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Abstract 

This work presents a novel approach t o  efficient multi- 
robot mapping and exploration which exploits a mar- 
ket architecture in order to maximize information gain 
while minimizing incurred costs. This system is- reli- 
able and robust in that it can accommodate dynamic 
introduction and loss of team members in addition t o  
being able t o  withstand communication interruptions 
and failures. Results showing the capabilities of. our 
system o n  a team of exploring autonomous robots are 
given. 

1 Introduction 
Inherent to many robotic applications is the need to 
explore the world in order to effectively reason about 
future plans and objectives. In order to operate and 
perform complex tasks in previously unknown, un- 
structured environments, robots must be able to col- 
lect information and understand their surroundings. 
Many environments are hostile and uncertain, and it 
is therefore preferable or necessary to use robots in or- 
der to avoid risking human lives. In some cases, map- 
building is the main focus (e.g. reconnaissance, plane 
tary exploration, while in others generating a map of 
the workspace is required for other purposes (e.g. nav- 
igation and planning). There axe situations in which 
we would like to minimize repeated coverage to ex- 
pedite the mission, while in the context of dynamic 
environments some amount of repeated coverage may 
be desirable. In order to effectively explore an un- 
known environment, it is necessary for an exploration 
system to be reliable, robust, and efficient. In this pa- 
per, we present an approach to multi-robot exploration 
which has these characteristics and has been imple- 
mented and demonstrated on a team of autonomous 
robots. The definition of exploration varies within the 
literature, but we define it as the acquisition of attain- 
able, relevant information from an unknown or par- 
tially known environment (e.g. in the form of a map). 

Our approach focuses on the use of multiple robots 
to perform an exploration task. Multi-robot systems 
have some obvious advantages over single robot sys- 
tems in the context of exploration. First, several 
robots are able to cover an area more quickly than 
a single robot, since coverage can be done in paral- 
lel. Second, using a robot team provides robustness 
by adding redundancy and eliminating single points of 
failure that may be present in single robot or central- 
ized systems. 

Coordination among robots is achieved by using a 
market-based approach [2]. In this framework, robots 
continuously negotiate with one another, improving 
their current plans and sharing information about 
which regions have and have not already been covered. 
Our approach does not rely on perfect communication, 
and is still functional (at reduced efficiency) with zero 
communication (apart from initial deployment). Fur- 
thermore, although a central agent is present, the sys- 
tem does not rely on this agent and will still function 
if all communication between it and the robots is lost. 
The role of this agent is simply to act as an interface 
between the robot team and a human operator. Inter- 
face agents can be brought into existence at any time, 
and in principle several can be active simultaneously. 
Thus the system is implemented in a completely dis- 
tributed fashion. 

The remainder of the paper is arranged as follows. 
Section 2 discusses previous work in the area of multi- 
robot exploration. Section 3 outlines our approach 
to  the problem and section 4 describes the results ob- 
tained implementing our approach on real robot teams 
of different sizes. In section 5, we present our conclu- 
sions and discuss future research. 

2 Related Work 
There has been a wide variety of approaches to robotic 
exploration. Despite the obvious benefits of using mul- 
tiple robots for exploration, only a small fraction of the 
previous work has focused on the multi-robot domain. 
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Of those, relatively few approaches have been imple- 
mented effectively on real robot teams. 

Balch and Arkin [l] investigated the role of com- 
munication for a set of common multi-robot tasks. 
For the task of grazing (i.e. coverage, exploration) 
they concluded that communication is unnecessary as 
long as the robots leave a physical record of their pas- 
sage through the environment (a form of implicit com- 
munication). In many cases, it is not clear exactly 
how this physical trace is left behind and often phys- 
ically marking the environment is undesirable. In ad- 
dition, searching for the traces decreases exploration 
efficiency. 

One technique for exploration is to start at a given 
location and slowly move out towards the unexplored 
portions of the world while attempting to get full, de- 
tailed coverage. Latimer et. al. [4] presented an ap- 
proach which can provably cover an entire region with 
minimal repeated coverage, but requires a high degree 
of coordination between the robots. The robots sweep 
the space together in a parallel line formation until 
they reach an obstacle boundary, at which point the 
team splits up at the obstacle and can opportunis- 
tically rejoin at some later point. While guaranteed 
total coverage is sometimes necessary (e.g. land mine 
detection), in other cases it is preferable to get an ini- 
tial rough model of the environment and then focus 
on improving potentially interesting areas or supple- 
ment the map with more specific detail (e.g. planetary 
exploration). Their approach is only semi-distributed, 
and fails if a single team member cannot complete its 
part of the task. 

