
Distributed motion planning for ground objects
using a network of robotic ceiling cameras?

Andreagiovanni Reina, Gianni Di Caro, Frederick Ducatelle, Luca Gambardella

Dalle Molle Institute for Artificial Intelligence (IDSIA)
Galleria 2, 6928 Manno - Lugano, Switzerland

{gioreina, gianni, frederick, luca}@idsia.ch

Abstract. We study a distributed approach to path planning. We focus
on holonomic kinematic motion in cluttered 2D areas. The problem con-
sists in defining the precise sequence of roto-translations of a rigid object
of arbitrary shape that has to be transported from an initial to a final
location through a large, cluttered environment. Our planning system is
implemented as a swarm of flying robots that are initially deployed in
the environment and take static positions at the ceiling. Each robot is
equipped with a camera and only sees a portion of the area below. Each
robot acts as a local planner: it calculates the part of the path relative to
the area it sees, and exchanges information with its neighbors through
a wireless connection. This way, the robot swarm realizes a cooperative
distributed calculation of the path. The path is communicated to ground
robots, which move the object. We introduce a number of strategies to
improve the system’s performance in terms of scalability, resource effi-
ciency, and robustness to alignment errors in the robot camera network.
We report extensive simulation results that show the validity of our ap-
proach, considering a variety of object shapes and environments.

1 Introduction

Path planning is a core problem in robotics (see [9] for an overview). In its ba-
sic version, the path planning problem consists in the definition of the optimal
sequence of rotations and translations needed to move an object of a given geom-
etry from an initial to a target configuration while avoiding collisions with obsta-
cles. If the constraints on the motion only depend on the environment’s obstacles
and on the relative position of the moving object, the problem is holonomic. In
non-holonomic motion planning also dynamic constraints are considered.

In this work, we focus on holonomic path planning in the following setting.
An object of assigned shape has to be moved from an initial to a final location
in a large cluttered area. A high movement accuracy is required, up to a few
centimeters precision, in order to effectively avoid the existing obstacles. No a
priori knowledge about the environment is available. In order to acquire and

? This research was partially supported by the Swiss National Science Foundation
through the National Centre of Competence in Research Robotics

process the information required for planning the motion of the object on the
ground, we propose the use of a network of cooperating cameras with a top view
of the area where the object can be moved. We assume the camera network to
be able to autonomously take position in the environment. For this purpose, as
reference model for the camera nodes, we used a swarm of flying robots. The
swarm can be deployed in formation such as to cover through the vision system
the entire area between the initial and final positions, and to be able to locally
communicate. Then, they attach to the ceiling and keep stationary positions for
the entire process. More technical details are given in Section 2. This architecture
is suitable for path planning problems in large areas, where a single camera is
not sufficient to effectively cover the entire area, and a ceiling camera network
can be effectively deployed. Examples are factories, warehouses, or malls: large
indoor areas, characterized by the presence of relatively narrow alleys and turns,
and irregularly spread, and often dynamic, obstacles.

In our distributed architecture, each camera node plays the role of a local
planner: it plans the motion relative to the area that it sees, and locally ex-
changes information with its neighbor nodes through a wireless channel in order
to merge and organize the local views into a global feasible plan for the object
on the ground. Compared to a single camera solution, this approach determines
sensing errors, due to intrinsic uncertainties in the calculation of the relative po-
sitions of the cameras and the overlapping in their local views, and efficiency is-
sues, due to communication and coordination overhead. In this work, implement
a fully distributed system for effective path planning building on and extending
established approaches for path planning. Then, we consider error and efficiency
issues. We cope with the latter by introducing a number of heuristic strategies.
On the other hand, since sensing errors are an intrinsic property of the system,
we consider them as internal parameters, and we evaluate how they influence
the performance. The aim of this work is to show that our distributed planning
system can find near optimal paths, makes an efficient utilization of computa-
tional and communication resources, is robust to increasing sensing errors, and
its performance scales with the size of the environment and the number of cam-
eras. We report extensive simulation results that precisely show these properties
considering objects of different shapes and a variety of cluttered environments.

