components
to be used in the metaheuristic implementation. Although this way of creating
metaheuristics has been successful in the past and, in a few cases, involves the
use of metaphors from naturally occurring optimization behaviors, it is now time
to move towards a new way of creating metaheuristics that avoids the pitfalls
of manual design. In this thesis, we have examined in detail an alternative
approach called automatic design, and we have presented strong arguments to
move away completely from the approach of finding inspiration in other fields
of knowledge to manually develop new metaheuristic implementations.

After the introductory Chapter 1, in which we described the motivation for
this research work, outlined the structure of the thesis and gave a preview of
the research contributions, we began this thesis in Chapter 2 by giving a short
introduction to optimization and metaheuristics. First, we described the set
of optimization problems that are difficult to solve—i.e., those that cannot be
efficiently approached with exact or analytical methods—as these are the type
of problems for which heuristics and metaheuristics are commonly applied.
Then, we presented a number of successful metaheuristics inspired by natural
and social behaviors, which are also among the best performing ones available
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in the literature. In doing so, we intended to show that, historically, there has
been a reason for using metaphors to devise truly innovative metaheuristics.

Chapter 3 was dedicated to present and contrast the two main approaches
used to create new metaheuristics: manual design and automatic design. The
automatic design of metaheuristics is based on the use of a component-based
view to define a metaheuristic design space and on the application of auto-
matic configuration tools to explore many different designs until one is found
that satisfies the needs of the user. The research done on the automatic de-
sign of metaheuristics has already led to a number of metaheuristic software
frameworks that enable the use of automatic configuration tools to design
high-performing implementations in a very efficient way, such as PSO-X, whose
advantages were shown experimentally later in the thesis.

In Chapter 4, we elaborated on the trend of the “novel” metaphor-based
metaheuristics inspired by natural, artificial, and even supernatural behaviors,
which since a few years is being strongly criticized due to the uselessness of
the new metaphors to devise truly novel algorithms, and to the confusion they
have created in the literature of the field. In this chapter, we also argued that
this trend exists in part due to the prevalence of manual design as the main
way to create metaheuristics.

In order to illustrate why these kinds of metaheuristics are so problematic,
we presented a number of analyses of highly-cited “novel” metaheuristics that
turned out to lack any novelty. In addition to study their mathematical models
and compare them with those proposed in well-established metaheuristics, we
analyzed the use of the metaphors and found that they are completely useless
from the point of view of devising novel optimization algorithms. Chapter 5,
which was dedicated to discrete optimization, presented the analysis of the
intelligent water drops and five of its variants; Chapter 6, which was dedicated
to continuous optimization, presented the analysis of the grey wolf, moth-flame,
whale, firefly, bat, antlion and cuckoo algorithms. Unfortunately, these are just a
few examples in a long list of hundreds of “novel” metaheuristics with similar
problems.

In Chapters 7 and 8 of this thesis, we elaborated on the increasing application
of the automatic design paradigm in the field of optimization and discussed
why it is currently the most efficient way to create high-performing metaheuris-
tics implementations, as well as a possible solution to the problem of the “novel”
metaphor-based metaheuristics. In Chapter 7, we first discussed the different
aspects surrounding the creation of flexible, automatically configurable meta-
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heuristic software frameworks from which high-performing implementations
can be instantiated. Then, we presented some of the most popular of these
software frameworks and described how researchers and practitioners are using
these tools to create metaheuristics implementations whose design has never
been considered before in the literature. In Chapter 8, we presented PSO-X,
the metaheuristic software framework for particle swarm optimization that we
developed in the context of this research work. We experimentally showed that
PSO-X can be used to instantiate high-performing PSO algorithms without the
need to consider new metaphors.

We concluded this work in Chapter 9 trying to answer the question of
whether the field is moving in the right direction based on the state of some
foundational aspects of the field. First, we discussed some of the difficulties in
finding truly useful behaviors that can be used as an inspiration for the design of
novel metaheuristics, as well as the wrong practice of citing the No-Free-Lunch
as theoretical basis for introducing a new metaphor. Then, we reflected on some
foundational aspects of the metaheuristics research. Some of the conclusions
from our reflection on these aspect are that, in order to continue advancing the
field of metaheuristics, we need to:

• continue increasing the amount of research that is experimentally- or
theoretically-driven rather than focusing only on purely application-driven
research;

• use state-of-the-art benchmarking practices to evaluate and compare meta-
heuristics and not only use the so-called “competitive testing”; and

• use modern tools to automatically create high-performing metaheuristic
implementations.

This doctoral thesis was focused on the last of the three foundational aspects,
which argues for fundamentally changing the way metaheuristic implementa-
tions are created. Fortunately, the area of automatic design is growing rapidly
and it seems only a matter of time before modern, automatic design methods
become widespread and replace manual design as the mainstream approach
to design new metaheuristics. This, we believe, will help to put a definitive
end to the trend of the “novel” metaphor-based metaheuristics and will have
a positive, long-lasting effect on the way we see, understand and apply these
optimization algorithms.
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10.2 Future Work

Although there is already a vast diversity of metaheuristic techniques and
mechanisms to create new designs, there are still many opportunities in the
field. In particular, we consider promising to devote efforts (i) to create modeling
frameworks that allow to better characterize metaheuristics, which have already
shown great potential to quantify the similarity between metaheuristics (Armas
et al. 2022); (ii) to develop advanced ways to benchmark metaheuristics, such as
the creation of readily accessible statistical tools (Eftimov et al. 2017, 2020); and
(iii) to extend the existing ecosystem of metaheuristic software frameworks and
investigate ways to increase the re-usability of their components (Swan et al.
2019).

Modeling frameworks and metaheuristics characterization. One of the main
issues in the metaheuristics research field is the lack of a comprehensive frame-
work that allows to readily characterize metaheuristics and the relationships
that exist among them and with other optimization techniques. There are
different approaches that can be considered to address this issue, such as the
use of ontologies to represent the concepts that belong to different metaheuristic
classes, and the use of large language models—e.g., GPT, Turing NLG, and
BERT—to extract information from the ontologies. Using ontologies and large
language models it should be possible not only to describe a metaheuristic in
great detail and see how it is related to other techniques using different levels
of abstraction, but also to have an efficient way to obtain a quick classification
of a metaheuristic implementation and its degree of novelty.

Advance metaheuristics benchmarking. Another important research direction
for the future is to find ways to improve the way we benchmark metaheuristics.
An interesting approach in this direction is the use of the so-called meta-learning
and continuous learning approaches, where a machine learning algorithm is
used to extract features both from the benchmark problems and from the
metaheuristic implementations in order to link the type of problems for which
a particular metaheuristic design can obtain good results. This approach can
be used to create a large database of metaheuristics designs and performance
assessments that can be (re)used in future benchmarking studies. However, in
order for this approach to be truly successful, the metaheuristics community
would have to adopt sound data management practices that guarantee the
trustworthiness of the collected data.
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Integration of metaheuristic software frameworks. In the future, we can
expect to see a much higher degree of integration of the existing different
optimization tools and of the mechanisms that have been developed to design
metaheuristic implementations, both of which are, at the moment, scattered
in the literature. In such a scenario, the use of automatic design and of the
component-based view of metaheuristics will be predominant, allowing the
possibility to easily create implementations that include components from any
kind of metaheuristic.

Assisted optimization problems modeling. The last research direction is
worth devoting efforts in the future is the creation of tools that assist users
to model the optimization problem they want to solve in a simpler way. This
is something rarely discussed in the literature of metaheuristics, where the
optimization problem to be tackled is typically already well-defined. How-
ever, in many real-life situations, modeling the optimization problem is not
straightforward. This is the case, for example, in those situations in which
(i) there are complex dependencies among the solution variables, and/or (ii)
the environment of the problem is dynamic and the position of the optimum
changes over time. One way to automatize the modeling of the optimization
problems is by using some of the open source natural language processing
(NLP) packages, such as NLTK, PyTorch-NLP and OpenNLP, to create a tool
that is capable of analyzing the raw data available on the problem and obtaining
insights about its structure to produce a model that is meaningful for the user.

For several years, we have seen the integration of the different areas of
AI to devise ever more powerful approaches. This has allowed us not only to
solve a wide array of complex problems that we were not able to solve before,
but also to simplify the execution of a number of tasks that are encompassed
in their solution. The field of metaheuristics, despite the existence of some
regressive trends, has also been part of this integration with other areas of AI.
In our opinion, the outlook for the field of metaheuristics is very exciting and
full of opportunities. Notably, the field keeps moving towards an increasing
level of automation. This automation will not only allow users to be assisted in
the description of new challenging optimization problems and in the automatic
creation of high-performing algorithms to solve them, but also, very importantly,
will help us to better understand the many different techniques that have already
been proposed so that we can continue improving them.





Appendix A

Applying the IWD to the Traveling
Salesman Problem

In this appendix, we illustrate one iteration of the intelligent water drops (IWD)
metaheuristic applied to the traveling salesman problem.

A.1 Traveling salesman problem

In the traveling salesman problem (TSP), a set of n cities has to be visited
by a salesman using the shortest possible route. After visiting each of the n
cities once, the salesman has to return to his home city. In formal terms, we
are searching for the Hamiltonian tour of minimal length in a fully connected
graph.
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Figure A.1: A 5-cities graph for the TSP and distance between each city.

In Figure A.1 we show a graphical representation of the TSP instance con-
sidered in the example. The cities names are indicated within the graph nodes
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and the distances dij between them is shown in color blue on the graph edges.

A.2 IWD notation and equations

The probability pk
ij with which a water drop k placed on city i adds a non-

yet-visited city j to the tour it is constructing is given by the random selection
rule:

pk
ij =

1
ϵ+g(soilij)

∑
ih∈N f

( 1
ϵ+g(soilih)

) , (A.1)

where soilij is the amount of soil on edge ij, ϵ is a small constant to avoid
division by zero, N f indicates the set of feasible solution components (i.e., edges
that connect the current city to cities that have not been visited yet); therefore,
ih ∈ N f indicates that city h can be added to a solution being constructed by a
water drop placed on city i.

