Swarm Intelligence
Extensions of Ant System

Christian Camacho Villalón
cristian.camacho.villalon@ulb.ac.be
Federico Pagnozzi
federico.pagnozzi@ulb.ac.be

IRIDIA – Université Libre de Bruxelles (ULB)
Bruxelles, Belgium
Outline

1. Implementation exercise
2. Review of AS
3. MAX-MIN Ant System (MMAS)
4. Ant Colony System
5. Elitist Ant System
6. Rank-based Ant System
7. Best-worst Ant System
8. ACOTSP
Implementation exercise 1

AS solution quality $\alpha, \beta=1, \rho=0.5$

Mean solution quality

$m1$ $m2$ $m5$ $m7$ $m10$ $m20$ $m50$ $m100$
Compare results statistical tests

- Is there a **statistically significant** difference between the solution quality generated by the different algorithms?

- **Null hypothesis**: The statement to be tested.
 - Example: For the Wilcoxon signed-rank test, the null hypothesis is that ‘the median of the differences is zero’

- The **significance level** (α) determines the maximum allowable probability of incorrectly rejecting the null hypothesis.

- The null hypothesis is rejected if this p-value is smaller than the previously chosen significance level.
Implementation exercise 1

- Wilcoxon test p-values:
 - m1 vs. m2: 1.907e-06
 - m2 vs. m5: 0.003654
 - m5 vs. m7: 0.6676
 Corrected (Bonferroni)
 - m1 vs. m2: 0.00001
 - m2 vs. m5: 0.011
 - m5 vs. m7: 1.000
Implementations exercise 1

AS solution quality $m=10 \rho=0.5$

AS convergence

Mean solution quality

Mean solution quality

Tours
Implementation exercise 1

Wilcoxon test p-values

<table>
<thead>
<tr>
<th></th>
<th>0.01</th>
<th>0.2</th>
<th>0.5</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>-</td>
<td>4.67E-9</td>
<td>4.97E-9</td>
<td>4.67E-9</td>
</tr>
<tr>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Implementation exercise 1

- More examples of parameter analysis:
Implementation exercise 1

- More examples of parameter analysis:

```
AS solution quality $\beta$, $\alpha=1$ $\rho=0.2$ $m=10$
```

![Box plot showing mean solution quality for different values of b.](image)
Implementation exercise 1

- We can also analyse interactions:
Extensions of AS

- MAX-MIN Ant System (MMAS)
 - Only iteration best or best-so-far ants update pheromone
 - Pheromone trails have explicit upper and lower limits
 - Pheromone trails initialized to upper limit
 - Pheromone trails are re-initialized when stagnated

- Ant Colony System (ACS)
 - Pheromone is updated also while building the solution
 - Only iteration best or best-so-far ants update pheromone
MAX-MIN Ant System (MMAS)

- Only iteration best or best-so-far ants update pheromone

\[\tau_{ij}(t) = (1 - \rho) \cdot \tau_{ij}(t - 1) + \Delta \tau_{ij}^{best} \]

\[\Delta \tau_{ij}^{best} = \frac{1}{L_{best}}, \text{ if } arc(i, j) \in \text{ best tour} \]

- \(L_{best} \): length of the shortest tour found
MAX-MIN Ant System (MMAS)

- Pheromone trail values are subject to bounds

\[\tau_{\text{min}} \leq \tau_{ij} \leq \tau_{\text{max}} \]

\[\tau_{\text{max}} = \frac{1}{\rho \cdot L^{\text{opt}}} \]

\[\tau_{\text{min}} = \frac{\tau_{\text{max}}}{a} \]

\[\tau'_{\text{max}} = \frac{1}{\rho \cdot L^{bs}} \]

\[\tau'_{\text{min}} = \frac{\tau_{\text{max}}}{2 \cdot n} \]

\[\tau_0 = \infty \]
MAX-MIN Ant System (MMAS)

- Pheromone trails are re-initialized:
 - When the algorithm converges
 - When no improving solution has been generated for a certain number of consecutive iterations
Ant Colony System (ACS)

- Three main ideas:
 - Different state transition rule
 - Different global pheromone update rule
 - New local pheromone update rule

- Goal is: better control on exploration/exploitation
Ant Colony System (ACS)

- State transition (pseudo-random proportional) rule, which is biased towards:
 - exploitation with probability q_0

 $$j = \arg\max_{j \in N_i^k} (\tau_{ij} \cdot \eta_{ij}^\beta) \text{ if } q \leq q_0$$

 - exploration with probability $1 - q_0$

 j is chosen according to the usual proportional transition rule.
Ant Colony System (ACS)

- **Local update rule** (to introduce diversification): while building a solution, each ant updates pheromone on visited edges

\[\tau_{ij} = (1 - \rho) \cdot \tau_{ij} + \rho \cdot \tau_0 \]
Ant Colony System (ACS)

- **Global update rule**: pheromone updated **only on edges of the best tour** found so far

\[
\tau_{ij} = (1 - \rho) \cdot \tau_{ij} + \rho \cdot \Delta \tau_{ij}^{bs} \quad \forall (i, j) \in T^{bs}
\]

\[
\Delta \tau_{ij}^{bs} = \frac{1}{L^{bs}}
\]
Ant Colony System for TSP
Simple pseudo code