Rekleitis et. al. [5] proposed another method of co- 
operation in which stationary robots visually track 
moving robots as they sweep across the camera field 
of view. Obstacles are detected by obstructions block- 
ing the images of the robots as they progress along 
the camera image. Since there are always some robots 
remaining stationary, some of the available resources 
are always idle. Another drawback is that if one robot 
fails, others can be rendered useless. 

The methods of Rekleitis et. al. [5] and Latimer et. 
al. [4] have the disadvantage of keeping the robots in 
close proximity and require close coordination which 
can increase the time required for exploration if full, 
detailed coverage is not the primary objective. This 
also inhibits the reliability of the system in the event of 
full or partial communication problems or single robot 
failures. While these issues are not always drawbacks 
in some coverage applications, for some exploration 
domains (e.g. reconnaissance, mapping of extreme en- 
vironments), these are typically undesirable traits. 

Simmons et. al. (61 presented a multi-robot ap- 
proach which uses a frontier-based search and a simple 

bidding protocol. The robots evaluate a set of fron- 
tier cells (known cells bordering unknown terrain) and 
determine the expected travel costs and information 
gain of the cells (estimated number of unknown map 
cells visible from the frontier). The robots then sub- 
mit bids for each frontier cell. A central agent (with 
a central map) then greedily assigns one task to each 
robot based on their bids. As with many greedy algo- 
rithms, it is possible to get highly suboptimal results 
since plans only consider what will happen in the very 
near future. The most significant drawback of this 
method, however, is the fact that the system relies on 
communication with a central agent and therefore the 
entire system will fail if the central agent fails. Also, if 
some of the robots lose communication with the cen- 
tral agent, they end up doing nothing. 

Yamauchi [ll] developed a distributed fault- 
tolerant multi-robot frontier-based exploration strat- 
egy. In this system, robots in the team share local 
sensor information so that all robots produce similar 
frontier lists. Each robot moves to its closest frontier 
point, performs a sensor sweep, and broadcasts the 
resulting updates to the local map. Yamauchi’s ap- 
proach is completely distributed, asynchronous, and 
tolerant to the failure of a single robot. However, the 
amount of coordination is quite limited and thus can- 
not take full advantage of the number of robots avail- 
able. For example, more than one robot may decide 
(and is permitted) to go to the same frontier point. 
Since new frontiers generally originate from old ones, 
the robot that discovers a new frontier will often be 
the best suited to go to it (the closest). Another 
robot moving to the same original frontier will also 
be close to the newly discovered frontier. This can 
happen repeatedly; therefore, robots can end up fol- 
lowing a leader indefinitely. In addition, a relatively 
large amount of information must be shared between 
robots. So, if there is a temporary communications 
drop, complete information will not be shared possi- 
bly resulting in a large amount of repeated coverage. 
Similar to the work by Simmons et. al. [6], plans are 
greedy and thus can be inefficient. 

3 Approach 

The previous examples fall short of presenting a mul- 
tiple robot exploration system that can reliably and 
efficiently explore unknown terrain, is robust to robot 
failures, and effectively exploits the benefits of using 
a multi-robot platform. Our approach is designed to 
meet these criteria by using a market architecture to 
coordinate the actions of the robots. Exploration is ac- 
complished by each robot visiting a set of goal points 
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in regions about which little information is known. 
Each robot produces a tour containing several of these 
points, and subsequently the tours are refined through 
continuous inter-robot negotiation. By following their 
improved tours, the robots are able to explore and map 
out the world in an efficient manner. 

3.1 Market architecture 
At the core of our approach is a market control archi- 
tecture [2]. Multiple robots interact in a distributed 
fashion by participating in a market economy; deliver- 
ing high global productivity by maximizing their own 
personal profits. Market economies are generally un- 
encumbered by centralized planning; instead individ- 
uals are free to exchange goods and services and enter 
into contracts as they see fit. The architecture has 
been successfully implemented on a robot team per- 
forming distributed sensing tasks in an environment 
with known infrastructure [8]. 

Revenue is paid out to individual robots for in- 
formation they provide by an agent representing the 
user’s interests (known as the operator executive, or 
OpEzec). Costs are similarly assessed as the amount 
of resources used by an individual robot in obtaining 
information. 