The article is structured as follows. In Section 2 we define the scenario char-
acteristics, the initial assumptions and the camera network model. Section 3
discusses related work. Section 4 explains the planner architecture, describing
the different phases of the process and the optimization heuristics we propose.
Section 5 shows experimental results, and section 6 concludes the paper.

2 Scenario characteristics and camera network model

We use a swarm of flying robots to implement the camera network used for
distributed planning. The robots are modeled after the eye-bot [10], an indoor
flying robot developed in the EU-funded project Swarmanoid (http://www.
swarmanoid.org). The eye-bot can passively attach to the ceiling using a mag-

net (the design assumes the presence of a ferrous ceiling). It has a pan-and-tilt
camera, which can be pointed in any direction below it. It can communicate
using both wi-fi and a line-of-sight infrared system [10], which also provides it
with relative positional information about other eye-bots (distance and angle).

The mobility and autonomy of the robots can be exploited to deploy the
camera network over the area where the object moves. The robots can select their
stationary positions at the ceiling to let the swarm formation effectively cover
the area with the combined camera views, while, at the same time, observing
that neighbor robots are in wireless communication range. We do not study how
the formation can be obtained; any algorithm that lets robots spread in an area
or find a target location from a given source location (e.g., [11]) could be used.

Using the pan-and-tilt unit, the robots orient their camera to look at the
area directly below them. Each robot computes a 2D occupancy map for the
obstacles below it, and the path of the ground object is computed with respect
to this 2D projection.1 The field of view of each robot must overlap with that
of its neighbors. The size of the overlapping area must be greater or equal to
the dimension of the moving object. This is required in order to connect locally
calculated sub-paths (see Section 4). For the same reason, knowledge of the rel-
ative position and orientation between neighbor cameras is also required. The
eye-bots can compute this information autonomously, using the range and bear-
ing capabilities of the infrared system.2 This means that they can also adapt
this information when the eye-bot network topology changes. Clearly, the rel-
ative distance and angle information acquired through the infrared system are
affected by errors (as would be the case with any other relative positioning sys-
tem). In our simulation model of the eye-bot, we model distance and angle error
values using two different zero mean Gaussian distributions with configurable
variance values. In this way, we model error estimates in rather general and, at
the same time, realistic terms, while avoiding to be too hardware-specific. This
approach allowed us to study the impact of these error estimates on distributed
path planning performance for a wide range of error values (see Section 5).

Finally, we point out that our focus in this paper is only on the distributed
calculation of a path plan. We assume that the start and target locations are
given as input, and the object can be moved by a system (e.g., a robot) that can
interpret the path planning instructions and can check its correct actuation.

3 Related work

The path planning problem has been extensively studied considering various
formulations and solutions. References and discussions can be found in [8, 3, 9].
Our distributed planner is based on classical work in path planning [8, 1]: it is
derived from the numerical potential field technique for a single camera planner.
The potential field is computed using the wave front expansion with skeleton

1 In this way, we classify the areas covered by table-like obstacles as fully inaccessible,
while the object could pass under, depending on its volumetric dimensions.

2 We assume that all cameras have the same calibration and size of field of view.

on a uniform cell partitioning of the 2D map of the environment. This solution
first spreads the potential over a subset of the free space, called skeleton, which
corresponds to the Voronoi diagram [3, 5, 12]; then, the potential is computed in
the rest of the map. The potential descent from the start to the final configuration
is performed using A∗[6]. The moving object can have any shape and dimension.
We follow the approach proposed in [3, 7], modeling the object with a discrete
set of control points. Various ways to apply A∗ to the control points exist; we
sum the potential over the different points to compute the distance estimation.

Centralized path calculation is the most common approach to planning, even
in the presence of multiple cameras. All partial maps are sent to a central node
and are fused to construct a global map. Several methods have been proposed
for map reconstruction based on feature correlation in partial maps [2]. Com-
pared to these methods, our distributed collaborative approach limits the use of
communication and computational resources, and relies on autonomous relative
positioning, resulting in more robust, efficient and scalable behavior.