After a city j has been added to the tour constructed by water drop k:

• the amount of soil on the edge (soilij) is updated using the local soil update
equation:

soilij = (1− φ) · soilij − φ · ∆soilk
ij, (A.2)

where φ is a user selected parameter in the interval [0, 1),

∆soilk
ij =

as

bs + cs · [HUDij/velk]2
, (A.3)

and
velk = velk +

av

bv + cv · [soilij]2
, (A.4)

• and the soil collected by the water drop k is updated using the equation:

collected_soilk = collected_soilk + ∆soilk
ij, (A.5)

where ∆soilk
ij is defined as in Equation A.3

The parameters as, bs and cs in Equation A.3 and av, bv and cv in Equation A.4
are user selected parameters. HUDij is the heuristic undesirability of adding a
city j to the tour while placed on city i, which, in this case, corresponds to the
distance dij between cities i and j (see Fig. A.2).
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HUD =



0 1 2 2 6

1 0 6 8 10

2 6 0 12 4

2 8 12 0 1

6 10 4 1 0


Figure A.2: Heuristic undesirability matrix

Once all solutions are completed, the water drop kbest that constructed the
best tour sbest updates the values of soilij on all the edges that belong to sbest

using the global soil update rule:

soilij =

(1 + ρ) · soilij − ρ · ∆soilbest
ij if ij ∈ sbest

soilij otherwise,
(A.6)

where
∆soilbest

ij = collected_soilbest/N − 1 (A.7)

where N is the number of cities in the constructed solution, which in our
example is 5.

In Table A.1 we give all the parameter values as recommended in (Shah-
Hosseini 2009).

Table A.1: Recommended values for the IWD’s parameters

Parameter: av bv cv as bs cs InitSoil InitVel collected_soil φ ρ

Value: 1 0.01 1 1 0.01 1 10000 200 0 0.9 0.9

A.3 Example

In this example, we make reference to the content of a spreadsheet file which is
available as online supplementary material for the article (Camacho-Villalón
et al. 2019) at: https://static-content.springer.com/esm/art%3A10.1007%
2Fs11721-019-00165-y/MediaObjects/11721_2019_165_MOESM1_ESM.ods.

The algorithm to solve the TSP using IWD is shown in Algorithm 11. In
this example, we set the number of water drops to 3 (i.e., m = 3). Let us

https://static-content.springer.com/esm/art%3A10.1007%2Fs11721-019-00165-y/MediaObjects/11721_2019_165_MOESM1_ESM.ods
https://static-content.springer.com/esm/art%3A10.1007%2Fs11721-019-00165-y/MediaObjects/11721_2019_165_MOESM1_ESM.ods
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Algorithm 11 IWD algorithm for the traveling salesman problem
Output: Shortest tour found ST
Require:

m← 3 ▷ number of water drops
N ← 5 ▷ number of cities
ST ← ∞ ▷ best solution found
av ← 1, bv ← 0.01, cv ← 1, as ← 1, bs ← 0.01, cs ← 1, φ← 0.9, ρ← 0.9
sbest ← random_solution ▷ initial iteration-best solution

1: for all (i, j) do
2: HUD ← d(i, j) ▷ initial heuristic undesirability values
3: soilij ← 10 000 ▷ initial soil values
4: end for
5: while (! Termination()) do
6: for k← 1 to m do ▷ each water drop builds a solution
7: sk ← () ▷ initial empty partial solution
8: velk ← 200 ▷ initial water drop velocity
9: collected_soilk ← 0 ▷ initial collected soil

10: select random initial city i ▷ select initial city
11: h← i
12: for n← 2 to N do
13: select next city j ▷ use Equation A.1
14: add city j to sk ▷ add the city to the solution
15: update soilhj ▷ use Equation A.2
16: update collected_soilk ▷ use Equation A.5
17: h← j
18: if

(
n = N

)
then

19: add city i to sk ▷ return to the initial city
20: update soilhi ▷ use Equation A.2
21: update collected_soilk ▷ use Equation A.5
22: end if
23: n← n + 1
24: end for
25: k← k + 1
26: end for
27: for all k do ▷ iteration-best solution is computed
28: if

(
F(sk) < F(sbest)

)
then ▷ F(·) returns the cost of the solution

29: sbest ← sk

30: end if
31: end for
32: for all (i, j) ∈ sbest do ▷ global update
33: update soilij ▷ use Equation A.6
34: end for
35: if

(
F(sbest) < F(ST)

)
then

36: ST ← sbest ▷ new global-best solution
37: end if

sbest ← random_solution
38: end while
39: Return ST
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suppose that in the first iteration of the algorithm the 3 water drops construct
the following tours:

k=1 : d-e-b-c-a-d

k=2 : a-e-d-c-b-a

k=3 : d-e-c-b-a-d

that is, for k=1, d is the initial city randomly selected (line 10, Algorithm 11),
and cities e, b, c and a are then selected by means of the random selection rule (line
13, Algorithm 11). Finally, the tour is completed by deterministically adding
the inital city d (line 19, Algorithm 11). Similarly for k = 2 and for k = 3.

Using these tours, the rest of the execution of Algorithm 11 is described using
the content of the spreadsheet file. First, the HUD matrix (line 2, Algorithm 11)
is defined in cells A1:G6, and the initial soil matrix (line 3, Algorithm 11) is
defined in cells A9:G14, The parameters of the algorithm are defined in cells
I1:J8 (see also Table A.1). The user may modify the value of these parameters to
try the example using different parameter configurations.

For every city added to a solution, we show in the spreadsheet file the
computation of the water drops new velocity velk, of the variable ∆soilkj , of
the new value of soilij (lines 15 and 20, Algorithm 11) and the new value of
collected_soilk (lines 16 and 21, Algorithm 11). The new values of soilij are shown
highlighted in the updated soil matrix shown on the right side (e.g., in the
updated soil matrix of cells D22:H26, soil is updated in cells G26 and H25).

After the three water drops have completed their tours, we show the appli-
cation of the global soil update in cells A153:C158, and the resulting soil matrix
in cells E152:J158. In Algorithm 11 this is shown from lines 27 to 34.

Note that after the application of the global soil update and using the
parameters recommended by the author (see Table A.1), some of the graph
edges included in the best solution end up with a higher soil value. This is
counter-intuitive as the edges of the best quality solution should rather decrease
their value. In fact, as we explain in the article, this will happens as long as the
value of soilij is positive and the right-hand side of Equation A.6 has a smaller
value than the left-hand side—i.e., (collected_soilbest/Nbest − 1) ≤ (1 + ρ) · soilij.





Appendix B

Supplementary Material for PSO-X

This appendix contains supplementary material for the PSO-X framework
described in Chapter 8. In Section B.1, we present a number of tables that
contain: (i) the abbreviations used in the Chapter 8 (Table B.1); (ii) the complete
list of parameters of the PSO-X framework (Table B.2); (iii) the forbidden
configurations when executing PSO-X (Table B.3); (iv) the available strategies
for computing the main parameters of the generalized velocity update rule that
we proposed (Table B.4); and (v) the parameter settings of the default and tuned
versions of the ten PSO variants included in our comparison (Table B.5). In
Section B.2, we present an analysis of the convergence of the PSO-X algorithms
and of the PSO variants according to Poli (2009) and Poli and Broomhead (2007)’
theoretical convergence bounds, as well as a number of plots that show the
sampling distribution of the parameters and the way in which they interact with
each other. The algorithms of the six PSO-X implementations and of the ten PSO
variants are reported in Section B.3. Finally, we present the distribution of the
median solution of the 16 compared algorithms using box-plots, in Section B.4;
and the best solutions quality vs function evaluations plots, in Section B.5.

B.1 Parameter Settings

B.1.1 PSO-X Parameters

PSO-X has a total of 58 parameters. However, not all of them are used at once
when the framework is executed. The actual number of parameters depends on
the options selected for Population, DNPP, Topology, Model of influence, ω1, ω2

and ω3. In Table B.2, we show the complete list of parameters of PSO-X, their
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Table B.1: List of abbreviations used in Chapter 8

Abbreviations

PSO Particle swarm optimization
DNPP Distribution of all next possible positions

GVUR Generalized velocity update rule
CI Cognitive influence
SI Social influence

Pertrand Random perturbation
Pertinfo Informed perturbation
RRMs Random rotation matrices

PM Perturbation magnitude
Mtx Matrix
Top Topology
MoI Model of influence
Pop Population
ACs Acceleration coefficients

CCVUR Constriction coefficient velocity update rule
ERiPSO Enhanced rotation invariant PSO variant
FiPSO Fully informed PSO variant

FraPSO Frankenstein’s PSO variant
GauPSO Gaussian “bare-bones” PSO variant
HiePSO Hierarchical PSO variant
IncPSO Incremental PSO variant
LcRPSO Locally convergent rotation invariant PSO variant
ResPSO Restart PSO variant
SPSO11 Standard PSO 2011 variant
StaPSO Standard particle swarm optimization

type and domain, and the specific condition(s) under which each parameter
has to be configured. Note that, in Table B.2, we use the parameters names as
defined in the code of PSO-X; these are the names that users have to specify as
command line arguments when executing the framework. To avoid confusion,
we also show (in parenthesis) the names of the parameters as they are presented
and described in Chapter 8.
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Table B.2: Complete list of parameters as they have to be indicated when
executing PSO-X. The names in parenthesis in the first column are the ones
used in Chapter 8.

