1. What kind of algorithm is Ant system (AS)? Does AS guarantees to eventually find the optimal solution or to determine that no solution exists?

2. Is it possible to use AS with \(\alpha = 0, \beta = 1 \) or \(\alpha = 1, \beta = 0 \)? What is the effect in each case?

3. How \(\rho \) relates with the exploration and exploitation performed by AS? What about \(\alpha \) and \(\beta \)?

4. In class we used a minimization problem (TSP) as example. Consider now the problem of finding the maximum length tour: what modifications are needed to solve this problem using AS?

5. Assume the following symmetric TSP instance:

![TSP Diagram](image)

(a) Distance between each city.

(b) Pheromone matrix (\(\tau \)) at iteration 1

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>–</td>
<td>0.56</td>
<td>0.66</td>
<td>0.60</td>
<td>0.50</td>
</tr>
<tr>
<td>B</td>
<td>0.56</td>
<td>–</td>
<td>0.60</td>
<td>0.56</td>
<td>0.60</td>
</tr>
<tr>
<td>C</td>
<td>0.66</td>
<td>0.60</td>
<td>–</td>
<td>0.50</td>
<td>0.56</td>
</tr>
<tr>
<td>D</td>
<td>0.60</td>
<td>0.56</td>
<td>0.50</td>
<td>–</td>
<td>0.66</td>
</tr>
<tr>
<td>E</td>
<td>0.50</td>
<td>0.60</td>
<td>0.56</td>
<td>0.66</td>
<td>–</td>
</tr>
</tbody>
</table>

An Ant System algorithm is applied to this instance using \(\alpha = 2, \beta = 1, \rho = 0.5, \text{#ants} = 3, \eta_{ij} = 1/d_{ij} \) and \(\tau_0 = 1 \). After the first iteration, the pheromone matrix (\(\tau \)) is the one given above in Figure (b).

(a) What is the meaning of the values in \(\tau \)? Why \(\tau_{C,D} = 0.5 \)?

(b) Use this information to generate the first solution of iteration 2. Use random numbers: \(\{0.76, 0.80, 0.27, 0.88, 0.47, 0.05, 0.98, 0.23, 0.06\} \)

(c) The following solutions generated by the algorithm are AEDCBA with \(\text{cost} = 26 \) and DECBAD with \(\text{cost} = 14 \). Update the pheromone using this information.
(d) Figure 2 shows the pheromone matrix after 12 iterations. Would you advice to continue executing more iterations? Why?

\[
\begin{array}{|c|c|c|c|c|}
\hline
 & A & B & C & D & E \\
\hline
A & - & 0.4285 & 0.0004 & 0.4285 & 0.0003 \\
B & 0.4285 & - & 0.4286 & 0.0003 & 0.0003 \\
C & 0.0004 & 0.4286 & - & 0.0003 & 0.4285 \\
D & 0.4285 & 0.0003 & 0.0003 & - & 0.4286 \\
E & 0.0003 & 0.0003 & 0.4285 & 0.4286 & - \\
\hline
\end{array}
\]

Figure 2: Pheromone matrix (\(\tau\)) (iteration 12)

Remember: the tour length is computed starting and ending in the same city.