Our system can rapidly build the map of the environment thanks to the
camera coverage of the area. Moreover, it has the potential to rapidly react to
changes in the environment, and to provide precise localization inside it. In this
respect, it is equivalent to a SLAM [4] process. In fact, as a possible alternative,
a swarm of ground robots could be used for SLAM, and build a free space map of
the environment that could be more accurate than the one built by our camera
network (see Footnote 1). However, the use of ground robots to build accurate
maps of large cluttered environments requires the commitment of extensive re-
sources, for time and computation. Our solution provides better efficiency, but
we pay this advantage in terms of a potentially lower map accuracy.

4 Distributed path planning

The distributed path planning algorithm that we propose is an extension of the
centralized algorithm described in Section 3. The algorithm consists of 3 phases:
(i) neighbor mapping, (ii) potential field calculation, (iii) path calculation.

Neighbor mapping. Using the range and bearing system, each node builds
a neighbor table, in which the relative positions and orientations of neighbor
nodes are stored. Assuming that all cameras have a field of view of the same size,
each node n uses this information to project the field of view of each neighbor m
on its own reference system. This way, n builds an estimate of the overlapping
region between its own field of view and that of m. In particular, n first segments
its local map into a discrete set of cells, and then identifies which cells lay on
the edges of the field of view of m, and which cells of its edges lay on m’s field
of view. Hereafter we refer to the former cells as shared edges and to the latter
as open edges. Figure 1 illustrates this process.

Potential field calculation. The second phase is the calculation of a po-
tential field. It is based on a diffusion process that starts from the destination
point and iterates between the nodes until the potential is diffused on the entire
map. This process is implemented in the following distributed way.

Fig. 1. Estimating θ, δ and α, n builds a projection of m’s field of view to define:
overlapping (striped region) shared edges (solid bold lines), open edges (dashed lines).

Each node first calculates the local skeleton, which corresponds to the Voronoi
diagram on the 2D occupancy map (i.e., the maximum-clearance roadmap for
object motion [9]). 3 Once the local skeleton is defined, each node calculates the
local potential field through a cooperative diffusion process. The potential field
defines a force that attracts the object towards the destination, and at the same
time repels the object away from obstacles. In our algorithm, the potential is a
scalar function that defines the attraction/repulsion intensity for each cell. The
function has a global minimum in the destination point, and maximum value on
the obstacles. In all other cells the function decreases towards the destination,
such that the planner can aim to the goal following the gradient descent direction.
The nodes that see the destination begin potential diffusion by assigning a zero
value to the destination cell, and then incrementing the potential by one per
cell. At first, nodes diffuse the potential only on the set of the skeleton cells; this
way, the value assigned to each cell corresponds to the distance from the current
cell to the destination over the skeleton. Then, the potential is calculated on the
remaining free cells: diffusion starts from the skeleton, and values are increased
while moving away from it and getting closer to obstacles.

Once the potential field is completely spread over the local map, each node
n sends to its neighbors the values of the shared edges cells that they have in
common. To minimize communication overhead, only shared edges cells that
belong to the skeleton are transmitted. This way, each neighbor m of n receives
a set of n’s skeleton cells. Since n has an estimate of the relative position and
orientation of m, the coordinates of these cells are expressed relative to m’s
frame of reference. m replaces the value of the corresponding cells in its own
local map, and connects these new skeleton cells to the local existing skeleton.
Then, m uses the received skeleton cells as starting diffusion points for spreading
and updating the potential field on its local map.

The nodes that can see the destination maintain P potential field maps,
one for each of the P control points of the object. This way, these nodes can

3 The environment’s skeleton resulting from all local skeletons differs from that which
would be calculated in a centralized way using a global map. The differences are due
to the fact that, during skeleton calculation, the frontiers of a (local) map need to
be considered as obstacles. Therefore, at the corners of each map the local skeleton
shows bifurcations that are not present in the centralized skeleton.

correctly position the object to the expected final configuration. The other nodes
keep a single potential field, relative to the control point positioned in the object
center. This means that these nodes do not take into account the object final
orientation. This strategy optimizes the use of computational resources without
affecting in practice the quality of the solution.