Name Type Domain Condition(s)

Population

populationCS (Pop) categorical
0=Pop-constant,
1=Pop-time-varying,
2=Pop-incremental

particles integer (2, 200) populationCS ∈ {0, 1}
initialPopSize (popini) integer (2, 10) populationCS ∈ {1, 2}
finalPopSize (pop f in) integer (2, 200) populationCS ∈ {1, 2}
particlesToAdd (ξ) integer (1, 10) populationCS = 2

pIntitType (Init) integer
0=Init-random,
1=Init-horizontal

populationCS = 2

popTViterations (k) integer (1, 100) populationCS = 1

DNPP

DNPP categorical
0=DNPP-rectangular,
1=DNPP-spherical,
2=operator_q

operator_q (⃗q ) categorical

0=DNPP-standard,
1=DNPP-Gaussian,
2=DNPP-discrete,
3=DNPP-Cauchy–Gaussian

DNPP = 2

randNeighbor
(MoI-random informant)

categorical
0=false,
1=true

DNPP = 2

operatorCG_parm_r (r) real (0.00, 1.00) operator_q = 3

Topology

topology (Top) categorical

0=Top-ring,
1=Top-fully-connected,
2=Top-wheel,
3=Top-Von Neumann,
4=Top-random edge,
5=Top-hierarchical,
6=Top-time-varying

modInfluence (MoI) categorical
0=MoI-best-of-neighborhood,
1=MoI-fully informed,
2=MoI-ranked fully informed

branching (bd) integer (2, 20) topology = 6
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Table B.2 Continued.

Name Type Domain Condition(s)

Acceleration coefficients

accelCoeffCS (AC) categorical

0=AC-constant,
1=AC-random,
2=AC-time-varying,
3=AC-extrapolated

DNPP ∈ {0, 1} ∨
((DNPP = 2) ∧ (oper-
ator_q = 0))

phi1 (φ1) real (0.00, 2.50) accelCoeffCS = 0

phi2 (φ2) real (0.00, 2.50) accelCoeffCS = 0

initialPhi1 (φ1min) real (0.00, 2.50) accelCoeffCS ∈ {1, 3}
finalPhi1 (φ1max real (0.00, 2.50) accelCoeffCS ∈ {1, 3}
initialPhi2 (φ2min) real (0.00, 2.50) accelCoeffCS ∈ {1, 3}
finalPhi2 ((φ2max) real (0.00, 2.50) accelCoeffCS ∈ {1, 3}

Random perturbation

perturbation2 (Pertrand) categorical
0=none,
1=Pertrand-rectangular,
2=Pertrand-noisy

omega2CS ∈ {0, 2, 3,
4}

magnitude2CS (PM) categorical

1=PM-constant value,
2=PM-Euclidean distance,
3=PM-obj.func. distance,
4=PM-success rate

perturbation2 ∈ {1, 2}

magnitude2 (PMt=0) real (0.0, 1.0) magnitude2CS ∈ {1,
4}

mag2_parm_l_CS categorical
0=variable,
1=constant

magnitude2CS = 2

mag2_par_l (ϵ) real (0.0, 1.0) mag2_parm_l_CS = 1

mag2_par_m (m) real (0.0, 1.0) magnitude2CS = 3

mag2_parm_success
(sc)

integer (1, 50) magnitude2CS = 4

mag2_parm_failure ( fc) integer (1, 50) magnitude2CS = 4

Inertia
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Table B.2 Continued.

Name Type Domain Condition(s)

omega1CS (ω1) categorical

0=constant
1=linear decreasing,
2=linear increasing,
3=random,
11=self-regulating,
12=adaptive based on
velocity,
13=double exponential
self-adaptive,
14=rank-based,
15=success-based,
16=convergence-based,

In Table B.3, we show the list of forbidden configurations when executing
PSO-X, i.e., parameter values or combinations of parameter values that are not
allowed. When a new configuration is created, irace evaluates whether the con-
figuration is valid based on the forbidden configurations file and automatically
discard it if it matches any of the entries in the file.

Table B.3: List of forbidden configurations when executing PSO-X.

Forbidden configurations

initialPopSize > finalPopSize
(topology = 6) ∧ (modInfluence = 2)
(branching > finalPopSize) ∨ (branching > particles) ∨ (branching < initialPopSize)
(DNPP = 2) ∧ randomMatrix ∈ {1, 2, 3, 4, 5, 6}
particlesToAdd > (finalPopSize−initialPopSize)
(accelCoeffCS = 1) ∧ (initialPhi1 ≤ finalPhi1)
(accelCoeffCS = 1) ∧ (initialPhi2 ≥ finalPhi2)
(accelCoeffCS = 3) ∧ (finalPhi1 ≤ initialPhi1)
(randNeighbor = 1) ∧ modInfluence ∈ {0, 2}
(populationCS = 1) ∧ ((particles < initialPopSize) ∨ (particles > finalPopSize))
accelCoeffCS ∈ {1, 2, 3} ∧ (operator_q ∈ {1, 2, 3)
(unstuck = 1) ∧ (inertia = 0.0)

Finally, in Table B.4, we show the strategies available for computing parame-
ters ω1, ω2 and ω3 of the generalized velocity update rule (GVUR).
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B.1.2 PSO Variants Parameters

In Table B.5, we show the parameter setting of the default and tuned version
of the ten PSO variants included in the comparison with the automatically
generated PSO-X algorithms.

Table B.5: Parameter settings of the default (dft) and tuned (tnd) version of the
ten PSO variants included in the comparison.

Algorithm Settings

ERiPSO

dft
pop = 20, ω1 = 0.7213475, AC-random, φ1min = 0,
φ1max = 2.05, φ2min = 0, φ2max = 2.05, Mtx-Euclidean
rotationall with α-adaptive and ζ = 30 and ρ = 0.01.

tnd

Top-Von Neumann, pop = 166, ω1 = 0.4746, AC-random,
φ1min = 0.825, φ1max = 1.686, φ2min = 1.4733, φ2max =

2.1776, Mtx-Euclidean rotationone with α-Gaussian and σ =

39.8385.

FiPSO

dft
pop= 20, ω1 = ω2 = 0.729843788, Mtx-random diagonal,
φ1 = 2.05 and φ2 = 2.05.

tnd
Top-ring, pop = 20, ω1 = ω2 = 0.729843788, Mtx-random
diagonal, φ1 = 2.1864 and φ2 = 2.3156.

FraPSO

dft
κ = 60, pop = 60, ω1 = linear decreasing, ω1min = 0.4,
ω1max = 0.9, tschd = 600, φ1 = 2.0 and φ2 = 2.0.

tnd
κ = 300, pop = 30, ω1 = linear decreasing, ω1min = 0.0022,
ω1max = 0.8625, tschd = 210, φ1 = 2.0322 and φ2 =

1.9605.

GauPSO

dft
pop = 20, ω1 = 0 and DNPP-additive stochastic DNPP-
Gaussian.

tnd
Top-time-varying with MoI-random informant, κ = 150
pop = 30, ω1 = 0 and DNPP-additive stochastic DNPP-
Gaussian.

HiePSO dft
bd = 5, pop = 40, ω1 = linear increasing, ω1min = 0.4,
ω1max = 0.9, φ1 = 1.496180 and φ2 = 1.496180.

* ζ and ρ are parameters of α-adaptive; σ is a parameter of α-Gaussian; κ is a parameter
of Top-time-varying; tschd is a parameter of ω1 = linear decreasing; bd is a parameter of
Top-hierarchical; ξ is a parameter of Pop-incremental; and ϵ is a parameter of PM-Euclidean
distance.
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Table B.5 Continued.

Algorithm Settings

HiePSO tnd
bd = 2, pop = 114, ω1 = linear increasing, ω1min = 0.3284,
ω1max = 0.8791, φ1 = 2.1105 and φ2 = 1.0349.

IncPSO

dft
Init-horizontal, popini = 2, pop f in = 1000, ξ = 1, ω1 =

ω2 = 0.729843788, φ1 = 2.05 and φ2 = 2.05.

tnd
Top-time-varying, κ = 2360, Init-horizontal, popini = 5,
pop f in = 295, ξ = 10, ω1 = ω2 = 0.729843788, φ1 =

1.9226 and φ2 = 1.0582.

LcRPSO

dft

pop = d, ω1 = 0.7298, AC-random, φ1min = 0, φ1max =

1.4962, φ2min = 0, φ2max = 1.4962, Mtx-random lin-
ear, Pertinfo-Gaussian with PM-Euclidean distance and ϵ =

0.46461/d0.58.

tnd

Top-Von Neumann, pop = d, ω1 = 0.1306, AC-random,
φ1min = 0.3142, φ1max = 0.9002, φ2min = 0.3228,
φ2max = 1.5209, Mtx-random linear, Pertinfo-Gaussian with
PM-Euclidean distance and ϵ = 0.249.

ResPSO

dft
pop = 10, ω1 = linear decreasing, ω1min = 0, ω1max = 0.1,
φ1 = 1.5, φ2 = 1.5.

tnd
Top-ring with MoI-fully informed, pop = 10, ω1 =

linear decreasing, ω1min = 0.2062, ω1max = 0.6446, φ1 =

1.5014, φ2 = 2.2955.

SPSO11

dft
Top-ring, pop = 40, ω1 = 0.7213475, φ1 = 1.193147, φ2 =

1.193147.

tnd
Top-time-varying with κ = 1085, pop = 155, ω1 = 0.6482,
φ1 = 2.2776, φ2 = 2.1222.

StaPSO

dft
Top-fully-connected, pop = 40, ω1 = 0.7298, φ1 = 1.496180,
φ2 = 1.496180.

tnd
Top-Von Neumann, pop = 34, ω1 = 0.6615, φ1 = 2.3706,
φ2 = 0.8914.

* ζ and ρ are parameters of α-adaptive; σ is a parameter of α-Gaussian; κ is a parameter
of Top-time-varying; tschd is a parameter of ω1 = linear decreasing; bd is a parameter of
Top-hierarchical; ξ is a parameter of Pop-incremental; and ϵ is a parameter of PM-Euclidean
distance.
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B.2 Analysis of Convergence and Parameters Inter-
action

B.2.1 PSO-X Algorithms Convergence

Local convergence is one of the most important characteristics of high-performing
PSO implementations; it prevents issues such as swarm explosion and allows
particles to improve their initial solutions for any number of dimensions. Ac-
cording to Poli (2009) and Poli and Broomhead (2007), PSO implementations
whose inertia weight values (ω1, in our case) is limited in the region defined by

5 C− g(C)
48

< ω1 <
5 C + g(C)

48
, (B.1)

where
C = φ1 + φ1

and
g(C) =

√
25 C2 − 672 C + 2304,

are expected to exhibit a locally convergent behavior.

