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1 Introduction

This document describes the multi-camera tracking system developed for the
IRIDIA laboratory, which is targeted for multi-robot experiments in large ex-
perimental set-ups. The system is deployed in a large room exclusively dedicated
to this kind of experiment, and we refer to this room as the Robotics Arena.
The tracking system here presented is referred to as the Arena Tracking System,
or ATS.

The purpose of this document is to provide an overview of this system, in
terms of which hardware has been employed, which software has been developed
and what use cases are offered to the researcher.

The first section is dedicated to the description of the hardware and the
setup of the system. The second section presents the software architecture of
the system. The third session presents the integration of the tracking system
with the the ARGoS [4] simulator that enables the creation of augmented reality
for the robots.

1.1 Motivations

One of the main focus of the research carried out at IRIDIA laboratory is
on Swarm Robotics [1] and multi-robot applications. Experiments in Swarm
Robotics involve large number of robots that navigate through the environment,
sense it and act on it.

The initial purpose for the development of the tracking system here presented
is to provide a tool that allows a researcher to record and control the state of
the experiment throughout its complete execution. We refer to the state of
the experiment as the position of all the individuals of the robot swarm at a
particular time. The positions are computed with respect to a global frame
of reference. Other than experimental analysis, the ATS has the additional
functionality of implement virtual sensing. This means that as a robot navigates
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through the environment, the system can virtualize the sensed environment
enhancing the robot capabilities.

The main requirements of this system are: 1) provide the possibility to
follow the evolution of the experiment across a large area; 2) record the state
of the experiment with a good time resolution; 3) integrate the ATS within
ARGoS to create a communication infrastructure between the ATS, the swarm
simulator and the real swarm. The integration ot the two entities is called
IRIDIA Tracking System, or ITS.

Several benefits spring by the integration of the ATS into ARGoS. The power
of the simulator combined with the ATS opens a brand new branch of possible
experiments, and at the same time eases the data gathering. For example,
it allows to run experiments that involve sensors or actuators that the robots
do not have onboard, or to prototype sensor and actuators that is desirable to
mount on the robots in the future. From the data gathering point of view, using
ARGoS integrated with the ATS during the experiment allows us to compute
the evaluation function during the experiment execution, rather than calculate
it on a further step.

The integration of ARGoS into the ATS is detailed in section 4.

2 Hardware

The ATS is composed of a set of cameras whose collective field of view covers
the entire Robotics Arena. The cameras feed images through an Ethernet con-
nection to a dedicated computer, the Arena Tracking System Server, located
outside the Robotics Arena. This computer hosts and runs the API that a
researcher can use to record an experiment. This section is dedicated to the
description of the Robotics Arena set-up and the hardware on which the ATS
is based.

2.1 Cameras

The Robotics Arena is a large room around 990cm large and 705cm deep, which
can host a single multi-robot experiment across the whole area, or even several
experiments in parallel, if divided along the shorter side.

While an experiment is in progress, its State is computed by applying recog-
nition and decoding steps on a set of images acquired by an array of cameras
deployed on the Robotics Arena’s ceiling. This array consists of 16 cameras,
arranged in a 4- by-4 matrix. The arrangement of the cameras has been drawn
in order to have full coverage of the experimental area, and it has been tailored
to the area size and the cameras’ specifications.

For the choice of the camera, we opted for a Prosilica GC1600 C, manu-
factured by Allied Vision Technologies and shown in Figure 1. This particular
camera has been chosen as it presented a favorable compromise between reso-
lution, focal length, ease of interfacing and speed of transmission. Some of the
technical specifications of the camera are given in Table 1.

The positioning of each camera within the Robotics Arena has been deter-
mined following these criteria: 1) The maximization the area of the Robotics
Arena covered by the field of view; 2) Resolution useful for symbol decoding on
the plane occupied by the top of the robots.
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Figure 1: Prosilica GC 1600C

The final layout of the cameras with the distances between each camera is
presented in Figure 2. Each camera has been placed on a wooden structure
specifically manufactured and at a height of 243cm from the ground. With this
configuration, each camera covers an area of about 350x260cm, with a spatial
resolution on the ground of about 4.6px/cm

2.2 Network configuration and Computer Host

The cameras employed in the Arena Tracking System transmit the acquired
images through an Ethernet interface linked through a 1Gbit connection to a
dedicated switch installed in the Robotics Arena, which mounts a module for
10Gbit/s connection to the Arena Tracking System Server. The Arena Tracking
System Server hosts 16 Intel® Xeon(R) CPU E5-2670 at 2.60GHz. Each core
features the Intel® Hyper-Threading Technology, which enables it to run two
threads per core. The Operating System is GNU/Linux Ubuntu 12.04.1 LTS
for 64 bits architectures.

