Swarm Intelligence
Travelling Salesman Problem and Ant System

Christian Camacho Villalón
christian.camacho.villalon@ulb.ac.be
Federico Pagnozzi
federico.pagnozzi@ulb.ac.be

IRIDIA – Université Libre de Bruxelles (ULB)
Bruxelles, Belgium
Outline

1. Concepts review
2. Travelling salesman problem
 • Problem definition
 • Examples
3. Ant System Algorithm
 • Description
 • Application to TSP
4. Class exercise
5. Practical exercise
Concept review

• Optimization problems
• Objective function
• Search space
 – Local / global optima
• Searching
 – Exact vs. approximation methods
 – Constructive vs. perturbative
• Exploration and exploitation
Travelling Salesman Problem
Informal definition

• Given a set of cities, a salesman needs to find a shortest tour that takes him through all cities just once and then back home.
Main reasons for choosing the TSP:

- It is a classical **combinatorial optimization problem**.
- It is **NP hard**.
- It is the problem to which the Ant System algorithm was first applied.
- Popular test bed for new algorithms.
The TSP can be modelled as a Graph $G(N,A)$ where:

- N is the set of nodes representing the cities
- A is the set of edges
- Each edge is assigned a cost value (length) d
 - d_{ij} is the edge cost, or the length from city i to city j
Travelling Salesman Problem
Formal definition

Find a minimum length $f(\pi)$ Hamiltonian tour in a graph $G(N,A)$, where n is number of nodes and π is a permutation of the nodes indices.

$$f(\pi) = \sum_{i=1}^{n-1} d_{\pi(i)\pi(i+1)} + d_{\pi(n)\pi(1)}$$
The nearest neighbourhood heuristic is a simple greedy-type construction heuristic

- It starts from a randomly chosen city
- Greedy rule: select the closest city that is not yet visited

- Initial city: C cost: 8
- Closest city: A cost: 7
- Closest city: B cost: 13
- Closest city: D cost: 7
- Return city cost: 9

Total: 44
Travelling Tournament Problem
First attempt to solve

- The nearest neighbour algorithm is easy to implement and executes quickly.
- Usually the last a few edges added are extremely large, due to the “greedy” nature.
- In some cases it even constructs the unique worst possible tour.
- How to generate a tour more intelligently?
 - Learn from the previous constructions!
Ant System

- **Ant System** is a basic ant-based algorithm.
- Ants visit the cities sequentially till they obtain a tour.
- Transition from city i to j depends on:
 - *Heuristic information* to visit city j when in city i, associated to a static value based on the edge-cost (distance) η_{ij}
 - *Pheromone* that represents the learned desirability to visit city i when in city j associated to a dynamic value τ_{ij}
Ant System
Stochastic Solution Construction

- Use **memory** to remember partial tours.
- Being at a city i choose next city j **probabilistically** among feasible neighbouring cities.
- Probabilistic choice depends on:
 - pheromone trails τ_{ij}
 - heuristic information $\eta_{ij} = 1/d_{ij}$
- Random proportional rule at node i is:

$$p_{ij}^k(t) = \frac{[\tau_{ij}(t)]^\alpha [\eta_{ij}]^\beta}{\sum_{l \in N_i^k} [\tau_{il}(t)]^\alpha [\eta_{il}]^\beta}, \text{ if } j \in N_i^k$$
Ant System

Pheromone Update

- Use **phermone evaporation** to avoid unlimited increase of pheromone trails and allow **forgetting** of earlier choices
 - Pheromone evaporation rate $0 < \rho \leq 1$

- Use **pheromone deposit** to positive feedback, reinforcing components of good solutions
 - Better solutions give more feedback
Ant System

Pheromone Update

• Example of pheromone update

$$\tau_{ij}(t) = (1-\rho) \cdot \tau(t-1) + \sum_{k=1}^{m} \Delta \tau_{ij}^k$$

$$\Delta \tau_{ij}^k = \frac{1}{L_k}, \text{ if arc}(i,j) \text{ is used by ant } k \text{ on its tour}$$

- L_k: Tour length of ant k
- m: number of ants
Ant System
Simple pseudo code

1. While !termination()
2. For k = 1 To m Do #m number of ants
3. \(\text{ants}[k][1] \leftarrow \text{SelectRandomCity}() \)
4. For i = 2 To n Do #n number of cities
5. \(\text{ants}[k][i] \leftarrow \text{ASDecisionRule}(\text{ants}, i) \)
6. EndFor
7. \(\text{ants}[k][n+1] \leftarrow \text{ants}[k][1] \) #to complete the tour
8. EndFor
9. UpdatePheromone(ants)
10. EndWhile
Ant System

Simple example

- For our example with \#ants=3, \(\alpha=2 \), \(\beta=1 \), \(\rho=0.5 \) and \(\tau_0=1 \)

- Heuristic Information

- Pheromone trails
Ant System
Simple example

- For ant #1 we start from city D (random), selection probabilities
 \[p_{ij}^k(t) = \frac{[\tau_{ij}(t)]^\alpha \cdot [\eta_{ij}]^\beta}{\sum_{l \in N_i^k} [\tau_{il}(t)]^\alpha \cdot [\eta_{il}]^\beta} \]

- Select a city \(\rightarrow \) rand 0.80
 - City E selected

- Select a city \(\rightarrow \) rand 0.27
 - City B selected

- Select a city \(\rightarrow \) rand 0.88
 - City C selected

<table>
<thead>
<tr>
<th>(p_{ij})</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>0.264</td>
<td>0.059</td>
<td>0.031</td>
<td>0.000</td>
<td>0.646</td>
</tr>
</tbody>
</table>

\[[0, 0.264, 0.323, 0.354, 1] \]