1 While !termination()
2 For each ant Do
3 select random initial starting city
4 While tour is not complete
5 select next city using state transition rule
6 apply local pheromone update rule
7 EndWhile
8 EndFor
9 Apply global pheromone update rule
10 EndWhile
Elitist Ant System

- Elitism refers to favour best individuals to guide the search. → intensification
- After each iteration the **global best ant** deposit pheromone along with the others.
- Introduce a new parameter e that controls the contribution of the global best ant to the pheromone update.

$$
\tau_{ij}(t) = (1 - \rho) \cdot \tau_{ij}(t-1) + \sum_{k=1}^{m} \Delta \tau_{ij}^k + e \Delta \tau_{ij}^{bs}
$$
Rank-based Ant System

- A number of the best ants are allowed to update pheromone.
- All the ants are ranked regarding their tour quality and the best $\omega - 1$ are selected.
- They deposit pheromone according to their rank. So the best ones contribute more.
- Parameter ω controls the number of ants allowed to deposit pheromone (usually 25%) and also controls the amount of pheromone contributed by each ant.
- The global best ant deposit pheromone with the others.

$$\tau_{ij}(t) = (1 - \rho) \cdot \tau_{ij}(t-1) + \sum_{r=1}^{\omega-1} (\omega - r) \Delta \tau_{ij}^r + \omega \Delta \tau_{ij}^{bs}$$
Best-worst Ant System

- Transition rule and pheromone evaporation as in Ant System
- Pheromone update after each iteration:
 - The global best ant contributes positively to the pheromone update
 - The worst ant contributes negatively to the pheromone update (additional evaporation)
 - This is only applied in the edges present in the worst ant and absent in the global best ant.
- Pheromone trails \textbf{mutation} \rightarrow \textbf{diversification}
- Restart of the search when stagnation (τ_0)
ACOTSP

- ACOTSP developed by Thomas Stutzle, provides the implementation of a set of ACO algorithms to solve TSP.
- Which algorithms are implemented?
 - Ant System
 - Elitist Ant System
 - Max-min Ant System
 - Rank based Ant System
 - Best-worst Ant System
 - Ant Colony System
ACOTSP
Options: Algorithms

- How to specify the algorithm?
 - **--as**: Ant System
 - **--eas**: Elitist Ant System
 - **--ras**: Rank-based version of Ant System
 - **--mmas**: MAX-MIN ant system
 - **--bwas**: Best-worst ant system
 - **--acs**: Ant colony system

- Look for other parameters using **./acotsp --help**

- Related parameters:
 - **--q0**: prob. of best choice in tour construction (ACS)
 - **elitistants**: number of elitist ants (MMAS)
 - **rasranks**: number of ranks in rank-based Ant System (RAS)
ACOTSP
Options: Other

- Other general parameters
 - \textit{--tries}: number of independent trials (runs)
 - \textit{--tours}: number of steps in each trial (max tours evaluated per trial)
 - \textit{--time}: maximum time for each trial (seconds)
 - \textit{--seed}: seed for the random number generator
 - \textit{--optimum}: to stop if tour better or equal optimum is found
 - \textit{--ants}: number of ants
 - \textit{--nnants}: nearest neighbours in tour construction
 - To use of candidate list to construct solutions
 - \textit{--alpha}: alpha (influence of pheromone trails)
 - \textit{--beta}: beta (influence of heuristic information)
 - \textit{--rho}: rho (pheromone trail evaporation)
 - \textit{--localsearch}: 0: no local search 1: 2-opt 2: 2.5-opt 3: 3-opt
ACOTSP
Options: Other

- Other general parameters
 - **--tries**: number of independent trials (runs)
 - **--tours**: number of steps in each trial (max tours evaluated per trial)
 - **--time**: maximum time for each trial (seconds)
 - **--seed**: seed for the random number generator
 - **--optimum**: to stop if tour better or equal optimum is found
 - **--ants**: number of ants
 - **--nnants**: nearest neighbours in tour construction
 - To use of candidate list to construct solutions
 - **--alpha**: alpha (influence of pheromone trails)
 - **--beta**: beta (influence of heuristic information)
 - **--rho**: rho (pheromone trail evaporation)
 - **--localsearch**: 0: no local search 1: 2-opt 2: 2.5-opt 3: 3-opt
ACOTSP
Options: Local search

• **Local search** starts from a solution already constructed and moves through the search space from one neighbour to other.

• ACOTSP offers the possibility to apply a local search procedure to improve the tours found.

• The options are:
 - 2-opt
 - 2.5-opt
 - 3-opt
ACOTSP
Options: Local search

• 2-opt
 – Heuristic: Select two edges and exchange them (2-exchange)
 – Repeat this process for all the edges combinations looking for improvement

• 3-opt follows the same idea using 3 edges, also 2-opt moves are evaluated.

• 2.5-opt: Evaluates the insertion of a node coming from edge (A-B) between the nodes of other edge (C-D). Ex. A-C-B-D