In order to use the market approach as a coordina- 
tion mechanism, cost and revenue functions must be 
defined. The cost function, C : R + %+, is a map- 
ping from the a set of resources R to a positive real 
number. One can conceivably consider a combination 
of several relevant resources (time, energy, communi- 
cation, computation), however here we use a distance- 
based cost metric - the expected cost incurred by the 
robot is the estimated distance traveled to reach the 
goall. The item of value in our economy is informa- 
tion. The revenue function, R : M --+ %+, returns a 
positive real number given map information M .  The 
world is represented by an occupancy grid where cells 
may be marked as free space, obstacle space, or un- 
known. Information gained by visiting a goal point can 
be calculated by counting the number of unknown cells 
within a fixed distance from the goal2. Profit is then 
calculated as the revenue minus the cost. The revenue 
term is multiplied by a weight converting information 
to distance. The weight &xes the point where cost in- 
curred for information gained becomes profitable ( i . e .  
positive utility). Each robot attempts to maximize the 
amount of new information it discovers, and minimize 

lPath costs are estimated using the D* algorithm [7], which 
is also used for path planning. 

2The value we use is actually an overestimate of the informa- 
tion gain in a sensor sweep in order to compensate for the fact 
that the robot can discover new terrain along its entire path to  
the goal point. 

its own travel distance. By acting to advance their own 
self-interests, the individual robots attempt to maxi- 
mize the information obtained by the entire team and 
minimize the use of resources. 

Within the marketplace, robots make decisions by 
communicating price information. Prices and bidding 
act as low bandwidth mechanisms for communicating 
aggregate information about costs, encoding many fac- 
tors in a concise fashion. In contrast to other systems 
which must send large amounts of map data in order 
to facilitate coordination [6, 111, coordination in our 
system is for the most part achieved by sharing price 
information. 

3.2 Goal point selection strategies 

Tasks (goal points to visit) are the main commodity 
exchanged in the market. This section describes some 
example strategies for generating goal points. These 
strategies are simple heuristics intended to select un- 
explored regions for the team to visit, with the goal 
point located at the region’s centre. 

Random. The simplest strategy used is random goal 
point selection. Here goal points are chosen at 
random, but discarded if the area surrounding the 
goal point has already been visited. An area is 
considered visited if the number of known cells 
visible from the goal is greater than a fixed thresh- 
old. Random exploration strategies have been 
effective in practice, and some theoretical basis 
for effectiveness of the random approach has been 
given (e.g. (91). 

Greedy exploration. This method simply chooses a 
goal point centred in the closest unexplored region 
(of a fixed size) to the robot as a candidate ex- 
ploration point. As demonstrated previously [3], 
greedy exploration can be an efficient exploration 
strategy for a single robot. 

Space division by quadtree. In this case, we rep- 
resent the unknown cells using a quadtree. In 
order to account for noise, a region is divided 
into its four children if the fraction of unknown 
space within the region is above a fixed thresh- 
old. Subdivision recursion terminates when the 
size of a leaf region is smaller than the sensor foot- 
print. Goal points are located at the centres of the 
quadtree leaf regions. 

Because the terrain in not known in advance, it is 
likely that some goal points are not reachable. When 
a goal is not reachable, the robot is drawn towards the 
edge of reachable space while attempting to achieve 
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its goal. This results in more detail in the areas of the 
map near boundaries and walls, which are usually the 
most interesting areas. Once the incurred travel cost 
exceeds the initial expected cost by a fixed margin, the 
robot decides that the goal is unreachable and moves 
on to its next goal. This avoids the scenario in which 
a robot indefinitely tries to reach an unreachable goal 
point. 

Note that the goal generation algorithms are ex- 
tremely simplistic. The intention is that the market 
architecture removes the inefficiencies consequent in 
using relatively simple criteria for goal selection. 

3.3 Exploration algorithm 

Here we describe the complete exploration algorithm, 
which implements the ideas discussed in the preceding 
parts of section 3. 