Path calculation. Once the potential field is spread among all nodes, the
node above the start position starts path calculation: it plans the partial path
relative to its local map using the values of the potential field. The A∗ algorithm
is used to identify a gradient descent trajectory in this field. A∗ searches the
solution by building an exploration tree of configurations. Each configuration
defines a position and orientation of the object, and has a cost value equal to
the sum of the distance from the initial point to the current configuration (mea-
sured in number of crossed cells) and the estimated distance to the destination
(calculated as the sum of the potential value of the cells occupied by the control
points). At each step, the algorithm selects the leaf of the tree that corresponds
to the configuration c with the lowest estimated cost. Then, it calculates all the
configurations that can be obtained from c by a one-step movement (a rotation
or translation)4 and their estimated costs, and adds them to the tree as leafs
of c. The process iterates until the goal configuration is visited (success), or the
exploration tree is completely expanded (failure), or the selected configuration
falls outside the area of view laying on an open edge. In the latter case, the node
sends the object coordinates to the neighbor m with which it shares the open
edge. m continues the process, using as start position the received configuration.
Passing object configuration from one node to another is made possible by the
overlapping between neighbors’ maps. However, this overlapping is subject to
errors deriving from camera relative position estimation errors (see Section 2).
These errors can affect the system performance, as we study in Section 5.

Since potential diffusion does not explicitly consider the dimensions of the
moving object, it is possible to get trapped in local minima during path calcu-
lation. This is a well-known problem: following the potential might cause the
object to get stuck in an area that is too narrow to let it pass. Our basic algo-
rithm deals with the issue by locally backtracking and trying out alternatives. If
a node fails in local planning, it sends to the preceding neighbor in the planning
a local failure message. At the receiver, this message triggers the resuming of the
local tree exploration process to calculate an alternative path. This approach is
expensive, both in computation and communications. In order to improve the
efficiency of this process and minimize the probability to get trapped in local
minima we propose two heuristics (see Section 4.2).

Each node involved in the path calculation process stores: (i) the previous
neighbor (from which the node received the entrance path), (ii) the planned
local path, and (iii) the next neighbor (to which the node transmitted the object
configuration of its local path). The distributed algorithm executes an exhaustive
search of the solution: if the process ends with failure it means it has visited all

4 In our system, a one-step translation corresponds to one cell, and a one-step rotation
corresponds to an angle α. In the experiments, cell size is 10× 10 cm, and α = 15o.

possible configurations that are reachable from the starting point but no feasible
solution exists given the characteristics of the calculated potential field and the
selected search parameters (e.g., cell discretization, minimal rotation angle).

4.1 Adaption to changes in the environment

An important advantage of our distributed system is that it can locally and
quickly detect and adapt to a change in the environment (e.g., a change in
obstacles’ position, or the appearing/disappearing of an obstacle). A centralized
system would correct the Voronoi skeleton, repeat the potential field diffusion
and restart the path planning. In our distributed architecture, the system can
reduce the re-initialization costs by replanning only a limited part of the path.
A node that detects a change in its local map informs the other nodes only if an
alternative local partial path cannot be found.

More specifically, if the change happens when the system has completed the
path calculation and the navigation has already started, the desired behavior
is a fast response to adapt the path and allow the successful completion of the
navigation task. A node n that detects a change in its local map, first tries to
locally plan an alternative path by generating a new local potential field, with
the constraint of maintaining fixed the original entrance and exit configurations.
If a feasible path cannot be found, n notifies the destination node (through multi-
hop wireless communication) to trigger a new potential field diffusion process.
The destination node decides either to repair the path (from n to the end), or to
recalculate the entire path (using the current position of the navigating object
as new starting position). The decision for either alternative is taken in relation
to the position of n in the sequence of nodes along the path. E.g., a local repair
is issued when n is close to the final

4.2 Heuristics to reduce local minima attraction

The skeleton pruning and local minimum detection heuristics aim to improve the
efficiency of the system minimizing the probability to get stuck in local minima.

Skeleton pruning. We prune the skeleton during potential field diffusion
to block passages narrower than a predefined width wsp. We set wsp to the
width of the smallest dimension of the moving object. Since size is not the only
parameter defining whether an object can cross a passage (e.g., it depends also
on the object’s morphology) or not, the heuristic does not guarantee to remove
all local minima. Setting wsp higher, however, we may remove feasible paths.

