ARGoS  3
A parallel, multi-engine simulator for swarm robotics
proximity_default_sensor.cpp
Go to the documentation of this file.
1 
7 #include <argos3/core/simulator/simulator.h>
8 #include <argos3/core/simulator/entity/embodied_entity.h>
9 #include <argos3/core/simulator/entity/composable_entity.h>
10 #include <argos3/plugins/simulator/entities/proximity_sensor_equipped_entity.h>
11 
13 
14 namespace argos {
15 
16  /****************************************/
17  /****************************************/
18 
19  static CRange<Real> UNIT(0.0f, 1.0f);
20 
21  /****************************************/
22  /****************************************/
23 
25  m_pcEmbodiedEntity(NULL),
26  m_bShowRays(false),
27  m_pcRNG(NULL),
28  m_bAddNoise(false),
29  m_cSpace(CSimulator::GetInstance().GetSpace()) {}
30 
31  /****************************************/
32  /****************************************/
33 
35  try {
36  m_pcEmbodiedEntity = &(c_entity.GetComponent<CEmbodiedEntity>("body"));
37  m_pcControllableEntity = &(c_entity.GetComponent<CControllableEntity>("controller"));
38  m_pcProximityEntity = &(c_entity.GetComponent<CProximitySensorEquippedEntity>("proximity_sensors"));
40  }
41  catch(CARGoSException& ex) {
42  THROW_ARGOSEXCEPTION_NESTED("Can't set robot for the proximity default sensor", ex);
43  }
44  }
45 
46  /****************************************/
47  /****************************************/
48 
50  try {
52  /* Show rays? */
53  GetNodeAttributeOrDefault(t_tree, "show_rays", m_bShowRays, m_bShowRays);
54  /* Parse noise level */
55  Real fNoiseLevel = 0.0f;
56  GetNodeAttributeOrDefault(t_tree, "noise_level", fNoiseLevel, fNoiseLevel);
57  if(fNoiseLevel < 0.0f) {
58  THROW_ARGOSEXCEPTION("Can't specify a negative value for the noise level of the proximity sensor");
59  }
60  else if(fNoiseLevel > 0.0f) {
61  m_bAddNoise = true;
62  m_cNoiseRange.Set(-fNoiseLevel, fNoiseLevel);
63  m_pcRNG = CRandom::CreateRNG("argos");
64  }
66  }
67  catch(CARGoSException& ex) {
68  THROW_ARGOSEXCEPTION_NESTED("Initialization error in default proximity sensor", ex);
69  }
70  }
71 
72  /****************************************/
73  /****************************************/
74 
76  /* Ray used for scanning the environment for obstacles */
77  CRay3 cScanningRay;
78  CVector3 cRayStart, cRayEnd;
79  /* Buffers to contain data about the intersection */
80  SEmbodiedEntityIntersectionItem sIntersection;
81  /* Go through the sensors */
82  for(UInt32 i = 0; i < m_tReadings.size(); ++i) {
83  /* Compute ray for sensor i */
84  cRayStart = m_pcProximityEntity->GetSensor(i).Offset;
87  cRayEnd = m_pcProximityEntity->GetSensor(i).Offset;
91  cScanningRay.Set(cRayStart,cRayEnd);
92  /* Compute reading */
93  /* Get the closest intersection */
95  cScanningRay,
97  /* There is an intersection */
98  if(m_bShowRays) {
100  sIntersection.TOnRay);
101  m_pcControllableEntity->AddCheckedRay(true, cScanningRay);
102  }
103  m_tReadings[i] = CalculateReading(cScanningRay.GetDistance(sIntersection.TOnRay));
104  }
105  else {
106  /* No intersection */
107  m_tReadings[i] = 0.0f;
108  if(m_bShowRays) {
109  m_pcControllableEntity->AddCheckedRay(false, cScanningRay);
110  }
111  }
112  /* Apply noise to the sensor */
113  if(m_bAddNoise) {
115  }
116  /* Trunc the reading between 0 and 1 */
117  UNIT.TruncValue(m_tReadings[i]);
118  }
119  }
120 
121  /****************************************/
122  /****************************************/
123 
125  for(UInt32 i = 0; i < GetReadings().size(); ++i) {
126  m_tReadings[i] = 0.0f;