The robots are initially deployed into an unknown 
space with known relative positions. Each robot be- 
gins by generating a list of goal points using one of the 
strategies described in section 3.2. The robots may 
uniformly use the same strategies, or the strategy used 
can vary across robots or even over time on a single 
robot. If the robot is able to communicate with the 
OpExec, these goals can be transmitted to check if they 
are new goals to the colony (if the OpExec is not reach- 
able, this step is skipped). The robot then inserts all 
of its remaining goals into its current tour, by greed- 
ily placing each one at the cost-minimizing (shortest 
path) insertion point in the list3. Next, the robot tries 
to sell each of its tasks to all robots with which it is cur- 
rently able to communicate, via an auction. The other 
robots each submit bids, which encapsulate their cost 
and revenue calculations. The robot offering the task 
(the auctioneer) waits until all robots have bid (up to a 
specified amount of time). If any robot bids more than 
the minimum price set by the auctioneer, the highest 
bidder is awarded the task in exchange for the price of 
the bid. Once all of a robot’s auctions close (all goals 
on the robot’s tour have been sequentially offered), 
that robot begins its tour by navigating towards its 
first goal. When a robot reaches a goal, it generates 
new goal points. The number of goal points generated 
depends on how many goals are in the current tour - 
if there are a large number of goals in the current tour, 
fewer goals are generated since introducing many new 
tasks into the system could limit performance by in- 
creasing computation and negotiation time. The robot 

3The problem encountered here is an example of the travel- 
ing salesman problem (TSP), which is known to be ”P-hard. 
The optimal tour cannot be found in polynomial time and goals 
arrive in an online fashion, so a greedy insertion heuristic is used 
to approximate. 

then starts off towards its next goal, and offers all of 
its remaining goals to the other robots. 

The selling of tasks is done using single-item first- 
price sealed-bid auctions [lo]. A robot may announce 
an auction for any task in its tour, with the interpre- 
tation that it currently owns the right to execute the 
task in exchange for payment from the OpExec. Given 
a task under consideration, a robot’s valuation of the 
task is computed as  the profit expected if the task were 
added to the current tour (expected revenue minus ex- 
pected cost). The auctioneer announces a reservation 
price for the auction, P,.. P,. is the seller’s valuation 
of the task with a k e d  mark-up, and represents the 
lowest possible bid that the seller will accept. The re- 
maining robots act as buyers, negotiating to receive 
the right to execute the task, and therefore payment 
from the OpExec. Each buyer calculates its valuation 
for the goal, U,, by finding the expected profit in adding 
that goal to  its current tour. The bidding strategy is 
defined by each buyer i submitting a bid of 

B, = Pr + a  * (U, - Pr) (1) 

where a is between 0 and 1. We use a = 0.9, which 
gives seller some incentive to sell the task to a better- 
suited robot, while at the same time allowing the buyer 
to reap a larger fraction of the additional revenue the 
task generates (as a reward for actually executing the 
task). 

If the bidder expects to make a profit greater than 
the reservation price, then B, from equation (1) will be 
greater than P,., and the bidder will be awarded the 
task if no other robot has submitted an even higher 
bid. If the bidder expects to make a profit which is 
less than the reservation price, then B, will be smaller 
than P,., and so no bid is submitted (or equivalently, 
the bid is lower than the reservation price so it cannot 
win the auction). If none of the bidding robots offer 
more than the reservation price, then the seller will 
make more profit by keeping the goal, and so there 
is no winner. Given this mechanism, the robot that 
owns the task after the auction is in most cases the 
robot that can perform the task most efficiently, and 
is therefore best-suited for the task. 

Since communication is completely asynchronous, a 
robot must be prepared to handle a message regardless 
of current state. In order to achieve system robustness, 
it is important to ensure that some communications 
issues inherent to the problem domain are addressed. 
No agent ever assumes that it is connected to or able 
to communicate with any of the other agents. Many of 
the robots’ actions are driven by events which are trig- 
gered upon the receipt of messages. If for some reason 
a robot does not receive a message it is expecting (e.g. 
the other party has had a failure, or there are commu- 
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nication problems) it must be able to continue rather 
than wait indefinitely. Therefore, timeouts are invoked 
whenever an agent is expecting a response from any 
other agent. If a timeout expires, the agent is able 
carry on and is also prepared to ignore the response if 
it does arrive eventually. 