Local minimum detection. The heuristic is executed during path calcula-
tion, when a node detects a local minimum due to the presence of a too narrow
passage. First, the node places a virtual obstacle over the cells of the passage.
Then, it triggers a new distributed potential field diffusion step. The assumption
behind the heuristic is the following: the final solution obtained by recalculat-
ing the whole potential field and restarting the distributed path planning with
the new information is expected to be of better quality than that obtained by
exhaustively searching a way to escape from the local minimum.

4.3 Heuristics to optimize the use of resources (efficiency heuristics)

Even using the above heuristics, dealing with local minima causes a high compu-
tation and communication load to the system. Moreover, given that the overall
path is computed by combining local paths without using any global path infor-
mation, it can contain loops. We propose two efficiency heuristics to deal with
these issues: block cells and smart loop avoidance.

Block cells. During path calculation, if a node n has completely expanded
its exploration tree in its local area without finding a valid path, it sends a local
failure message to the preceding neighbor node m in the path. m resumes the
path planning process and tries out another exit configuration, which may be
in the same direction of attraction toward n. This way, a repeated exchange
between n and m can take place until all exit configurations towards n are tried
out unsuccessfully. To reduce communication and processing overhead associated
to these situations, after a local path failure, m identifies the entry cells that
have generated the failure in neighbor n, and avoids to send the object again
through the same cells by removing them from the available open edges.

Smart loop avoidance. Given that (n1, n2, . . . , nk) is the sequence of nodes
associated to the computed path, if n = ni = nj , for any 1 ≤ i, j ≤ k, i 6= j, then
a loop is said to be present in the path if the two configurations to enter n at steps
i and j can be connected together within n’s local area. Therefore, the sub-path
between ni and nj can be conveniently removed. This is done in the following
way. Controlling its internal path components a node n checks whether a loop
is present and can be removed. In this case, the node n sends a loop message to
its previous node m in the path. After receiving the loop message, m deletes its
local path and forwards the loop message to its preceding node. The process is
iterated until the loop message reaches again node n and the loop is completely
removed from the path. In order to avoid the re-creation of the loop, n perturbs
its local potential field, and then resumes the path planning process.

5 Experimental results

We test our distributed algorithm in simulation considering a large set of sample
scenarios with varying area dimensions, position and number of eye-bots, shapes
of moving object, and obstacle positions (Figure 2 shows two examples). We
studied the performance of the proposed planning solutions in terms of effective-
ness, efficiency, scalability, and robustness to alignment errors. As performance
metrics we selected success ratio, the percentage of successful runs, and path
quality, the relative length of the path compared to the path calculated by a
centralized algorithm with complete and perfect knowledge. We study how per-
formance varies in function of the alignment error between the cameras (angle
and distance errors). Errors are modeled using a zero mean Gaussian distribu-
tion (in the experiments described in the following, we report the error as the
standard deviation of the corresponding distribution).

In each scenario the robots are deployed in a grid formation that covers the
area. The distance between robots is 2 m. The visual field of each robot is the

Fig. 2. (left) Examples of the scenarios used for experiments. (center) Reference paths
from a global planner with perfect knowledge. (right) Paths of the distributed planner

4× 4 m2 area below their camera. Each point in the data plots is the average of
40 runs over 25 different scenarios including different numbers of robots (ranging
from 12 to 36). The spread of the values around the average (not shown) is quite
large, due to the strong heterogeneity of the scenarios. However, we assessed
the significance of the results and the differences among the different versions
of the algorithm through statistical testing. Each scenario is characterized by a
different random positioning and structure of the obstacles. The percentage of
the area occluded by obstacles vs. the total is approximately 18%. The shape of
the moving object is randomly selected among rectangular, cross, and L shapes.

5.1 Robustness to alignment errors

The effect of camera alignment errors is shown in Figures 3 (angle error) and 4
(distance error). They report the performance of different versions of the algo-
rithm: without heuristics, only with efficiency heuristics, and with all heuristics.
The results show that for relatively low errors the performance is always very
close to the reference. For increasing errors, the performance of the algorithm
with heuristics degrades rapidly for success rate but slowly for path quality.
Without heuristics the behavior is opposite. In both cases, the system is rela-
tively sensitive to errors on the angle, while it is quite robust to distance errors.