127  }
128  }
129 
130  /****************************************/
131  /****************************************/
132 
134  return Exp(-f_distance);
135  }
136 
137  /****************************************/
138  /****************************************/
139 
141  "proximity", "default",
142  "Carlo Pinciroli [ilpincy@gmail.com]",
143  "1.0",
144  "A generic proximity sensor.",
145  "This sensor accesses a set of proximity sensors. The sensors all return a value\n"
146  "between 0 and 1, where 0 means nothing within range and 1 means an external\n"
147  "object is touching the sensor. Values between 0 and 1 depend on the distance of\n"
148  "the occluding object, and are calculated as value=exp(-distance). In\n"
149  "controllers, you must include the ci_proximity_sensor.h header.\n\n"
150  "REQUIRED XML CONFIGURATION\n\n"
151  " <controllers>\n"
152  " ...\n"
153  " <my_controller ...>\n"
154  " ...\n"
155  " <sensors>\n"
156  " ...\n"
157  " <proximity implementation=\"default\" />\n"
158  " ...\n"
159  " </sensors>\n"
160  " ...\n"
161  " </my_controller>\n"
162  " ...\n"
163  " </controllers>\n\n"
164  "OPTIONAL XML CONFIGURATION\n\n"
165  "It is possible to draw the rays shot by the proximity sensor in the OpenGL\n"
166  "visualization. This can be useful for sensor debugging but also to understand\n"
167  "what's wrong in your controller. In OpenGL, the rays are drawn in cyan when\n"
168  "they are not obstructed and in purple when they are. In case a ray is\n"
169  "obstructed, a black dot is drawn where the intersection occurred.\n"
170  "To turn this functionality on, add the attribute \"show_rays\" as in this\n"
171  "example:\n\n"
172  " <controllers>\n"
173  " ...\n"
174  " <my_controller ...>\n"
175  " ...\n"
176  " <sensors>\n"
177  " ...\n"
178  " <proximity implementation=\"default\"\n"
179  " show_rays=\"true\" />\n"
180  " ...\n"
181  " </sensors>\n"
182  " ...\n"
183  " </my_controller>\n"
184  " ...\n"
185  " </controllers>\n\n"
186  "It is possible to add uniform noise to the sensors, thus matching the\n"
187  "characteristics of a real robot better. This can be done with the attribute\n"
188  "\"noise_level\", whose allowed range is in [-1,1] and is added to the calculated\n"
189  "reading. The final sensor reading is always normalized in the [0-1] range.\n\n"
190  " <controllers>\n"
191  " ...\n"
192  " <my_controller ...>\n"
193  " ...\n"
194  " <sensors>\n"
195  " ...\n"
196  " <proximity implementation=\"default\"\n"
197  " noise_level=\"0.1\" />\n"
198  " ...\n"
199  " </sensors>\n"
200  " ...\n"
201  " </my_controller>\n"
202  " ...\n"
203  " </controllers>\n\n",
204  "Usable"
205  );
206 
207 }
argos::SAnchor::Orientation
CQuaternion Orientation
The orientation of the anchor wrt the global coordinate system.
Definition: physics_model.h:53
argos::CRandom::CRNG::Uniform
CRadians Uniform(const CRange< CRadians > &c_range)
Returns a random value from a uniform distribution.
Definition: rng.cpp:87
argos::CProximityDefaultSensor::m_bAddNoise
bool m_bAddNoise
Whether to add noise or not.
Definition: proximity_default_sensor.h:68
proximity_default_sensor.h
argos::SEmbodiedEntityIntersectionItem::TOnRay
Real TOnRay
Definition: physics_engine.h:34
argos::CProximitySensorEquippedEntity::GetSensor
SSensor & GetSensor(size_t un_idx)
Definition: proximity_sensor_equipped_entity.h:63
argos::CProximityDefaultSensor::CalculateReading
virtual Real CalculateReading(Real f_distance)
Calculates the proximity reading when the closest occluding object is located as the given distance.
