Swarm Intelligence Extensions of Ant System

Christian Camacho Villalón christian.camacho.villalon@ulb.ac.be Federico Pagnozzi federico.pagnozzi@ulb.ac.be

IRIDIA – Université Libre de Bruxelles (ULB) Bruxelles, Belgium

Outline

- 1. Implementation exercise
- 2. Review of AS
- 3.MAX-MIN Ant System (MMAS)
- 4. Ant Colony System
- 5. Elitist Ant System
- 6. Rank-based Ant System
- 7.Best-worst Ant System

8.ACOTSP

Compare results statistical tests

- Is there a **statistically significant** difference between the solution quality generated by the different algorithms?
- Null hypothesis: The statement to be tested.
 - Example: For the Wilcoxon signed-rank test, the null hypothesis is that 'the median of the differences is zero'
- The significance level (α) determines the maximum allowable probability of incorrectly rejecting the null hypothesis.
- The null hypothesis is rejected if this p-value is smaller than the previously chosen significance level.

- Wilcoxon test p-values:
 - m1 vs. m2: 1.907e-06
 - m2 vs. m5: 0.003654
 - m5 vs. m7: 0.6676

Corrected (Bonferroni) 0.00001 0.011 1.000

	Wilco	xon test p-v	alues	
	0.01	0.2	0.5	1
0.01	-	4.67E-009	4.97E-009	4.67E-009
0.2	-	-	1	1
0.5	-	-	-	1
1	-	-	-	-

• More examples of parameter analysis:

• More examples of parameter analysis:

• We can also analyse interactions:

Extensions of AS

- MAX-MIN Ant System (MMAS)
 - Only iteration best or best-so-far ants update pheromone
 - Pheromone trails have explicit upper and lower limits
 - Pheromone trails initialized to upper limit
 - Pheromone trails are re-initialized when stagnated
- Ant Colony System (ACS)
 - Pheromone is updated also while building the solution
 - Only iteration best or best-so-far ants update pheromone

MAX-MIN Ant System (MMAS)

• Only iteration best or best-so-far ants update pheromone

$$\tau_{ij}(t) = (1-\rho) \cdot \tau_{ij}(t-1) + \Delta \tau_{ij}^{best}$$

$$\Delta \tau_{ij}^{best} = \frac{1}{L_{best}}, if arc(i,j) \in best tour$$

– L_{best} : length of the shortest tour found

MAX-MIN Ant System (MMAS)

Pheromone trail values are subject to bounds

MAX-MIN Ant System (MMAS)

- Pheromone trails are re-initialized:
 - When the algorithm converges
 - When no improving solution has been generated for a certain number of consecutive iterations

- Three main ideas:
 - Different state transition rule
 - Different global pheromone update rule
 - New local pheromone update rule
- Goal is: better control on exploration/exploitation

- State transition (pseudo-random proportional) rule, which is biased towards:
 - exploitation with probability q_0

$$j = argmax_{j \in N_i^k} (\tau_{ij} \cdot \eta_{ij}^\beta)$$
 if $q \leq q_0$

- exploration with probability $1-q_0$ *j* is chosen according to the usual proportional transition rule.

• Local update rule (to introduce diversification): while building a solution, each ant updates pheromone on visited edges

$$\boldsymbol{\tau}_{ij} = (1 - \rho) \cdot \boldsymbol{\tau}_{ij} + \rho \cdot \boldsymbol{\tau}_0$$

 Global update rule: pheromone updated only on edges of the best tour found so far

$$\tau_{ij} = (1 - \rho) \cdot \tau_{ij} + \rho \cdot \Delta \tau_{ij}^{bs} \quad \forall (i, j) \in T^{bs}$$
$$\Delta \tau_{ij}^{bs} = \frac{1}{L^{bs}}$$

Ant Colony System for TSP Simple pseudo code

1	While !termination()
2	For each ant Do
3	select random initial starting city
4	While tour is not complete
5	select next city using state transition rule
6	apply local pheromone update rule
7	EndWhile
8	EndFor
9	Apply global pheromone update rule
10	EndWhile

Elitist Ant System

- Elitism refers to favour best individuals to guide the search. \rightarrow intensification
- After each iteration the **global best ant** deposit pheromone along with the others.
- Introduce a new parameter *e* that controls the contribution of the global best ant to the pheromone update.