3 Arena Tracking System

The Arena Tracking System’s software architecture is built as a three layer
structure presented in Figure 3. The bottom layer consists on the QT Frame-
work and the Halcon library [3]. Halcon is a library by MVTec Software GmbH,
used in for scientific and industrial computer vision applications. It provides
an extensive set of optimized operators and it comes along with a full featured
IDE that allows for fast prototyping of computer vision programs, camera cal-
ibration and configuration utilities. The library also provides drivers to easily
interface with a broad range of cameras. On top of those libraries lies an appli-

Prosilica GC 1600
Interface IEEE 802.3 1000baseT
Resoultion 1620 x 1220
Max frame rate 15 fps
Color modes Gray Scale, RGB
Dimensions ((L x W x H in mm) ) 59x46x33
Mass 97 g

Table 1: Camera Specifications
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Figure 2: Layout of cameras ( distances in cm )

cation specific library layer, called Arena Tracking System API. This API offers
the possibility to configure different aspects of a tracking session, such as the
cameras to be used, the objects to detect and the global frame of reference to
in which the robots’ positions have to be computed. The application level pro-
vides the researcher with two tools to support his or her experiments: a viewer
for ATS standalone utilization, and a server to allow interaction with ARGoS
running on a remote machine.

This section provides an overview over ATS API level and ATS Application
level.

Figure 3: Arena Tracking System Software Architecture
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3.1 Arena Tracking System API

This layer is based on Qt and Halcon libraries and provides a set of domain spe-
cific functions for tracking applications. The ATS API consists of two modules:
Core and Tracking. The Core module provides the data types that are related
to the representation of a tracking session state, whereas the Tracking module
provides the tools to configure a tracking session and to extract the experiment
state instances. The remainder of this subsection will describe in detail the
functionalities of the ATS API layer.

3.1.1 The ArenaState Class

The use of the Arena Tracking System API revolves around two main classes:
ArenState and ArenaStateTracker.

Given a running experiment that involves several robots navigating across
the Robotics Arena, the ArenaState type represents the state of the experiment
at a given time step. Figure 4 provides a simplified view of this type, and
its components. An object of the ArenaState class contains all the elements
detected at the timestep of creation. Each element is represented by its own ID,
the position in the image where it was acquired and the position in the world
frame of reference. There are two ways of accessing the elements detected. The
method GerArenaElements gives a simple list of all the robots detected across
the whole Experimental Arena. The other possibility, is to access the detected
robots under a specific camera, by requesting access to the camera’s specific
tracker with the GetCameraState method.

Figure 4: ArenaState class diagram

3.1.2 The ArenaStateTracker Class

A new instance of the ArenaState class can be created from the GetArenaState
method of the ArenaStateTracker class. This class represents the configured set
of resources that make up for the particular instance of a tracking session. Figure
5 contains the class diagram of the ArenaStateTracker class and its components.

The ArenaStateTracker’s job is to configure and orchestrate a set of Cam-
eraStateTracker instances. Each CameraStateTracker is associated to an image
source, such as a camera, and the operators to detect the imaged robots. It is
basically a virtual device that performs all the steps (see Figure ??) to output
a sequence of elements within a specific field of view. A CameraStateTracker is
composed of (I) an ImageGrabber, which encapsulates the logic to configure an
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Figure 5: ArenaStateTracker Class Diagram

image source and acquire an image; (II) an ImageTracker, which is responsible
for detecting the robots in the input image, decode their ID and output a list
of objects that represent the robots’ status; (III) a CameraView, whose job is
to convert the image positions of a list of detected objects into the coordinates
of a world reference system, given the external and internal parameters of a
particular camera.