Although a single robot can offer only one task at 
a time, there can be multiple tasks simultaneously up 
for bids by multiple robots. Therefore, it is possible for 
a robot to win two tasks from simultaneous auctions 
which may have been wise investments individually, 
but owning one may devalue the other (e.g. two tasks 
which may be equally far from the robot, but far away 
from each other). In this situation the robot has no 
choice but to accept both tasks, but can ofRoad the 
less desirable task at its next opportunity to call an 
auction (e.g. when it reaches its next goal point). In 
this way, robots have constantly occurring opportuni- 
ties to exchange the less desirable tasks that they may 
have obtained through auction or goal generation. If 
two instances of the same goal are simultaneously auc- 
tioned off and won by different robots, one robot will 
eventually own both as it is highly unlikely that these 
two goals will be auctioned off at the same time more 
than once. The solutions will still be locd minima in 
terms of optimality because we are only allowing single 
task exchanges. 

Robot failure (loss) is handled completely transpar- 
ently. The lost robot no longer participates in the ne- 
gotiations and thus is not awarded any further tasks. 
The lost robot’s tasks are not completed, but other 
robots eventually generate goal points in the same ar- 
eas, since those unexplored regions are worth a large 
amount of revenue. New robots can also be introduced 
into the colony if position and orientation relative to  
another robot (or equivalently some landmark if avail- 
able) at some instant of time is known. 

3.4 Information Sharing 
Information sharing is helpful in ensuring that the 
robots coordinate the exploration in a sensible manner. 
We would like the robots to cover the environment as 
completely and efficiently as possible with minimal re- 
peated coverage. This is achieved in several ways, most 
of which emerge naturally from the negotiation proto- 
col. Information sharing mechanisms are not crucial 
to the completion of the task, but can increase the effi- 
ciency of the system. Any communication disruptions 
or failures do not disable the team, but can reduce the 
efficiency of the exploration. 

First, the robots are usually kept a reasonable dis- 
tance apart from one another, since this is the most 
cost-effective strategy. If one robot has a goal point 

that lies close to a region that is covered by some other 
robot, the other robot wins this task when it is auc- 
tioned off (this robot has lower costs and thus makes 
more profit). The effect is that the robots tend to stay 
far apart and map different regions of the workspace, 
thereby minimizing repeated coverage. 

Second, if one (auctioneer) robot offers a goal that is 
in a region already covered by another (bidder) robot, 
the bidder sends a message informing the auctioneer 
of this fact. The auctioneer then cancels the auction 
and removes that goal from its own tour. Here the 
bidder robot is giving the auctioneer robot a better es- 
timate of the profit that can be gained from the task, 
and prevents the seller from covering or selling space 
which has already been seen. In view of this new infor- 
mation, the auctioneer now realizes that it will not be 
profitable for any of the robots to go to this waypoint. 

Third, there is also explicit map sharing which is 
done at regular intervals. A robot can periodically 
send out a small explored section of its own map to  
any other robot with which it can communicate in 
exchange for revenue (based on the amount of new 
information, i.e. the number of new known map cells, 
which is being transmitted). This information can con- 
ceivably be exchanged on the marketplace, where each 
robot can evaluate the expected utility of the map 
segments and then offer an appropriate price to the 
seller, who may sell if the cost of exchange (in time 
and communication required to send the information) 
is small compared to the offered price. This type of in- 
formation exchange can improve the efficiency of the 
negotiation process in that robots are able to estimate 
profits more accurately and are less likely to generate 
goals which are in regions already covered by other 
team members. In the case of a contradiction between 
a robot’s map and the map section being received, the 
robot always chooses to believe its own map. 

Map information from the robots is gathered upon 
request from an OpExec on behalf of a human oper- 
ator. The OpExec sends a request for map data to 
all reachable robots, and then assembles the received 
maps assuming the relative orientations of the robots 
are known. The maps are combined by simply sum- 
ming the values of the individual occupancy grid cells 
where an occupied reading is counted as a $1 and a 
free reading is counted as a -1. By superpositioning 
the maps in this way, conflicting beliefs destructively 
interfere resulting in a 0 value (unknown), and similar 
beliefs constructively interfere resulting in larger posi- 
tive or negative values which represent the confidence 
in the reading (there is an upper limit to the absolute 
value a combined reading can have in order to allow 
for noise or changes in the environment). 
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4 Results 

4.1 Experimental setup 
The experiments were run on a team of ActivMe- 
dia PioneerII-DX robots (Figure 1). Each robot is 
equipped with a ring of 16 ultrasonic sensors, which 
are used to construct occupancy grids of the envi- 
ronment as the robot navigates. Each robot is also 
equipped with a KVH EoCORETM 1000 fiber optic 
gyroscope used to track heading information. Due to 
the high accuracy of the gyroscopes (2 - 4 O drift/hr), 
we use the gyro-corrected odometry at all times rather 
than employing a localization scheme. Using purely 
encoder-based dead reckoning the positional error can 
be as high as 10% to 25% of the distance traveled 
for path lengths on the order of 50-100m, while us- 
ing gyro-corrected odometry reduces the error to the 
order of 1% of the distance traveled. However, an ac- 
curate localization algorithm may improve the results, 
especially if the experimental runs extend over a much 
longer period of time (a typical run takes 5 to 10 min- 
utes to map several hundred square metres). 