Using Equation B.1, we computed the lower and upper bounds of ω1 for the
six PSO-X implementations and the ten PSO variants. In the case of PSO-Xall,
which uses the convergence-based strategy (see Table B.4), the range of ω1 can be
obtained by substituting a = 0.7192, b = 0.9051 in the following equation:

ωi
1t = 1−

∣∣∣ a− Ci
t

(1 + Di
t)(1 + b)

∣∣∣ (B.2)

and computing its limit when Ci
t → 0 ∧ Di

t → 0 = 0.6224, Ci
t → 0 ∧ Di

t → 1 =

0.8112, Ci
t → 1∧ Di

t → 0 = 0.8526 and Ci
t → 1∧ Di

t → 1 = 0.9263, which results
in ω1min = 0.6224 and ω1max = 0.9263.

In the case of PSO-Xhyb, PSO-Xuni and PSO-Xcec, where parameters φ1 and
φ2 are obtained by sampling from a random uniform distribution, we consider
the expected value of these parameters, that is, φ1 = E[φ1min, φ1max] and φ2 =

E[φ2min, φ2max]. Finally, in the case of PSO-Xhyb, PSO-Xuni, PSO-Xcec and PSO-
Xsoco, we take into account the influence of parameter ω2, which is a value
between 0 and 1 that multiplies the acceleration coefficients in the same way as
the constriction coefficient does in PSO implementations using the constriction
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coefficient (χ = 0.7298)(Clerc and Kennedy 2002). The results of our analysis of
convergence are shown in Table B.6 and Table B.7.

Table B.6: Value of the main control parameters of the PSO-X algorithms and the
lower and upper bounds for order-1 stability according to Poli’s theoretical analysis.

Algorithm φ1 φ2 Poli’s lower bound ω1 Poli’s upper bound

PSO-Xall 1.7067 2.2144 −0.1795 (0.6224, 0.9263) 0.7922

PSO-Xhyb 1.6041 1.6852 −0.0548 (0.1190, 0.1378) 0.7401

PSO-Xmul 0.9200 1.6577 −0.2974 (0.4000, 0.9000) 0.8344

PSO-Xuni * 1.4217 2.0510 (−0.7377,−0.4537) (0.3531, 0.7095) (0.8821, 0.9509)

PSO-Xcec 1.8958 0.8972 −0.4425 (0.1673, 0.2317) 0.8789

PSO-Xsoco * 0.7542 1.9235 (−0.5386,−0.4129) (0.6564, 0.8201) (0.8704, 0.9048)

* In these algorithms, the value of the acceleration coefficients is constricted by the range of values
that ω1 can take, which results in two ranges (one for Poli’s lower bound and one for the upper
one) whose maximum and minimum values depend on ω1min and ω1max.

As it can be seen in Table B.6, with the exception of PSO-Xall and PSO-
Xmul, the value of the ω1 used by the PSO-X implementations is inside Poli’s
theoretical convergence region. This shows that the automatic design of PSO-
X with irace produces implementations that are, overall, locally convergent.
Although, in PSO-Xall, the value of ω1 can exceed Poli’s upper bound, it is
worth noticing that large values of ω1 are only expected in this algorithm at
the beginning of its execution. This is because in order to obtain a ω1 ∼ ω1max,
it should be the case that the distance (measure in terms of solution quality)
between a particle and the global best solution is very large, which may happen
only during the initial iterations of the algorithm. In fact, as the execution of the
algorithm progresses, the value of Ci

t tends to zero and the algorithm ends up
exhibiting a convergent behavior. A similar situation to that of PSO-Xall occurs
in the case of PSO-Xmul, where large ω1 values are obtained only when particles
succeed often in improving their personal best position. Since it becomes harder
for particles to achieve a high success rate once they have moved to high quality
areas of the search spaces, it is expected that the value of ω1 decreases over
time and the algorithm exhibits a locally convergent behavior.

Data from Table B.7 shows that the majority of the PSO variants in the com-
parison are inside Poli’s theoretical convergence region, except for SPSO11tnd,
whose acceleration coefficient values are so large that computing Equation B.1
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Table B.7: Value of the main control parameters of the PSO variants and the lower
and upper bounds for order-1 stability according to Poli’s theoretical analysis.

Algorithm φ1 φ2 Poli’s lower bound ω1 Poli’s upper bound

ERiPSOdft 1.0250 1.0250 −0.4555 0.7213 0.8826

FiPSOtnd 2.1864 2.3156 −0.0563 0.7298 0.7407

FraPSOdft 2.0000 2.0000 −0.1868 (0.4000, 0.9000) 0.7950

HiePSOtnd 2.1105 1.0349 −0.1081 (0.3284, 0.8791) 0.7634

IncPSOtnd 1.9226 1.0582 −0.4190 0.7298 0.8722

LcRPSOdft 1.4962 1.4962 −0.1619 0.7298 0.7853

ResPSOtnd 1.5014 2.2955 0.1741 (0.2062, 0.6446) 0.6168

SPSO11tnd 2.2776 2.1222 —– 0.6482 —–

StaPSOtnd 2.3706 0.8914 −0.0652 0.6615 0.7448

returned imaginary bounds. In the case of FraPSOdft, HiePSOtnd and ResPSOtnd,
since the value of ω1 is linearly decreasing, it is only during the initial itera-
tions of the algorithms’ execution that the upper convergence bound may be
exceeded. In particular, in the case of ResPSOtnd, the algorithm should remain
inside the convergence bound for most of its execution time, since the difference
between ω1max and the computed Poli’s upper bound is small. It is not clear
why the configuration process with irace returned such large values for the
acceleration coefficients of SPSO11tnd; however, according to the results of our
experiments, even with these parameter settings, the tuned version of SPSO11
was outperforming the default one.

B.2.2 Parameter Interaction

Given the large number of parameters in PSO-X compared to most PSO variants
available in the literature, framework users could be interested in obtaining
information about the sampling distribution of the parameters and the way
in which they interact with each other. We present this information using the
data gathered from the configuration process with irace. For each of the six
PSO-X algorithms, we present the histograms of the sampled configurations
and a parallel coordinate plot that depicts the interaction among the parameters
during the last iterations of the iterated racing process (see Figs. 1 to 12).
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Figure B.1: Frequency of the sampled configurations of PSO-Xall
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Figure B.2: Parameters interaction of PSO-Xall
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Figure B.3: Frequency of the sampled configurations of PSO-Xhyb
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Figure B.4: Parameters interaction of PSO-Xhyb
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Figure B.5: Frequency of the sampled configurations of PSO-Xmul
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Figure B.7: Frequency of the sampled configurations of PSO-Xuni
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Figure B.8: Parameters interaction of PSO-Xuni
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Figure B.9: Frequency of the sampled configurations of PSO-Xcec
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Figure B.10: Parameters interaction of PSO-Xcec
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Figure B.11: Frequency of the sampled configurations of PSO-Xsoco
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B.3 Algorithms of the Six PSO-X Implementation
and of the Ten PSO Variants

In this section, we present in detail the algorithm of the six PSO-X implementa-
tions and of the ten PSO variants. We focus on showing how the formulation of
the generalized velocity update rule (Equation 8.4) and the algorithm template
for PSO (Algorithm 10) described in Chapter 8 can be used to instantiate these
algorithms.

Algorithm 12 Standard PSO, StaPSOtnd

Require: Pop-constant, Top-Von Neumann, MoI-best-of-neighborhood, DNPP-rectangular, Mtx-
random diagonal, Pertinfo = Pertrand = none, pop = 34, ω1 = 0.6615, φ1 = 2.3706, φ2 = 0.8914.

1: Initialize(Pop-constant, Top-Von Neumann, MoI-best-of-neighborhood)
2: t← 0
3: repeat
4: for i← 1 to size(swarm) do
5: v⃗ i

t+1 ← ω1t v⃗ i
t + φ1Ui

1t
(

p⃗ i
t − x⃗ i

t
)
+ φ2Ui

2t
(⃗
l i
t − x⃗ i

t
)

6: x⃗ i
t+1 ← x⃗ i

t + v⃗ i
t+1

7: end for
8: for i← 1 to size(swarm) do
9: compute f (x⃗ i

t )

10: update p⃗ i
t

11: end for
12: g⃗t ← best(swarm)
13: t← t + 1
14: until t = tmax
15: return g⃗t
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Algorithm 13 PSO-Xall

Require: Pop-incremental, Init-random, Top-fully-connected, MoI-best-of-neighborhood, DNPP-
rectangular, Pertinfo-Lévy, PM-success rate, Mtx-random diagonal, velocity clamping, popini = 4,
pop f in = 20, ξ = 8, ω1 = convergence-based, a = 0.7192, b = 0.9051, ω2 = random, ω3 = 0,
φ1 = 1.7067, φ2 = 2.2144, PM = 0.438, sc = 11 and fc = 40

1: Initialize(Pop-incremental, Top-fully-connected, MoI-best-of-neighborhood)
2: t← 0
3: repeat
4: if (#successes > sc) then
5: PM← (PM · 2)
6: end if
7: if (#failures > fc) then
8: PM← (PM · 0.5)
9: end if

10: for i← 1 to size(swarm) do

11: Ci
t ←

| f ( p⃗ i
t−1)− f ( p⃗ i

t )|
f ( p⃗ i

t−1)− f ( p⃗ i
t )

12: Di
t ←

| f ( p⃗ i
t )− f (⃗l i

t )|
f ( p⃗ i

t )− f (⃗l i
t )

13: ωi
1t = 1−

∣∣∣ a−Ci
t

(1+Di
t)(1+b)

∣∣∣
14: ω2 ← U [0.5, 1]