3.1.3 Detection and optimization

As mentioned in the previous section, an instance of the ArenaStateTracker
class applies a detection and decoding operator on the images acquired at a given
timestep. In order to detect the robots in action during an experiment while they
are navigating, we designed a type of marker that allows for easy detection and
easy decoding even when the image is relatively small. An example of the marker
is depicted in Figure 6. These markers are applied on top of each robot involved
in an experiment (see Figure 7 for an example with e-puck robots [2]) and carry
their ID encoded in binary as matrix of black and white cells. Each time the
detection step is performed, each frame acquired by the ArenaStateTracker is
scanned for occurrences of the marker. Each time a marker is detected, the
inner matrix is decoded and converted to an ID.

Figure 6: Marker Example Figure 7: Markers on e-puck robots

The detection of markers is a very time consuming operation due to the high
resolution of the camera images (i. e., 1620 x 1220 pixels) Although the Tracking
System Server consists of 16 cores and Halcon libraries can be parallelized on
those cores, the marker detection on one single image takes on average over 100
milliseconds. In multi camera experiments, the total tracking time of one frame
is the detection time multiplied by the number of cameras in use. This datum
would break another requirement which is the good time resolution. To have
good time resolution and to provide the robots with real time virtual sensor
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data, we need to synchronize the time spent for one step tracking with the
clock of ARGoS. It had been empirically proved that 100 milliseconds is a good
period for timesteps in ARGoS. To achieve effectiveness in ARGoS integration,
the average tracking time per image must be around 100 ms. Which is the
case only with single camera experiment. Therefore, optimization in image
processing is needed. The optimization heuristic implemented to reach the
required level of efficiency consists in processing the whole image only at a
certain periodic timestep, called keyframe (See Figure 8). In the timesteps
between two keyframes, the detection is performed only in the neighbourhood
of a previously detected marker (See Figure 9). The size of the neighbourhood
is a parameter that the researcher is able to set in the experiment configuration
file. It is good practice to set the size of the neighbourhood greater or equal at
the maximum distance that a robot can cover in 100 ms.

Figure 8: Image domain processed
in a keyframe

Figure 9: Image domain processed
in a optimized frame

This technique is consistent under the hypothesis that robots move at a
given maximum speed and therefore the maximum distance covered in 100 ms
is easily computable. The periodic keyframe helps to recover the robots that
might be lost by the ATS during the experiment. In fact, our experimental data
demonstrate that the reliability of the ATS on marker detection is constrained
to keyframe period and neighbourhood size (see Table 2). Therefore, lower the
period, higher the reliability of the system, but also lower time efficiency (cf.
also Figure 10 and Figure 11).

Both the keyframe period and the size of the neighbourhood are config-
uration parameters that can be tuned according to the requirements of each

ATS marker detection reliability
Keyframe period (timesteps) Neighbourhood size (cm) Mean Median
1 – 19.25725 20
5 30 19.05596 19
5 11 19.06481 19
5 10 19.02939 19
9 11 19.01369 19

Table 2: ATS marker detection reliability
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Figure 10: ATS marker detection efficiency in ms. The red line at 100 ms is a
required upper bound for efficiency performances. The blue line at 25 ms is an
ideal upper bound that allows a four camera experiment to meet the requirement
of 100 ms for timestep. The red points represent the average computation time
for each combination of keyframe period and neighbourhood size.

particular experiment. The researcher is in charge to settle the trade-off be-
tween time efficiency and accuracy on robots detection. Time efficiency grows
by growing the keyframe period or reducing the neighbourhood. The same ac-
tions lead to a drop of the accuracy of robots detection. Setting the keyframe
period to 1 is equivalent to disable the optimization (see section 3.1.4).

3.1.4 Configuration

Two other important classes of the API are ResourceManager and Experiment-
Manager. These two classes are responsible for declaring the set of resources
that a researcher wishes to have available for image acquisition and marker de-
tection, and for configuring a tracking session. Instances of these classes can
load a tracking session’s configuration from XML files.