Figure 1: Robot team used in experiments. 

Test runs were performed in three different environ- 
ments. The first is in the Field Robotics Center (FRC) 
highbay at Carnegie Mellon University. The highbay 
is nominally a large open space (approximately 45m 
x 30m), although it is cluttered with many obstacles 
(such as walls, cabinets, other large robots, and equip- 
ment from other projects - see Figure 2). Figures 3 
and 4 show the constructed maps from two separate 
highbay explorations. The second environment is an 
outdoor run in a patio containing open areas as well 
as some walls and tables (size is approximately 30m 
x 30m). Figure 5(u) shows the resulting map created 
by a team of five robots in this environment. The 
third environment is a hotel conference room during a 
demonstration in which approximately 25 tables were 
set up and in excess of 100 people were wandering 
about the rooms and lobbies (size is approximately 
40m x 30m). A map created by five robots is shown in 
Figure 5(b). The results for the environments shown 
in Figure 5 were not quantified, but were provided as 
examples of wide applicability. 

Figure 2: Two different views of the FRC highbay environment 
used in testing. 

Figure 3: Five robot map of FRC highbay. Approximate size of 
mapped region is 550m’. The arrows in the figure show where 
the photographs in Figure 2 were taken. 

4.2 Experimental Results 
In order to quantify the results, we use a metric which 
is directly proportional to the amount of informat.ion 
retrieved from the environment, and is inversely pro- 
portional to the costs incurred by the team. The 
amount of information retrieved is the area covered, 
and the cost is the combined distance traveled by each 
robot. Thus, the quality of exploration is measured as: 

where di is the distance traveled by robot i, A is the 
total area covered, and n is the number of robots in 
the team. The sensor range utilized by each robot is 
a 4m x 4m square (containing local sonar data as an 
occupancy grid), and so a robot can view a maximum 
previously uncovered area of 4m2 for every one metre 
it travels (Qmaz = 4m2/m). This is a considerable 
overestimate for almost any real environment, as it 
assumes that there is zero repeated coverage and that 
robots always travel in straight lines (no turning) and 
never encounter obstacles. Nevertheless, it can serve 
as a rough upper bound on exploration efficiency. 

Table 1 shows a comparison of the results ob- 
tained in running our exploration algorithm using the 
three different goal selection strategies outlined in sec- 
tion 3.2, plus one run in which no communication was 
permitted between the robots. In each case, the run 

3021 



Figure 4: Four robot map of FRC highbay. Approximate size 
of mapped region is 500m2. (The map differs from the one in 
Figure 3, as a different set of doors were open and other objects 
in the environment had been moved.) The numbered areas in 
the figure represent the five areas that the robots were required 
to visit in order to reach the stopping criteria. 

Strategy 

was carried out in the FRC highbay using four robots 
which were initially deployed in a line formation. Ex- 
ploration was terminated when tahe robots had mapped 
out a rough outline of the complete floor plan of the 
highbay, which required them to visit and map the five 
main areas labeled in Figure 4. Each value in Table 1 
is an average obtained over 10 runs with the best and 
worst Q values discarded. During these experiments, 
robots in the team were sporadically disabled in order 
to demonstrate the system’s robustness to  the loss of 
individual robots. 

The quadtree and random strategies performed 
equally well, covering on average 1.4m2 per metre trav- 
eled. The greedy strategy performed relatively poorly, 
covering an average of 0.9m2 per metre traveled. The 
main advantage of the quadtree and random strategies 
is the fact that many goal points are selected which are 
spread out over the entire exploration space, irrespec- 
tive of current robot positions. Through negotiation, 
the robots are able to come up with plans which allow 
them to spread out and partition the space efficiently. 