15: v⃗ i
t+1 ← ωi

1t v⃗ i
t + ω2

(
φ1Ui

1t

(
Lγt

(
( p⃗ i

t ), PM
)
− x⃗ i

t

)
+ φ2Ui

2t

(
Lγt

(
(⃗l i

t ), PM
)
− x⃗ i

t

))
16: apply velocity clamping
17: x⃗ i

t+1 ← x⃗ i
t + v⃗ i

t+1
18: end for
19: for i← 1 to size(swarm) do
20: compute f (x⃗ i

t )

21: update p⃗ i
t

22: end for
23: g⃗t ← best(swarm)
24: if ( f (g⃗t) < f (g⃗t−1)) then
25: #successes← #successes + 1
26: #failures← 0
27: else
28: #failures← #failures + 1
29: #successes← 0
30: end if
31: swarm← UpdatePopulation(size(swarm), ξ, Pop-incremental)
32: swarm← UpdateTopology(Top-fully-connected, MoI-best-of-neighborhood)
33: t← t + 1
34: until t = tmax
35: return g⃗t
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Algorithm 14 PSO-Xhyb

Require: Pop-constant, Top-Von Neumann, MoI-best-of-neighborhood, DNPP-rectangular, Pertinfo-
Lévy, PM-success rate, Mtx-random diagonal, velocity clamping, pop = 41, ω1 =
adaptive based onvelocity, ω1min = 0.119, ω1max = 0.1378, λ = 0.608, ω2 = 1.0, ω3 = 0,
AC-random, φ1min = 1.0429, φ1max = 2.1653, φ2min = 1.0429, φ2max = 2.3275, PM = 0.5333,
sc = 28 and fc = 42

1: Initialize(Pop-constant, Top-Von Neumann, MoI-best-of-neighborhood)
2: t← 0
3: repeat
4: if (#successes > sc) then
5: PM← (PM · 2)
6: end if
7: if (#failures > fc) then
8: PM← (PM · 0.5)
9: end if

10: videal
t ← ub−lb

2

(
1+cos

(
π t

0.95·tmax

)
2

)
11: for i← 1 to size(swarm) do
12: vt ← 1

size(swarm)·d ∑
size(swarm)
i=1 ∑d

j=1 |v
i,j
t |

13: if (vt ≥ videal
t+1 ) then

14: ωi
1t ← max(ωi

1t−1 − λ, ω1min)
15: else
16: ωi

1t ← min(ωi
1t−1 + λ, ω1max)

17: end if
18: φ1t ← U [φ1min, φ1max]
19: φ2t ← U [φ2min, φ2max]

20: v⃗ i
t+1 ← ωi

1t v⃗ i
t + φ1tUi

1t

(
Lγt

(
( p⃗ i

t ), PM
)
− x⃗ i

t

)
+ φ2tUi

2t

(
Lγt

(
(⃗l i

t ), PM
)
− x⃗ i

t

)
21: apply velocity clamping
22: x⃗ i

t+1 ← x⃗ i
t + v⃗ i

t+1
23: end for
24: for i← 1 to size(swarm) do
25: compute f (x⃗ i

t )

26: update p⃗ i
t

27: end for
28: g⃗t ← best(swarm)
29: if ( f (g⃗t) < f (g⃗t−1)) then
30: #successes← #successes + 1
31: #failures← 0
32: else
33: #failures← #failures + 1
34: #successes← 0
35: end if
36: t← t + 1
37: until t = tmax
38: return g⃗t
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Algorithm 15 PSO-Xmul

Require: Pop-incremental, Init-horizontal, Top-time-varying, MoI-best-of-neighborhood, DNPP-
rectangular, Pertinfo-Lévy, PM-success rate, Mtx-random linear, stagnation detection, κ = 300,
popini = 3, pop f in = 50, ξ = 2, ω1 = success-based, ω1min = 0.4, ω1max = 0.9, ω2 = 1.0,
ω3 = 0, AC-constant, φ1 = 0.92, φ2 = 1.6577, PM = 0.5114, sc = 2 and fc = 33

1: Initialize(Pop-incremental, Top-time-varying, MoI-best-of-neighborhood)
2: t← 0
3: repeat
4: if (#successes > sc) then
5: PM← (PM · 2)
6: end if
7: if (#failures > fc) then
8: PM← (PM · 0.5)
9: end if

10: for i← 1 to size(swarm) do
11: St ← 0
12: if f ( p⃗ i

t ) < f ( p⃗ i
t−1) then

13: St ← St + 1
14: end if
15: ω1t ← ω1min + (ω1max −ω1min)

St
n

16: end for
17: for i← 1 to size(swarm) do
18: v⃗ i

t+1 ← ω1t v⃗ i
t + φ1ri

1t

(
Lγt

(
( p⃗ i

t ), PM
)
− x⃗ i

t

)
+ φ2ri

2t

(
Lγt

(
(⃗l i

t ), PM
)
− x⃗ i

t

)
19: x⃗ i

t+1 ← x⃗ i
t + v⃗ i

t+1
20: end for
21: for i← 1 to size(swarm) do
22: compute f (x⃗ i

t )

23: update p⃗ i
t

24: end for
25: apply stagnation detection
26: g⃗t ← best(swarm)
27: if ( f (g⃗t) < f (g⃗t−1)) then
28: #successes← #successes + 1
29: #failures← 0
30: else
31: #failures← #failures + 1
32: #successes← 0
33: end if
34: swarm← UpdatePopulation(size(swarm), ξ, Pop-incremental)
35: swarm← UpdateTopology(κ, Top-time-varying, MoI-best-of-neighborhood)
36: t← t + 1
37: until t = tmax
38: return g⃗t



214 CHAPTER B. SUPPLEMENTARY MATERIAL FOR PSO-X

Algorithm 16 PSO-Xuni

Require: Pop-incremental, Init-random, Top-fully-connected, MoI-best-of-neighborhood, DNPP-
rectangular, Pertinfo-Lévy, PM-success rate, Mtx-random diagonal, velocity clamping. popini = 10,
pop f in = 58, ξ = 3, ω1 = adaptive based onvelocity, ω1min = 0.3531, ω1max = 0.7095,
λ = 0.4832, ω2 = ω1, AC-random, φ1min = 1.4217, φ1max = 2.051, φ2min = 0.8626,
φ2max = 1.4609, PM = 0.9865, sc = 38 and fc = 11

1: Initialize(Pop-incremental, Top-fully-connected, MoI-best-of-neighborhood)
2: t← 0
3: repeat
4: if (#successes > sc) then
5: PM← (PM · 2)
6: end if
7: if (#failures > fc) then
8: PM← (PM · 0.5)
9: end if

10: videal
t ← ub−lb

2

(
1+cos

(
π t

0.95·tmax

)
2

)
11: for i← 1 to size(swarm) do
12: vt ← 1

size(swarm)·d ∑
size(swarm)
i=1 ∑d

j=1 |v
i,j
t |

13: if (vt ≥ videal
t+1 ) then

14: ωi
1t ← max(ωi

1t−1 − λ, ω1min)
15: else
16: ωi

1t ← min(ωi
1t−1 + λ, ω1max)

17: end if
18: ω2 ← ωi

1t
19: φ1t ← U [φ1min, φ1max]
20: φ2t ← U [φ2min, φ2max]

21: v⃗ i
t+1 ← ωi

1t v⃗ i
t + ω2

(
φ1tUi

1t

(
Lγt

(
( p⃗ i

t ), PM
)
− x⃗ i

t

)
+ φ2tUi

2t

(
Lγt

(
(⃗l i

t ), PM
)
− x⃗ i

t

))
22: apply velocity clamping
23: x⃗ i

t+1 ← x⃗ i
t + v⃗ i

t+1
24: end for
25: for i← 1 to size(swarm) do
26: compute f (x⃗ i

t )

27: update p⃗ i
t

28: end for
29: g⃗t ← best(swarm)
30: if ( f (g⃗t) < f (g⃗t−1)) then
31: #successes← #successes + 1
32: #failures← 0
33: else
34: #failures← #failures + 1
35: #successes← 0
36: end if
37: swarm← UpdatePopulation(size(swarm), ξ, Pop-incremental)
38: swarm← UpdateTopology(Top-fully-connected, MoI-best-of-neighborhood)
39: t← t + 1
40: until t = tmax
41: return g⃗t
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Algorithm 17 PSO-Xcec

Require: Pop-constant, Top-Von Neumann, MoI-best-of-neighborhood, DNPP-rectangular, Pertinfo-
Lévy, PM-success rate, Pertrand-noisy, PM-success rate, Mtx-random diagonal. pop = 42, ω1 =
self-regulating, ω1min = 0.1673, ω1max = 0.2317, η = 0.2468, ω2 = random, ω3 = random,
AC-random, φ1min = 1.8684, φ1max = 1.9233, φ2min = 0.2802, φ2max = 1.5143, PM1 = 0.4837,
sc1 = 29, fc1 = 45, PM2 = 0.8139, sc2 = 30 and fc2 = 43

1: Initialize(Pop-constant, Top-Von Neumann, MoI-best-of-neighborhood)
2: t← 0
3: repeat
4: if (#successes > sc1) then
5: PM1 ← (PM1 · 2)
6: end if
7: if (#failures > fc1) then
8: PM1 ← (PM1 · 0.5)
9: end if

10: if (#successes > sc2) then
11: PM2 ← (PM2 · 2)
12: end if
13: if (#failures > fc2) then
14: PM2 ← (PM2 · 0.5)
15: end if
16: for i← 1 to size(swarm) do
17: if (⃗p i

t = g⃗t) then
18: ωi

1t ← ωi
1t−1η

(ω1max−ω1min)
tmax

)
19: else
20: ωi

1t ← ωi
1t−1 −

(ω1max−ω1min)
tmax

)
21: end if
22: ω2 ← U [0.5, 1], ω3 ← U [0.5, 1]
23: φ1t ← U [φ1min, φ1max]
24: φ2t ← U [φ2min, φ2max]