The ResourceManager class can be used to read a XML file containing the
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Figure 11: ATS marker detection reliability on a set of 20 robots

definition and the parameters of cameras, detectors and image transformations
available for the session. Each of these elements is mapped to a unique ID, which
can be used to acquire the object which controls it. An XML tree of a resources
configuration files contains a root node, arena tracking system, and three chil-
dren nodes: grabbers, trackers and cameras. The grabbers node contains the
definition of every possible image source available in the experiment. It can
be either a camera or a directory of images. For each grabber of type camera,
in the cameras section must be added a node called camera that contains the
path to the camera calibration files. Also, for each grabber of type camera a
set of parameters is defined. In order to tune the image grabber properly in the
desired condition of the environment, the researcher might like to change the
parameters involved with the brightness of the image: exposure time abs and
gain raw. By raising the gain, the image results brighter but more noisy. In
turn, by increasing the exposure time, the risk is to have blurred markers due
to the movement of the robots. In the trackers section all the available trackers
are listed in nodes called tracker. A useful parameter for the researcher here
is the robot height parameter. This parameter allows a researcher to reuse the

9



same set of markers on robots of different height, provided that in the same
experiment the set of robots is homogeneous.

The ExperimentManager is instead used to read an XML file that describes
the configuration of the ArenaStateTracker, in terms of its components. The
researcher who wishes to configure an ArenaStateTracker instance has to simply
specify in the XML file how many CameraStateTracker objects compose the
ArenaStateTracker and, for each of them, specify the resources they should use
calling them by their unique ID. An example of XML tree for an experiment
configuration file includes a root node called arena tracking, and two children
node: arena state tracker and experiment record. The arena state tracker node
includes three attributes and a collection of nodes called camera state tracker,
one for each grabber used in the experiment. The camera state tracker must
include the specification of the grabber, a corresponding camera view if the
grabber is of type camera, and the tracker. Back to the arena state tracker
attributes, the attribute server port defines the port to which the server is bound
in the Tracking System Server in case the researcher decides to use the ATS this
way (see section 3.2.2). The attributes opt key frame period and opt square size
are optimization parameters (see section 3.1.3). The former defines the period in
timesteps of the key frame occurrence, the latter is the dimension in centimetres
of the side of the square that forms the area around the markers on which the
image domain is cropped.

3.2 Arena Tracking System Application Level

As stated earlier, there are two ways in which a researcher can be interested in
using the ATS. One is to monitor the real time evolution of the experiment on all
the cameras involved, controlling the beginning and the end of the recording.
For this purpose, an application called Viewer has been created. The other
implemented usage is to monitor and control the experiment through ARGoS,
with all the benefits already mentioned. For this purpose, the Tracking System
Server communicates with a client built ad-hoc within ARGoS.

In this section, the two applications will be presented in detail. Both of
them must be launched with a path to a resource XML file and a path to an
experiment configuration XML file as respectively as first and second parameter.

3.2.1 Viewer

The Viewer is an application that allows a researcher to visualize the progress
of the experiment through the images of the active cameras. It supports any
possible subset of cameras among those specified in the resources XML file, and
let the researcher start and stop the visualization of the images. The recording
of the images must be enabled in the XML configuration file in order to be
effective in the Viewer application.

The GUI is composed of three main parts: (I) the control part, (II) the
informative part and (III) the visual part, a part in which all the cameras are
shown according to their position in the camera grid in the arena (see Figure 12).
In the control part, there are buttons that the researcher can use to start and
stop the tracking. The recording button is shown only for completeness, but its
status is bounded to the corresponding attribute “record images” in the XML
configuration file. The refresh of the visual part heavily affects the performance
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Figure 12: Viewer GUI

of the tracking step. The refresh toggle button allows the researcher to enable or
disable the refresh of the visual part, in order to gain in terms of performance.
In the informative part, some information about the status of the experiment is
shown, such as enabled or disabled recording of images, current run number and
current timestep. The meaning of run can be set in the XML configuration file
by the attribute “change root directorty on start”. If the attribute is true, each
run is a session that lasts from one start to the next stop. Otherwise the run
will be only one, but with the possibility to suspend and restart the tracking
and the recording when needed. In the first case, the timestep counter restarts
at each new run, in the second case the counter continues from the last value.
In the visual part, all the views of the camera involved in the experiment are
displayed in a grid that reflects the disposition of the cameras in the arena.
Each view reports its camera ID and tracker ID as reported in the resources
XML file. It is possible to focus and enlarge the view of one or more cameras
by clicking on the desired views. A pop up window with enlarged picture will
appear.