<table>
<thead>
<tr>
<th>(p_{ij})</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>0.267</td>
<td>0.227</td>
<td>0.506</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

\[[0, 0.267, 0.494, 1] \]

<table>
<thead>
<tr>
<th>(p_{ij})</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0.843</td>
<td>0.000</td>
<td>0.157</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

\[[0, 0.843, 1] \]
Ant System
Simple example

• First iteration we can have:
 – Ant #1: D-E-B-C-A-D
 – Ant #2: A-E-D-C-B-A
 – Ant #3: D-E-C-B-A-D

• Update the pheromone using this tours

$$
\tau_{ij}(t) = [1 - \rho] \cdot \tau(t - 1) + \sum_{k=1}^{m} \Delta \tau_{ij}^k
$$

• And then iterate

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-</td>
<td>0.39</td>
<td>0.38</td>
<td>0.42</td>
<td>0.29</td>
</tr>
<tr>
<td>B</td>
<td>0.39</td>
<td>-</td>
<td>0.46</td>
<td>0.28</td>
<td>0.35</td>
</tr>
<tr>
<td>C</td>
<td>0.38</td>
<td>0.46</td>
<td>-</td>
<td>0.29</td>
<td>0.35</td>
</tr>
<tr>
<td>D</td>
<td>0.42</td>
<td>0.28</td>
<td>0.29</td>
<td>-</td>
<td>0.49</td>
</tr>
<tr>
<td>E</td>
<td>0.29</td>
<td>0.35</td>
<td>0.35</td>
<td>0.49</td>
<td>-</td>
</tr>
</tbody>
</table>
Ant System
Exercise #1

• Implement Ant System according to the provided template.
 - C++

• The following slides give a practical view of the Ant System algorithm procedures.
Ant System Algorithm

Solution Construction

Procedure ConstructSolutions ()
 For k = 1 To m Do
 For i = 1 To n Do
 ant[k].visited[i] ← false
 EndFor
 EndFor
 step ← 1
 For k = 1 To m Do
 r ← random{1, . . . , n}
 ant[k].tour [step] ← r
 ant[k].visited [r] ← true
 EndFor
 While (step < n) Do
 step ← step + 1
 For k = 1 To m Do
 ASDecisionRule(k, step)
 EndFor
 EndWhile
 For k = 1 To m Do
 ant[k].tour [n+1] ← ant[k].tour[1]
 ant[k].tour length ← ComputeTourLength(k)
 EndFor
EndProcedure
Ant System Algorithm

Decision Rule

1. **Procedure** ASDecisionRule(k, i)

 - *#k* ant identifier
 - *#i* counter for construction step
 - \(c \leftarrow \text{ant}[k].\text{tour}[i-1] \)
 - \(\text{sum_prob} = 0.0 \)

 For \(j = 1 \) **To** \(n \) **Do**

 - **If** \(\text{ant}[k].\text{visited}[j] \) **Then**
 - \(\text{selection_prob}[j] \leftarrow 0.0 \)

 - **Else**
 - \(\text{selection_prob}[j] \leftarrow \text{choice_info}[c][j] \)
 - \(\text{sum_prob} \leftarrow \text{sum_prob} + \text{selection_prob}[j] \)

 EndIf

 EndFor

 - \(r \leftarrow \text{random}[0, \text{sum_prob}] \)
 - \(j \leftarrow 1 \)

 While \((p < r) \) **Do**

 - \(j \leftarrow j + 1 \)
 - \(p \leftarrow p + \text{selection_prob}[j] \)

 EndWhile

 - \(\text{ant}[k].\text{tour}[i] \leftarrow j \)
 - \(\text{ant}[k].\text{visited}[j] \leftarrow \text{true} \)

2. **EndProcedure**
Ant System Algorithm

Pheromone Update

1 **Procedure** ASPheromoneUpdate()
2 Evaporate()
3 For $k = 1$ To m Do
4 DepositPheromone(k)
5 EndFor
6 ComputeChoiceInformation()
7 EndProcedure
Ant System Algorithm

Pheromone Update

1 Procedure Evaporate
2 For $i = 1$ To n Do
3 For $j = i$ To n Do
4 pheromone[i][j] \leftarrow $(1-\rho) \cdot$ pheromone[i][j]
5 pheromone[j][i] \leftarrow pheromone[i][j]
6 #pheromones are symmetric
7 EndFor
8 EndFor
9 EndProcedure
Ant System Algorithm

Pheromone Update

1 Procedure DepositPheromone(k)
2 # k ant identifier
3 $\Delta \tau \leftarrow 1/ant[k].\text{tour_length}$
4 For $i = 1$ To n Do
5 \hspace{1em} j \leftarrow ant[k].tour[i]
6 \hspace{1em} l \leftarrow ant[k].tour[$i+1$]
7 \hspace{1em} pheromone[j][l] \leftarrow pheromone[j][l] + $\Delta \tau$
8 \hspace{1em} pheromone[l][j] \leftarrow pheromone[j][l]
9 EndFor
10 EndProcedure
Ant System
Exercise #2

• Test and analyse the behaviour of the algorithm.
 – Modify some parameters:
 • Number of ants
 • α, β, ρ

• What effect can you appreciate?
• What is the reason?