25: v⃗ i
t+1 ← ωi

1t v⃗ i
t + ω2

(
φ1tUi

1t

(
Lγt

(
( p⃗ i

t ), PM1
)
− x⃗ i

t

)
+ φ2tUi

2t

(
Lγt

(
(⃗l i

t ), PM1
)
−

x⃗ i
t

))
+ ω3

(
U [−PM2/2, PM2/2]

)
26: x⃗ i

t+1 ← x⃗ i
t + v⃗ i

t+1
27: end for
28: for i← 1 to size(swarm) do
29: compute f (x⃗ i

t )

30: update p⃗ i
t

31: end for
32: g⃗t ← best(swarm)
33: if ( f (g⃗t) < f (g⃗t−1)) then
34: #successes← #successes + 1
35: #failures← 0
36: else
37: #failures← #failures + 1
38: #successes← 0
39: end if
40: t← t + 1
41: until t = tmax
42: return g⃗t
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Algorithm 18 PSO-Xsoco

Require: Pop-constant, Top-ring, MoI-ranked fully informed, DNPP-rectangular, Pertinfo-
Gaussian, PM-success rate, Mtx-random diagonal, velocity clamping. pop = 19, ω1 =
adaptive based onvelocity, ω1min = 0.6564, ω1max = 0.8201, λ = 0.2959, ω2 = ω1, ω3 = 0,
AC-constant, φ1 = 0.7542, φ2 = 1.9235, PM = 0.8907, sc = 22 and fc = 49

1: Initialize(Pop-constant, Top-ring, MoI-ranked fully informed)
2: t← 0
3: repeat
4: if (#successes > sc) then
5: PM← (PM · 2)
6: end if
7: if (#failures > fc) then
8: PM← (PM · 0.5)
9: end if

10: videal
t ← ub−lb

2

(
1+cos

(
π t

0.95·tmax

)
2

)
11: for i← 1 to size(swarm) do
12: vt ← 1

size(swarm)·d ∑
size(swarm)
i=1 ∑d

j=1 |v
i,j
t |

13: if (vt ≥ videal
t+1 ) then

14: ωi
1t ← max(ωi

1t−1 − λ, ω1min)
15: else
16: ωi

1t ← min(ωi
1t−1 + λ, ω1max)

17: end if
18: ω2 ← ωi

1t, v⃗ i
t+1 ← (ωi

1t v⃗ i
t ), c2 ← φ2 Ri ← rank(Ii),

19: for k← 1 to |Ri| do
20: if k = 1 then

21: v⃗ i
t+1 ← v⃗ i

t+1 + ω2

(
φ1Ui

2t

(
Lγt

(
( p⃗ i

t ∈ Ri,k), PM
)
− x⃗ i

t

))
22: else
23: c2 ← c2

2

24: v⃗ i
t+1 ← v⃗ i

t+1 + ω2

(
c2Ui

1t

(
Lγt

(
( p⃗ i

t ∈ Ri,k), PM
)
− x⃗ i

t

))
25: end if
26: end for
27: apply velocity clamping
28: x⃗ i

t+1 ← x⃗ i
t + v⃗ i

t+1
29: end for
30: for i← 1 to size(swarm) do
31: compute f (x⃗ i

t )

32: update p⃗ i
t

33: end for
34: g⃗t ← best(swarm)
35: if ( f (g⃗t) < f (g⃗t−1)) then
36: #successes← #successes + 1, #failures← 0
37: else
38: #failures← #failures + 1, #successes← 0
39: end if
40: t← t + 1
41: until t = tmax
42: return g⃗t
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Algorithm 19 Enhanced rotation invariant PSO, ERiPSOdft

Require: Pop-constant, Top-fully-connected, MoI-best-of-neighborhood, DNPP-rectangular, Mtx-
Euclidean rotation, α-adaptive, Pertinfo = Pertrand = none, pop = 20, ω1 = 0.7213475, ω2 = 1.0,
ω3 = 0, AC-random, φ1min = 0, φ1max = 2.05, φ2min = 0, φ2max = 2.05, Mtx-Euclidean
rotationall with α-adaptive and ζ = 30 and ρ = 0.01.

1: Initialize(Pop-constant, Top-fully-connected, MoI-best-of-neighborhood)
2: t← 0
3: repeat
4: for i← 1 to size(swarm) do
5: irt ← 0
6: for i← 1 to size(swarm) do
7: if (p⃗ i

t < p⃗ i
t−1) then

8: irt ← irt + 1
9: end if

10: end for
11: φ1t ← U [φ1min, φ1max]
12: φ2t ← U [φ2min, φ2max]

13: σ = ζ×irt√
d

+ ρ

14: v⃗ i
t+1 ← 0

15: for k← 1 to |Ii| do
16: u⃗i,k ←

(
p⃗ k

t − x⃗ i
t
)

17: for m← 1 to (d− 1) do
18: for n← m + 1 to d do
19: compute [rmn]k with angle σ
20: u⃗i,k ← [rmn]k u⃗i,k

21: end for
22: end for
23: if (p⃗ k

t = l⃗ i
t ) then

24: v⃗ i
t+1 ← v⃗ i

t+1 + φ1tu⃗i
k

25: else
26: v⃗ i

t+1 ← v⃗ i
t+1 + φ2tu⃗i

k
27: end if
28: end for
29: v⃗ i

t+1 ← v⃗ i
t+1 + ωi

1t v⃗ i
t

30: apply velocity clamping
31: x⃗ i

t+1 ← x⃗ i
t + v⃗ i

t+1
32: end for
33: for i← 1 to size(swarm) do
34: compute f (x⃗ i

t )

35: update p⃗ i
t

36: end for
37: g⃗t ← best(swarm)
38: t← t + 1
39: until t = tmax
40: return g⃗t
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Algorithm 20 Fully informed PSO, FiPSOtnd

Require: Pop-constant, Top-ring, MoI-fully informed, DNPP-rectangular, Mtx-random diagonal,
Pertinfo = Pertrand = none, pop = 20, ω1 = ω2 = 0.729843788, ω3 = 0, φ1 = 2.1864 and
φ2 = 2.3156

1: Initialize(Pop-constant, Top-ring, MoI-fully informed)
2: t← 0
3: φ← φ1 + φ2
4: repeat
5: for i← 1 to size(swarm) do
6: φk ←

φ

|Ii
t |

7: v⃗ i
t+1 = ω1tv⃗ i

t + ω2t ∑n
k∈Ii

t

(
φkUi,k

t ( p⃗ i
t − x⃗ i

t )
)

8: x⃗ i
t+1 ← x⃗ i

t + v⃗ i
t+1

9: end for
10: for i← 1 to size(swarm) do
11: compute f (x⃗ i

t )

12: update p⃗ i
t

13: end for
14: g⃗t ← best(swarm)
15: t← t + 1
16: until t = tmax
17: return g⃗t
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Algorithm 21 Frankenstein’s PSO, FraPSOdft

Require: Pop-constant, Top-time-varying, MoI-fully informed, DNPP-rectangular, Mtx-random di-
agonal, Pertinfo = Pertrand = none, κ = 60, pop = 60, ω1 = linear decreasing, ω1min = 0.4,
ω1max = 0.9, tschd = 10, ω2 = 0.7298, ω3 = 0, φ1 = 2.0 and φ2 = 2.0

1: Initialize(Pop-constant, Top-time-varying, MoI-fully informed)
2: if tschd ̸= 0 then
3: tschd ← tschd · pop
4: else
5: tschd ← tmax
6: end if
7: t← 0
8: φ← φ1 + φ2
9: repeat

10: if (t ≤ tschd) then
11: ω1t ← ω2

( tschd−t
tschd

(ω1max −ω1min) + ω1min
)

12: else
13: ω1t ← ω2 ·ω1min
14: end if
15: for i← 1 to size(swarm) do
16: φk ←

φ

|Ii
t |

17: v⃗ i
t+1 ← ω1tv⃗ i

t + ω2 ∑n
k∈Ii

t

(
φkUi,k

t ( p⃗ i
t − x⃗ i

t )
)

18: x⃗ i
t+1 ← x⃗ i

t + v⃗ i
t+1

19: end for
20: for i← 1 to size(swarm) do
21: compute f (x⃗ i

t )

22: update p⃗ i
t

23: end for
24: g⃗t ← best(swarm)
25: swarm← UpdateTopology(κ, Top-time-varying, MoI-fully informed)
26: t← t + 1
27: until t = tmax
28: return g⃗t
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Algorithm 22 Gaussian “bare-bones” PSO, GauPSOtnd

Require: Pop-constant, Top-time-varying, MoI-random informant, DNPP-Gaussian, Pertinfo =
Pertrand = none, κ = 150 pop = 30, ω1 = 0, ω2 = 1.0 and ω3 = 0

1: Initialize(Pop-constant, Top-time-varying, MoI-random informant)
2: t← 0
3: repeat
4: for i← 1 to size(swarm) do
5: select random k from Ii

6: v⃗ i
t+1 ← ω1tv⃗ i

t +N (
p⃗ i

t+ p⃗ k
t

2 , | p⃗ i
t − p⃗ k

t |)− x⃗ i
t

7: x⃗ i
t+1 ← x⃗ i

t + v⃗ i
t+1

8: end for
9: for i← 1 to size(swarm) do

10: compute f (x⃗ i
t )

11: update p⃗ i
t

12: end for
13: g⃗t ← best(swarm)
14: swarm← UpdateTopology(κ, Top-time-varying, MoI-fully informed)
15: t← t + 1
16: until t = tmax
17: return g⃗t

Algorithm 23 Hierarchical PSO, HiePSOtnd

Require: Pop-constant, Top-hierarchical, MoI-best-of-neighborhood, DNPP-rectangular, Mtx-random
diagonal, Pertinfo = Pertrand = none, bd = 2, pop = 114, ω1 = linear increasing, ω1min =
0.3284, ω1max = 0.8791, ω2 = 1.0, ω3 = 0, φ1 = 2.1105 and φ2 = 1.0349