3.2.2 Server

The Server application is the interface between the ATS and ARGoS. The ap-
plication binds a socket on any network interface of the Tracking System Server
to the port specified in the attribute “server port” in the experiment config-
uration XML file. If no attribute is specified, the server will bind by default
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to the port 4040. After binding, the server will enter its main loop. The loop
consists of two simple steps: waiting for a connection and an inner loop that
executes commands coming from the client. The inner loop ends when the client
disconnects, then the control returns to the outer loop that starts again waiting
for a new connection. There are up to now three commands that the client can
ask the server to execute, but for the developer is very easy to extend this list.
Those commands are start experiment, stop experiment and one shot. Start and
stop experiment respectively enable and disable tracking. The server exploits
the ATS API to perform tracking and sends to the client the Arena State at
any timestep the tracking is enabled. One shot in turn sends the Arena State
only once.

4 Integration into ARGoS

The most suitable mean of communication between the robot swarm and the
Tracking System is ARGoS [4], a robot swarm simulator developed at IRIDIA.
ARGoS is a modular system based on plugins. The plugin developed to interface
ARGoS with the ATS is a physics engine, called Iridia Tracking System Physics
Engine. Unlike a regular physics engine, the ITS Physics Engine does not cal-
culate the position of each robot, but it receives the robot positions directly
from the ATS. Once ARGoS places all the robots in the space, it is possible to
exploit its power to send information about the virtualized environment to the
robots through virtual sensors onboard. Furthermore, it would be possible for
the robots to act back on the simulated environment thanks to virtual actuators.
This last feature is not yet implemented and must be studied in the future.

The data flow for the architecture is illustrated in Figure 13. Notice that
the virtual sensor data and the virtual actuator data flow in opposite directions,
forming a loop between ARGoS and the robots.

In this section we describe how the communication between the ATS, AR-
GoS, and the swarm takes place, how real robots can sense virtual environment,
and how it is possible to extend the set of virtual sensors by implementing spe-
cific virtual sensors. Finally, suggestions about possible future work are listed.

4.1 Architecture

The ITS Physics Engine plugin is the cornerstone of the interactions between
ARGoS, the ATS and the robot swarm. As stated above, the goal of this physics
engine is not to calculate the Arena State, but to open a channel of communi-
cation towards the Tracking System Server and obtain the Arena State from it.
At the same time, the ITS Physics Engine is responsible for the communication
between the simulated environment and the robot swarm for virtual sensing.
To achieve these requirements, at the beginning of its execution the physics en-
gine spawns two threads. One of them executes the Argos ITS Client, and the
other one the Virtual Sensor Server. On robot side, the entity in charge of the
communication with the Virtual Sensor Server is a thread called Virtual Sensor
Client.
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Figure 13: Communication flow in the system

4.1.1 Argos ITS Client

The Argos ITS Client is the client that connects to the Tracking System Server
which must be already running. After the connection, the client sends a com-
mand to the server and waits for the answer. Normally, the Argos ITS Client
asks the server to perform the tracking, and waits for the Arena State from the
server. When the client receives a new Arena State, it updates a data structure
called Arena State Struct, which is the data structure that the ITS Physics
Engine reads during its update step. It is worth to note that the timesteps
of the ATS and ARGoS are not synchronized, but thanks to the multi thread
architecture the physics engine always obtains the latest data available.

4.1.2 Virtual Sensor Server

The Virtual Sensor Server is the endpoint of the communication with the swarm.
Its task is to accept robot client connections at any time and send the data re-
lated to the virtual sensors mounted on the robot, and stored in a data structure
called Virtual Sensor Data. The Virtual Sensor Data must be sent to the swarm
at a specific time, synchronized with the update step of the physics engine. The
Virtual Sensor Data is basically a collection of pairs, where one element is the
robot ID, and the other is a byte array containing the data that must be sent
at the end of the current update step. The byte buffer includes, for each virtual
sensor to be updated, one byte for the sensor ID followed by a number of bytes
that represents the updated data. The number of data bytes is fixed for each
sensor, and known by the Virtual Sensor Server and the Virtual Sensor Client
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on the robot thanks to a shared table called Virtual Sensor Register. There-
fore, the length of the byte array sent does not need to be fixed. This strategy
allows to save bandwidth by preventing to send data related to certain sensors.
For example a virtual sensor can implement the policy to send data only if the
variation of the reading is greater than a threshold.