$$\boldsymbol{\tau}_{ij}(t) = (1 - \rho) \cdot \boldsymbol{\tau}_{ij}(t - 1) + \sum_{k=1}^{m} \Delta \boldsymbol{\tau}_{ij}^{k} + e \Delta \boldsymbol{\tau}_{ij}^{bs}$$

Rank-based Ant System

- A number of the best ants are allowed to update pheromone.
- All the ants are **ranked** regarding their tour quality and the best ω -1 are selected.
- They deposit pheromone according to their rank. So the best ones contribute more.
- Parameter ω controls the number of ants allowed to deposit pheromone (usually 25%) and also controls the amount of pheromone contributed by each ant.
- The global best ant deposit pheromone with the others.

$$\tau_{ij}(t) = (1 - \rho) \cdot \tau_{ij}(t - 1) + \sum_{r=1}^{\omega - 1} (\omega - r) \Delta \tau_{ij}^{r} + \omega \Delta \tau_{ij}^{bs}$$

Best-worst Ant System

- Transition rule and pheromone evaporation as in Ant System
- Pheromone update after each iteration:
 - The global best ant contributes positively to the pheromone update
 - The worst ant contributes negatively to the pheromone update (additional evaporation)
 - This is only applied in the edges present in the worst ant and absent in the global best ant.
- Pheromone trails **mutation** → diversification
- Restart of the search when stagnation (τ_0)

- ACOTSP developed by Thomas Stutzle, provides the implementation of a set of ACO algorithms to solve TSP.
- Which algorithms are implemented?
 - Ant System
 - Elitist Ant System
 - Max-min Ant System
 - Rank based Ant System
 - Best-worst Ant System
 - Ant Colony System

ACOTSP Options: Algorithms

- How to specify the algorithm?
 - --as : Ant System
 - --eas : Elitist Ant System
 - --ras : Rank-based version of Ant System
 - --mmas : MAX-MIN ant system
 - --bwas : Best-worst ant system
 - --acs : Ant colony system
- Look for other parameters using ./acotsp --help
- Related parameters:
 - --q0: prob. of best choice in tour construction (ACS)
 - --elitistants: number of elitist ants (MMAS)
 - --rasranks: number of ranks in rank-based Ant System (RAS)

ACOTSP Options: Other

- Other general parameters
 - --tries: number of independent trials (runs)
 - --tours: number of steps in each trial (max tours evaluated per trial)
 - --time: maximum time for each trial (seconds)
 - --seed: seed for the random number generator
 - --optimum: to stop if tour better or equal optimum is found
 - --ants: number of ants
 - --nnants: nearest neighbours in tour construction
 - To use of candidate list to construct solutions
 - --alpha: alpha (influence of pheromone trails)
 - --beta: beta (influence of heuristic information)
 - --rho: rho (pheromone trail evaporation)
 - --localsearch: 0: no local search 1: 2-opt 2: 2.5-opt 3: 3-opt

ACOTSP Options: Other

- Other general parameters
 - --tries: number of independent trials (runs)
 - --tours: number of steps in each trial (max tours evaluated per trial)
 - --time: maximum time for each trial (seconds)
 - --seed: seed for the random number generator
 - --optimum: to stop if tour better or equal optimum is found
 - --ants: number of ants
 - --nnants: nearest neighbours in tour construction
 - To use of candidate list to construct solutions
 - --alpha: alpha (influence of pheromone trails)
 - --beta: beta (influence of heuristic information)
 - --rho: rho (pheromone trail evaporation)
 - --localsearch: 0: no local search 1: 2-opt 2: 2.5-opt 3: 3-opt

ACOTSP Options: Local search

- Local search starts from a solution already constructed and moves through the search space from one neighbour to other.
- ACOTSP offers the possibility to apply a local search procedure to improve the tours found.
- The options are:
 - 2-opt
 - 2.5-opt
 - 3-opt

ACOTSP Options: Local search

- 2-opt
 - Heuristic: Select two edges and exchange them (2-exchange)
 - Repeat this process for all the edges combinations looking for improvement

- 3-opt follows the same idea using 3 edges, also 2-opt moves are evaluated.
- 2.5-opt: Evaluates the insertion of a node coming from edge (A-B) between the nodes of other edge (C-D). Ex. A-C-B-D