1: Initialize(Pop-constant, Top-hierarchical, MoI-best-of-neighborhood)
2: t← 0
3: repeat
4: ω1t ← ω1min − (ω1min −ω1max)

t
tmax

5: for i← 1 to size(swarm) do
6: v⃗ i

t+1 ← ω1t v⃗ i
t + φ1Ui

1t
(

p⃗ i
t − x⃗ i

t
)
+ φ2Ui

2t
(⃗
l i
t − x⃗ i

t
)

7: x⃗ i
t+1 ← x⃗ i

t + v⃗ i
t+1

8: end for
9: for i← 1 to size(swarm) do

10: compute f (x⃗ i
t )

11: update p⃗ i
t

12: end for
13: g⃗t ← best(swarm)
14: swarm← UpdateTopology(bd, Top-hierarchical, MoI-best-of-neighborhood)
15: t← t + 1
16: until t = tmax
17: return g⃗t
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Algorithm 24 Incremental PSO, IncPSOtnd

Require: Pop-incremental, Init-horizontalTop-time-varying, MoI-best-of-neighborhood, DNPP-
rectangular, Mtx-random diagonal, Pertinfo = Pertrand = none, κ = 2360, popini = 5,
pop f in = 295, ξ = 10, ω1 = ω2 = 0.729843788, ω3 = 0, φ1 = 1.9226 and φ2 = 1.0582

1: Initialize(Pop-incremental, Top-time-varying, MoI-best-of-neighborhood)
2: t← 0
3: repeat
4: for i← 1 to size(swarm) do
5: v⃗ i

t+1 ← ω1t v⃗ i
t + ω2

(
φ1Ui

1t
(

p⃗ i
t − x⃗ i

t
)
+ φ2Ui

2t
(⃗
l i
t − x⃗ i

t
))

6: x⃗ i
t+1 ← x⃗ i

t + v⃗ i
t+1

7: end for
8: for i← 1 to size(swarm) do
9: compute f (x⃗ i

t )

10: update p⃗ i
t

11: end for
12: g⃗t ← best(swarm)
13: swarm← UpdatePopulation(size(swarm), ξ, Pop-incremental)
14: swarm← UpdateTopology(κ, Top-hierarchical, MoI-best-of-neighborhood)
15: t← t + 1
16: until t = tmax
17: return g⃗t
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Algorithm 25 Locally convergent rotation invariant PSO, LcRPSOdft

Require: Pop-constant, Top-fully-connected, MoI-best-of-neighborhood, DNPP-rectangular, Mtx-
random linear, Pertinfo-Gaussian, PM-Euclidean distance, Pertrand = none, pop = d, ω1 = 0.7298,
AC-random, φ1min = 0, φ1max = 1.4962, φ2min = 0, φ2max = 1.4962 and ϵ = 0.46461/d0.79.

1: Initialize(Pop-constant, Top-fully-connected, MoI-best-of-neighborhood)
2: t← 0
3: repeat
4: for i← 1 to size(swarm) do
5: PMi,1

t−1 ← 1.0
6: PMi,2

t−1 ← 1.0
7: end for
8: for i← 1 to size(swarm) do
9: if (⃗x i

t = p⃗ i
t ) then

10: PMi,1
t ← ϵ · PMi,1

t−1
11: else
12: PMi,1

t ← ϵ ·
√

∑d
j=1(x⃗ i,j

t − p⃗ i,j
t )2

13: end if
14: if (⃗x i

t = l⃗ i
t ) then

15: PMi,2
t ← ϵ · PMi,2

t−1
16: else
17: PMi,2

t ← ϵ ·
√

∑d
j=1(x⃗ i,j

t − l⃗ i,j
t )2

18: end if
19: φ1t ← U [φ1min, φ1max]
20: φ2t ← U [φ2min, φ2max]

21: v⃗ i
t+1 ← ω1t v⃗ i

t + φ1tri
1t

(
N

(
p⃗ i

t , PMi,1
t
)
− x⃗ i

t

)
+ φ2tri

2t

(
N

(⃗
l i
t , PMi,2

t
)
− x⃗ i

t

)
22: x⃗ i

t+1 ← x⃗ i
t + v⃗ i

t+1
23: end for
24: for i← 1 to size(swarm) do
25: compute f (x⃗ i

t )

26: update p⃗ i
t

27: end for
28: g⃗t ← best(swarm)
29: t← t + 1
30: until t = tmax
31: return g⃗t
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Algorithm 26 Restart PSO, ResPSOtnd

Require: Pop-constant, Top-ring, MoI-fully informed, DNPP-rectangular, Mtx-random diagonal,
Pertinfo = Pertrand = none, pop = 10, ω1 = linear decreasing, ω1min = 0.2062, ω1max = 0.6446,
ω2 = 1.0, φ1 = 1.5014, φ2 = 2.2955

1: Initialize(Pop-constant, Top-ring, MoI-fully informed)
2: t← 0
3: repeat
4: for i← 1 to size(swarm) do
5: ω1t ← ω1min − (ω1min −ω1max)

t
tmax

6: v⃗ i
t+1 ← ω1t v⃗ i

t + φ1Ui
1t
(

p⃗ i
t − x⃗ i

t
)
+ φ2Ui

2t
(⃗
l i
t − x⃗ i

t
)

7: apply velocity clamping
8: x⃗ i

t+1 ← x⃗ i
t + v⃗ i

t+1
9: end for

10: for i← 1 to size(swarm) do
11: compute f (x⃗ i

t )

12: update p⃗ i
t

13: end for
14: apply particles reinitialization
15: g⃗t ← best(swarm)
16: t← t + 1
17: until t = tmax
18: return g⃗t

Algorithm 27 Standard PSO 2011, SPSO11tnd

Require: Pop-constant, Top-time-varying, MoI-best-of-neighborhood, DNPP-spherical, Mtx-random
diagonal, Pertinfo = Pertrand = none, κ = 1085, pop = 155, ω1 = 0.6482, ω2 = 1.0, φ1 = 2.2776,
φ2 = 2.1222

1: Initialize(Pop-constant, Top-time-varying, MoI-best-of-neighborhood)
2: t← 0
3: repeat
4: for i← 1 to size(swarm) do
5: P⃗ i

t ← x⃗ i
t + φ1tUk

t
(

p⃗ i
t − x⃗ i

t
)

6: L⃗ i
t ← x⃗ i

t + φ2tUk
t
(⃗
l i
t − x⃗ i

t
)

7: c⃗ i
t ←

x⃗ i
t +L⃗ i

t+P⃗ i
t

3
8: v⃗ i

t+1 ← ω1t v⃗ i
t +Hi

(⃗
c i

t , |⃗c i
t − x⃗ i

t |
)
− x⃗ i

t
9: x⃗ i

t+1 ← x⃗ i
t + v⃗ i

t+1
10: end for
11: for i← 1 to size(swarm) do
12: compute f (x⃗ i

t )

13: update p⃗ i
t

14: end for
15: g⃗t ← best(swarm)
16: swarm← UpdateTopology(κ, Top-time-varying, MoI-best-of-neighborhood)
17: t← t + 1
18: until t = tmax
19: return g⃗t
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B.4 Distribution of the Results Obtained by the 16
Compared PSO Algorithms.

In this section, we report the results of the 16 PSO algorithms using box-plots.
Each box-plot shows the distribution of the results obtained by executing each
algorithm 50 times on each function. We present a total 90 box-plots, the first 50
correspond to the results obtained on the version of the functions with d = 50,
and the remaining 40 to the results obtained on the version with d = 100.

50 dimensions

( f1) Shifted Sphere - SOCO’10 ( f2) Shifted Rotated High Conditioned
Elliptic-CEC’14

( f3) Shifted Rotated Bent Cigar - CEC’14 ( f4) Shifted Rotated Discus - CEC’14

( f5) Shifted Schwefel 22.1 - SOCO’10 ( f6) Rotated Schwefel 1.2 - SOCO’10
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( f7) Shifted Scfewels12 noise in fitness -
CEC’05

( f8) Shifted Schwefel 2.22 - SOCO’10

( f9) Shifted Extended - SOCO’10 ( f10) Shifted Bohachevsky - SOCO’10

( f11) Shifted Schaffer - CEC’05 ( f12) Shchwefel 2.6 Global Optimum on
Bounds - CEC’05

( f13) Shifted Ackley - SOCO’10 ( f14) Shifted Rotated Ackley - CEC’14
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( f15) Shifted Rosenbrock - SOCO’10 ( f16) Shifted Rotated Rosenbrock - CEC’14

( f17) Shifted Griewank - SOCO’10 ( f18) Shifted Rotated Griewank - CEC’14

( f19) Shifted Rastrigin - SOCO’10 ( f20) Shifted Rotated Rastrigin - CEC’14

( f21) Shifted Schwefel - SOCO’10 ( f22) Shifted Rotated Schwefel - CEC’14



B.4. BOXPLOTS OF THE 16 COMPARED PSO ALGORITHMS 227

( f23) Shifted Rotated WeierStrass - CEC’05 ( f24) Shifted Rotated Katsuura - CEC’14

( f25) Shifted Rotated HappyCat - CEC’14 ( f26) Shifted Rotated HGBat - CEC’14

( f27) Hybrid Function 1 (N = 2) - SOCO’10 ( f28) Hybrid Function 2 (N = 2) - SOCO’10

( f29) Hybrid Function 3 (N = 2) - SOCO’10 ( f30) Hybrid Function 4 (N = 2) - SOCO’10



228 CHAPTER B. SUPPLEMENTARY MATERIAL FOR PSO-X

( f31) Hybrid Function 7 (N = 2) - SOCO’10 ( f32) Hybrid Function 8 (N = 2) - SOCO’10

( f33) Hybrid Function 9 (N = 2) - SOCO’10 ( f34) Hybrid Function 10 (N = 2) - SOCO’10

( f35) Hybrid Function 1 (N = 3) - CEC’14 ( f36) Hybrid Function 2 (N = 3) - CEC’14

( f37) Hybrid Function 3 (N = 4) - CEC’14 ( f38) Hybrid Function 4 (N = 4) - CEC’14
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( f39) Hybrid Function 5 (N = 5) - CEC’14 ( f40) Hybrid Function 6 (N = 5) - CEC’14