Area covered / distance traveled 
[m2 lml 

Figure 5: (a) Four robot map of exterior environment. Approx- 
imate size of mapped region is 50m2. The ‘X’ shaped objects 
are the bases of outdoor tables. (b )  Five robot map of hotel 
conference room. Approximate size of mapped region is 250m2. 
The rectangular-shaped objects are tables which were covered 
on three of their four sides. 

Random I 1.4 
Quadtree I 1.4 

1 Greedv I 0.85 n 
1 Nocomm I 0.41 U 

Table 1: Comparison of goal selection strategy results 

The greedy approach has a number of drawbacks 
which limit the exploration efficiency. By design, the 
goal points generated by a robot are always close to 
the current position, so the robot generating a goal 
is usually best suited to visit that goal. Thus, very 
few tasks are exchanged between robots, and so the 
efficiency benefits of negotiating are not fully exploited 
by the team. This also means that the plans that the 
robots are using do not in general have the effect of 
globally dividing up the space and spreading out the 
paths of the robots. 

The final entry in Table 1 shows the effect of remov- 
ing all negotiation and information sharing from the 
system. This effectively leaves the robots exploring 
concurrently, but without any communications they 
cannot efficiently cover the environment. Robots used 
the random goal generation strategy. Without the 
ability to negotiate, robots did not have the opportu- 
nity to fully improve their tours by exchanging tasks, 
and to divide up the space requiring coverage. The 
resulting coverage efficiency of 0.41m2/m is only 29% 
of the coverage efficiency achieved when coordinating 
the robot team using the market architecture. With- 
out communication, the worst possible case for cover- 
age occurs when all of the robots cover all of the space 
individually before the combined coverage is complete 
(i.e. termination occurs when U Ai = n Ai = A, where 
Ai is the area covered by robot i and A is the com- 
plete area being mapped). Assuming n robots are used 
and there is no repeated coverage, if the robots are al- 
lowed to communicate then efficiency can at best be 
improved by a factor of n. In our results we have 
come close to this upper bound by adding negotiation, 
improving the efficiency by a factor of 3.4 when using 
n = 4 robots. 

Figure 6 shows a trace of the paths followed by the 
robots in one of the experimental runs using random 
goal generation. Here we can see the beneficial effect 
that the negotiation process had on the plans produced 
by the robots. Although the initial goal points were 
randomly placed, the resulting behaviour is that the 
robots spread out to different areas and covered the 
space efficiently. 
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Figure 6: Paths taken by four exploring robots in FRC highbay. 
The robots initially were in a line formation near the centre 
of the image and dispersed in different directions to  explore the 
highbay. The small amount of repeated coverage near the centre 
of the map is unavoidable, as there is only a narrow lane joining 
the left and right areas of the environment (compare with photos 
shown in Figure 2 and map shown in Figure 4 for reference). 

5 Conclusions 
In this paper we present a reliable, robust, and efficient 
approach to distributed multi-robot exploration. The 
key to our technique is utilizing a market approach 
to coordinate the team of robots. The market archi- 
tecture seeks to maximize benefit (information gained) 
while minimizing costs (in terms of the collective travel 
distance), thus aiming to maximize utility. The system 
is robust in that exploration is completely distributed 
and can still be carried out if some of the colony mem- 
bers lose communications or fail completely. The ef- 
fectiveness of our approach was demonstrated through 
results obtained with a team of robots. We found that 
by allowing the robots to negotiate using the market 
architecture, exploration efficiency was improved by a 
factor of 3.4 for a four-robot team. 

To build on the promising results seen so far, fu- 
ture work will look at several possible ways to  improve 
the overall performance of the system. Currently, the 
algorithm is designed to minimize distance traveled 
while exploring. Instead of distance based-costs, using 
a time-based cost scale will lead to rapid exploration. 
This will also facilitize a more straightforward way to 
prioritize some types of tasks over others in the mar- 
ket framework, for example if there are other mission 
objectives in addition to exploration. A more com- 
plex cost scheme could be implemented which com- 
bines several cost factors in order to efficiently use a 
set of resources. It may also be worthwhile to include 
some simple learning which may increase the effective- 
ness of the negotiation protocol. Characterizing the 
dependence of exploration efficiency on the number of 
robots in the team may also hrovide interesting re- 
sults. In addition, testing different goal generation 
strategies (e.g. frontier-based strategies) may lead to 

performance improvements. Finally, robot loss can be 
handled more explicitly which may lead to a faster re- 
sponse in covering the goals of the lost team member. 
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