In the experiments where the error is zero, the paths of the system without
heuristics are on average 25% longer of the reference path. This is partially
due to the generation of loops (which can be also caused by the presence of
local minima). The use of heuristics mitigates these problems and reduces path
length. However, the skeleton difference with respect to a global path planner
(see Footnote 3) cannot be avoided, resulting in unnecessary movements for the
object when it is moved between nodes, and, therefore, in slightly longer paths.

 60

 65

 70

 75

 80

 85

 90

 95

 100

0 2.5 5 7.5 10 12.5 15 17.5 20

S
uc

ce
ss

 r
at

io
 (

%
)

Angle error (deg)

No-heuristics
Efficiency Heuristics

All Heuristics

 0

 10

 20

 30

 40

 50

0 2.5 5 7.5 10 12.5 15 17.5 20

R
el

at
iv

e
pa

th
 le

ng
th

 (
%

)

Angle error (deg)

No-heuristics
Efficiency Heuristics

All Heuristics

Fig. 3. Performance evaluation vs. increasing error in angle estimation.

 60

 65

 70

 75

 80

 85

 90

 95

 100

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

S
uc

ce
ss

 r
at

io
 (

%
)

Distance error (%)

No-heuristics
Efficiency Heuristics

All Heuristics

 0

 10

 20

 30

 40

 50

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
R

el
at

iv
e

pa
th

 le
ng

th
 (

%
)

Distance error (%)

No-heuristics
Efficiency Heuristics

All Heuristics

Fig. 4. Performance evaluation vs. increasing percentage error in distance estimation.

5.2 Communication efficiency

Communication efficiency is a fundamental aspect of the system because it im-
pacts scalability. We quantify the use of communication resources through the
average number of messages that each robot sends during the path planning
process. In these experiments, the robots maintain a 4× 3 grid formation.

The plots of Figure 5 show the results for this set of experiments. As expected,
the system with efficiency heuristics has the best efficiency. It is able to maintain
low values of exchanged messages even with the increase of the alignment error.
The system with all the heuristics makes more intensive use of communication
due to the strategies applied for local minima avoidance.

 0

 50

 100

 150

 200

0 2.5 5 7.5 10 12.5 15 17.5 20

M

es
sa

ge
s

pe
r

ro
bo

t

Angle error (deg)

No-heuristics
Efficiency Heuristics

All Heuristics

 0

 50

 100

 150

 200

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

M

es
sa

ge
s

pe
r

ro
bo

t

Distance error (%)

No-heuristics
Efficiency Heuristics

All Heuristics

Fig. 5. Use of communication resources vs. error in angle and distance estimation.

 60

 65

 70

 75

 80

 85

 90

 95

 100

0 2.5 5 7.5 10 12.5 15 17.5 20

S
uc

ce
ss

 r
at

io
 (

%
)

Angle error (deg)

12 nodes
(+50%) 18 nodes

(+100%) 24 nodes

 0

 10

 20

 30

 40

 50

 60

 70

0 2.5 5 7.5 10 12.5 15 17.5 20

R
el

at
iv

e
pa

th
 le

ng
th

 (
%

)

Angle error (deg)

12 nodes
(+50%) 18 nodes

(+100%) 24 nodes

Fig. 6. Planner with heuristics: effect of node density vs. error in angle estimation.

 70

 75

 80

 85

 90

 95

 100

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

S
uc

ce
ss

 r
at

io
 (

%
)

Distance error (%)

grid 4x3
grid 4x6 (+100%)
grid 4x9 (+200%)

 0

 5

 10

 15

 20

 25

 30

 35

 40

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
R

el
at

iv
e

pa
th

 le
ng

th
 (

%
)

Distance error (%)

grid 4x3
grid 4x6 (+100%)
grid 4x9 (+200%)

Fig. 7. Planner with heuristics: effect of environment size vs. error in angle estimation.