4.1.3 Virtual Sensor Client

On robot side, the Virtual Sensor Client is again a thread that receives a new
Virtual Sensor Data at each update step of ARGoS. The data are received in
form of byte array and then converted in appropriate data structure by the
specific virtual sensor. The deserialization made by the Virtual Sensor Client
consists in consuming the byte array by reading one byte for the sensor id,
retrieve the specific virtual sensor data size from the Virtual Sensor Register,
then update the Virtual Sensor Data for the specific sensor with the portion
of byte array of the given size. The deserialization is then completed when
the update step of the specific virtual sensor is called and the byte array is
transformed into the particular data structure of the sensor. This approach
allows maximal flexibility because data is treated as generic byte array outside
the virtual sensor.

4.2 Virtual sensing

The virtual sensing is one of the most powerful feature of the system, emerging
from the integration of the ATS in ARGoS. As stated earlier, the virtual sensing
allows real robots to feel the characteristics of a virtual environment in a sort
of augmented reality. This peculiarity is interesting under different points of
view. On one hand, it is possible to virtualize the environment in an easy
way, creating scenarios that are difficult to reproduce in the real arena, or not
possible at all. For example, it is possible to simulate obstacles of any shape
without actually build them. Moreover, it is possible to create an evolving
environment (e.g. movable obstacles, lights, color spots on the floor...) which
is actually not possible to have in a regular arena. On the other hand the
researcher can virtualize parts of the robot itself such as sensors and actuators
that are not currently onboard the robots. This possibility is useful in case of a
feasibility study for a new sensor/actuator. In fact it is now possible to study the
characteristics of the wanted sensor, prototype is as a virtual sensor, and also
test it in real experiments. Thanks to the testing the so designed virtual sensor
can be validated and committed for hardware design, or it can be modified in
order to better satisfy the requirements.

4.3 Virtual sensor implementation

The steps to take to implement a virtual sensor are different if the researcher
wants to develop a brand new virtual sensor, or to virtualize a sensor that is
already onboard the robots and already implemented as a couple of real and
simulated sensors in ARGoS. The first case is a generalization of the second,
where one preliminary step is needed.

The structure of the ITS Physics Engine reflects the tree structure of AR-
GoS. Inside main directory plugins, there are two directories: simulator and
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robots. The researcher is intended to work inside the robots directory. The
robots directory contains a directory generic, and a directory for each robot
ARGoS can be built for. In each of those directories there are three directories:
control interface, simulator, and real robot. The directory simulator contains
all the files needed to use the robot in simulation. The directory real robot
contains all the files that form the library to be upload on the real robots. The
directory control interface includes the common interfaces that are used both
on the real robots and in the simulator.

To virtualize an existing sensor, the researcher is required to implement
the pair of classes one for the real robot and one for the simulator. Also,
the researcher must insert an entry in the virtual sensor register, located in
generic/control interface, assigning a unique ID to the virtual sensor. Finally,
the virtual sensor must be added to the list of suitable sensors in the method
InsertSensor of the class CRealEPuckITS. The real robot virtual sensor class
must implement the same control interface of the sensor that the researcher
is virtualizing, along as the real virtual sensor interface. The simulator virtual
sensor class must also implement the same control interface as the corresponding
simulated sensor, and the generic virtual sensor interface.

To virtualize a brand new sensor, the researcher must implement the corre-
sponding control interface and enable the sensor’s name in the initialization of
the robot. After that, the user can follow the same steps described above for
existing sensor virtualization.

4.4 Future work

Future development of the ITS includes a study oriented to the implementation
of virtual actuators. The realization of virtual actuators will enhance the virtu-
alization power of the ITS, closing the loop shown in Figure 13. Thanks to the
addiction of the virtual actuators the robots will be able to sense and act on a
virtual environment at the same time.

5 Concluding remarks

This document is not the final version and it will be updated along with the
technical development of the Arena Tracking System.
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