( f41) Hybrid Composition Function - CEC’05 ( f42) Rotated Hybrid Composition Function -
CEC’05

( f43) Rotated H. Composition F. with Noise
in Fitness - CEC’05

( f44) Rotated Hybrid Composition F. - CEC’05

( f45) Rotated H. Composition F. with a Nar-
row Basin for the Global Opt. - CEC’05

( f46) Rotated H. Comp. F. with the Global
Opt. On the Bounds - CEC’05
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( f47) Rotated Hybrid Composition Function -
CEC’05

( f48) Rotated H. Comp. F. with High Condi-
tion Number Matrix - CEC’05

( f49) Non-Continuous Rotated Hybrid Com-
position Function - CEC’05

( f50) Rotated Hybrid Composition Function -
CEC’05
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100 dimensions

( f1) Shifted Sphere - SOCO’10 ( f2) Shifted Rotated High Conditioned
Elliptic-CEC’14

( f3) Shifted Rotated Bent Cigar - CEC’14 ( f4) Shifted Rotated Discus - CEC’14

( f5) Shifted Schwefel 22.1 - SOCO’10 ( f6) Rotated Schwefel 1.2 - SOCO’10

( f7) Shifted Scfewels12 noise in fitness -
CEC’05

( f8) Shifted Schwefel 2.22 - SOCO’10
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( f9) Shifted Extended - SOCO’10 ( f10) Shifted Bohachevsky - SOCO’10

( f11) Shifted Schaffer - CEC’05 ( f12) Shchwefel 2.6 Global Optimum on
Bounds - CEC’05

( f13) Shifted Ackley - SOCO’10 ( f14) Shifted Rotated Ackley - CEC’14

( f15) Shifted Rosenbrock - SOCO’10 ( f16) Shifted Rotated Rosenbrock - CEC’14
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( f17) Shifted Griewank - SOCO’10 ( f18) Shifted Rotated Griewank - CEC’14

( f19) Shifted Rastrigin - SOCO’10 ( f20) Shifted Rotated Rastrigin - CEC’14

( f21) Shifted Schwefel - SOCO’10 ( f22) Shifted Rotated Schwefel - CEC’14

( f23) Shifted Rotated WeierStrass - CEC’05 ( f24) Shifted Rotated Katsuura - CEC’14



234 CHAPTER B. SUPPLEMENTARY MATERIAL FOR PSO-X

( f25) Shifted Rotated HappyCat - CEC’14 ( f26) Shifted Rotated HGBat - CEC’14

( f27) Hybrid Function 1 (N = 2) - SOCO’10 ( f28) Hybrid Function 2 (N = 2) - SOCO’10

( f29) Hybrid Function 3 (N = 2) - SOCO’10 ( f30) Hybrid Function 4 (N = 2) - SOCO’10

( f31) Hybrid Function 7 (N = 2) - SOCO’10 ( f32) Hybrid Function 8 (N = 2) - SOCO’10
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( f33) Hybrid Function 9 (N = 2) - SOCO’10 ( f34) Hybrid Function 10 (N = 2) - SOCO’10

( f35) Hybrid Function 1 (N = 3) - CEC’14 ( f36) Hybrid Function 2 (N = 3) - CEC’14

( f37) Hybrid Function 3 (N = 4) - CEC’14 ( f38) Hybrid Function 4 (N = 4) - CEC’14

( f39) Hybrid Function 5 (N = 5) - CEC’14 ( f40) Hybrid Function 6 (N = 5) - CEC’14
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B.5 Convergence Plots of the 16 Compared PSO Al-
gorithms

In this section, we report the convergence plots of the 16 PSO algorithms. Each
of this plots shows the relation between the best solution quality and the number
of function evaluations used by the algorithms. In all cases, the algorithm was
stopped when it reached 5 000·d function evaluations. We present a total of 90
plots: the first 50 correspond to the functions with d = 50 and the remaining 40
to those with d = 100.

50 dimensions

( f1) Shifted Sphere - SOCO’10 ( f2) Shifted Rotated High Conditioned
Elliptic-CEC’14

( f3) Shifted Rotated Bent Cigar - CEC’14 ( f4) Shifted Rotated Discus - CEC’14

( f5) Shifted Schwefel 22.1 - SOCO’10 ( f6) Rotated Schwefel 1.2 - SOCO’10



B.5. CONVERGENCE PLOTS OF THE 16 COMPARED PSO ALGORITHMS 237

( f7) Shifted Scfewels12 noise in fitness -
CEC’05

( f8) Shifted Schwefel 2.22 - SOCO’10

( f9) Shifted Extended - SOCO’10 ( f10) Shifted Bohachevsky - SOCO’10

( f11) Shifted Schaffer - CEC’05 ( f12) Shchwefel 2.6 Global Optimum on
Bounds - CEC’05

( f13) Shifted Ackley - SOCO’10 ( f14) Shifted Rotated Ackley - CEC’14
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( f15) Shifted Rosenbrock - SOCO’10 ( f16) Shifted Rotated Rosenbrock - CEC’14

( f17) Shifted Griewank - SOCO’10 ( f18) Shifted Rotated Griewank - CEC’14

( f19) Shifted Rastrigin - SOCO’10 ( f20) Shifted Rotated Rastrigin - CEC’14

( f21) Shifted Schwefel - SOCO’10 ( f22) Shifted Rotated Schwefel - CEC’14
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( f23) Shifted Rotated WeierStrass - CEC’05 ( f24) Shifted Rotated Katsuura - CEC’14

( f25) Shifted Rotated HappyCat - CEC’14 ( f26) Shifted Rotated HGBat - CEC’14

( f27) Hybrid Function 1 (N = 2) - SOCO’10 ( f28) Hybrid Function 2 (N = 2) - SOCO’10

( f29) Hybrid Function 3 (N = 2) - SOCO’10 ( f30) Hybrid Function 4 (N = 2) - SOCO’10
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( f31) Hybrid Function 7 (N = 2) - SOCO’10 ( f32) Hybrid Function 8 (N = 2) - SOCO’10

( f33) Hybrid Function 9 (N = 2) - SOCO’10 ( f34) Hybrid Function 10 (N = 2) - SOCO’10

( f35) Hybrid Function 1 (N = 3) - CEC’14 ( f36) Hybrid Function 2 (N = 3) - CEC’14

( f37) Hybrid Function 3 (N = 4) - CEC’14 ( f38) Hybrid Function 4 (N = 4) - CEC’14
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( f39) Hybrid Function 5 (N = 5) - CEC’14 ( f40) Hybrid Function 6 (N = 5) - CEC’14

( f41) Hybrid Composition Function - CEC’05 ( f42) Rotated Hybrid Composition Function -
CEC’05

( f43) Rotated H. Composition F. with Noise
in Fitness - CEC’05

( f44) Rotated Hybrid Composition F. - CEC’05

( f45) Rotated H. Composition F. with a Nar-
row Basin for the Global Opt. - CEC’05

( f46) Rotated H. Comp. F. with the Global
Opt. On the Bounds - CEC’05
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( f47) Rotated Hybrid Composition Function -
CEC’05

( f48) Rotated H. Comp. F. with High Condi-
tion Number Matrix - CEC’05

( f49) Non-Continuous Rotated Hybrid Com-
position Function - CEC’05

( f50) Rotated Hybrid Composition Function -
CEC’05
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100 dimensions

( f1) Shifted Sphere - SOCO’10 ( f2) Shifted Rotated High Conditioned
Elliptic-CEC’14

( f3) Shifted Rotated Bent Cigar - CEC’14 ( f4) Shifted Rotated Discus - CEC’14

( f5) Shifted Schwefel 22.1 - SOCO’10 ( f6) Rotated Schwefel 1.2 - SOCO’10

( f7) Shifted Scfewels12 noise in fitness -
CEC’05

( f8) Shifted Schwefel 2.22 - SOCO’10



244 CHAPTER B. SUPPLEMENTARY MATERIAL FOR PSO-X

( f9) Shifted Extended - SOCO’10 ( f10) Shifted Bohachevsky - SOCO’10

( f11) Shifted Schaffer - CEC’05 ( f12) Shchwefel 2.6 Global Optimum on
Bounds - CEC’05

( f13) Shifted Ackley - SOCO’10 ( f14) Shifted Rotated Ackley - CEC’14

( f15) Shifted Rosenbrock - SOCO’10 ( f16) Shifted Rotated Rosenbrock - CEC’14
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( f17) Shifted Griewank - SOCO’10 ( f18) Shifted Rotated Griewank - CEC’14

( f19) Shifted Rastrigin - SOCO’10 ( f20) Shifted Rotated Rastrigin - CEC’14

( f21) Shifted Schwefel - SOCO’10 ( f22) Shifted Rotated Schwefel - CEC’14

( f23) Shifted Rotated WeierStrass - CEC’05 ( f24) Shifted Rotated Katsuura - CEC’14
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( f25) Shifted Rotated HappyCat - CEC’14 ( f26) Shifted Rotated HGBat - CEC’14

( f27) Hybrid Function 1 (N = 2) - SOCO’10 ( f28) Hybrid Function 2 (N = 2) - SOCO’10

( f29) Hybrid Function 3 (N = 2) - SOCO’10 ( f30) Hybrid Function 4 (N = 2) - SOCO’10

( f31) Hybrid Function 7 (N = 2) - SOCO’10 ( f32) Hybrid Function 8 (N = 2) - SOCO’10
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( f33) Hybrid Function 9 (N = 2) - SOCO’10 ( f34) Hybrid Function 10 (N = 2) - SOCO’10

( f35) Hybrid Function 1 (N = 3) - CEC’14 ( f36) Hybrid Function 2 (N = 3) - CEC’14

( f37) Hybrid Function 3 (N = 4) - CEC’14 ( f38) Hybrid Function 4 (N = 4) - CEC’14

( f39) Hybrid Function 5 (N = 5) - CEC’14 ( f40) Hybrid Function 6 (N = 5) - CEC’14
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