5.3 Scalability: increasing robot density in a fixed size environment

We study the performance of the distributed system with respect to an increase of
system’s resources: in Figure 6 we show the effect of increasing the density of the
nodes over a fixed area while varying angle errors. Increasing node redundancy
allows the system to deliver a higher success ratio (Figure 6, left). This effect is
more marked in the experiments with larger errors, in which the presence of a
larger number of robots can balance the effect of these errors to find alternative
valid paths. On the other hand, the increase in the density leads to longer paths,
as shown in results of Figure 6 (right).

The results for the performance of the algorithm without the heuristics (not
reported) show a similar behavior, with both the graphs being shifted up (higher
success ratio and longer paths). The results for the error in distance (not re-
ported) are analogous to those of Figure 6, but show a better robustness of the
system to the error, as already observed in the previous experiments.

5.4 Scalability: increasing environment size, fixed density of robots

We studied the scalability of the system increasing environment size and main-
taining robot density constant. The area of the basic scenario is 10× 8 m2, with
a coverage of 12 robots in a grid formation 4× 3. We use this basic scenario and
two additional ones in which the area is scaled by a factor 2 and 3 respectively.
The plots of Figure 7 show the results: the trends and values in the three scenar-
ios are very similar. This means that the system is able to deal with an increase

of the environment size with an increase of resources (number of robots) without
degrading performances, showing its scalability.

6 Conclusions and future work

We have proposed a novel system for distributed path planning, which calculates
with high accuracy the sequence of roto-translations of rigid objects of any shape
moving through cluttered areas. The system architecture uses a swarm of flying
robots, which deploy in the environment and form a distributed camera network.
The robots solve the path planning problem cooperatively, through local calcu-
lations and wireless message exchanges. We adapted well-known solutions for
path planning to our distributed architecture. Compared to systems with single
cameras or centralized computations, the fully distributed approach can be more
scalable, flexible, and robust. However it introduces efficiency issues and sensory
errors. A number of heuristics were proposed to enhance the system’s efficiency
and effectiveness. In a wide range of simulation experiments, we show that the
system is efficient, scalable, and robust to alignment errors between cameras.

Future work will include in the first place the implementation and testing of
the system on real robots. We will also extend it and improve it, and perform
tests with dynamic obstacles (e.g., including humans).

References

1. J. Barraquand, B. Langlois, and J. Latombe. Numerical potential field techniques
for robot path planning. IEEE Trans. on Sys., Man and Cyb., 22(2):224–241, 1992.

2. A. Birk and S. Carpin. Merging occupancy grid maps from multiple robots. Pro-
ceedings of the IEEE, special issue on Multi-Robot Systems, 94(7):1384–1397, 2006.

3. H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki, and
S. Thrun. Principles of Robot Motion: Theory, Algorithms, and Implementations.
MIT Press, Cambridge, MA, 2005.

4. H. Durrant-Whyte and T. Bailey. Simultaneous localisation and mapping (SLAM):
The essential algorithms. IEEE Robotics and Automation Magazine, June 2006.

5. S. Garrido, L. Moreno, and D. Blanco. Voronoi diagram and fast marching applied
to path planning. In IEEE Int. Conf. on Robotics and Automation (ICRA), 2006.

6. P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE Trans. on Sys., Sc. and Cyb., 4(2):100–107, 1968.

7. J.-C. Latombe. A fast path planner for a car-like indoor mobile robot. In Proceed-
ings of the 9th National Conf. on Artificial Intelligence, pages 659–665, 1991.

8. J.-C. Latombe. Robot Motion Planning. Kluwer Academic, 1991.
9. S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

10. J. Roberts, T. Stirling, J.-C. Zufferey, and D. Floreano. 3-D range and bearing
sensor for collective flying robots. Journal of Field Robotics, 2011. (Submitted).

11. T. Stirling, S. Wischmann, and D. Floreano. Energy-efficient indoor search by
swarms of simulated flying robots without global information. Swarm Intelligence,
4(2):117–143, 2010.

12. O. Takahashi and R.J. Shilling. Motion planning in a plane using generalized
voronoi diagrams. IEEE Trans. on Robotics and Automation, 5(2):143–150, 1989.