Definition: proximity_default_sensor.cpp:133
argos::CProximitySensorEquippedEntity::Enable
virtual void Enable()
Definition: proximity_sensor_equipped_entity.cpp:124
argos::CProximityDefaultSensor::Init
virtual void Init(TConfigurationNode &t_tree)
Initializes the sensor from the XML configuration tree.
Definition: proximity_default_sensor.cpp:49
argos::CProximityDefaultSensor::Reset
virtual void Reset()
Resets the sensor to the state it had just after Init().
Definition: proximity_default_sensor.cpp:124
argos::CControllableEntity::AddIntersectionPoint
void AddIntersectionPoint(const CRay3 &c_ray, Real f_t_on_ray)
Adds an intersection point to the list.
Definition: controllable_entity.h:191
argos
The namespace containing all the ARGoS related code.
Definition: ci_actuator.h:12
argos::CVector3
A 3D vector class.
Definition: vector3.h:29
argos::CProximityDefaultSensor
Definition: proximity_default_sensor.h:26
argos::CProximityDefaultSensor::m_pcControllableEntity
CControllableEntity * m_pcControllableEntity
Reference to controllable entity associated to this sensor.
Definition: proximity_default_sensor.h:59
argos::CComposableEntity
Basic class for an entity that contains other entities.
Definition: composable_entity.h:32
argos::CARGoSException
The exception that wraps all errors in ARGoS.
Definition: argos_exception.h:61
argos::CComposableEntity::GetComponent
CEntity & GetComponent(const std::string &str_component)
Returns the component with the passed string label.
Definition: composable_entity.cpp:109
argos::CProximityDefaultSensor::m_pcEmbodiedEntity
CEmbodiedEntity * m_pcEmbodiedEntity
Reference to embodied entity associated to this sensor.
Definition: proximity_default_sensor.h:53
argos::CRay3
Definition: ray3.h:19
argos::SEmbodiedEntityIntersectionItem
Definition: physics_engine.h:32
argos::CProximitySensorEquippedEntity::SSensor::Direction
CVector3 Direction
Definition: proximity_sensor_equipped_entity.h:31
argos::CSimulator
The core class of ARGOS.
Definition: simulator.h:62
argos::CEmbodiedEntity
This entity is a link to a body in the physics engine.
Definition: embodied_entity.h:48
argos::TConfigurationNode
ticpp::Element TConfigurationNode
The ARGoS configuration XML node.
Definition: argos_configuration.h:27
argos::CControllableEntity::AddCheckedRay
void AddCheckedRay(bool b_obstructed, const CRay3 &c_ray)
Adds a ray to the list of checked rays.
Definition: controllable_entity.h:178
argos::CProximityDefaultSensor::CProximityDefaultSensor
CProximityDefaultSensor()
Definition: proximity_default_sensor.cpp:24
argos::CProximitySensorEquippedEntity::SSensor::Anchor
SAnchor & Anchor
Definition: proximity_sensor_equipped_entity.h:32
argos::GetClosestEmbodiedEntityIntersectedByRay
bool GetClosestEmbodiedEntityIntersectedByRay(SEmbodiedEntityIntersectionItem &s_item, const CRay3 &c_ray)
Returns the closest intersection with an embodied entity to the ray start.
Definition: physics_engine.cpp:41
argos::CProximityDefaultSensor::SetRobot
virtual void SetRobot(CComposableEntity &c_entity)
Sets the entity associated to this sensor.
Definition: proximity_default_sensor.cpp:34
argos::CProximityDefaultSensor::m_pcRNG
CRandom::CRNG * m_pcRNG
Random number generator.
Definition: proximity_default_sensor.h:65
THROW_ARGOSEXCEPTION_NESTED
#define THROW_ARGOSEXCEPTION_NESTED(message, nested)
This macro throws an ARGoS exception with the passed message and nesting the passed exception.
Definition: argos_exception.h:115
THROW_ARGOSEXCEPTION
#define THROW_ARGOSEXCEPTION(message)
This macro throws an ARGoS exception with the passed message.
Definition: argos_exception.h:111
argos::CCI_ProximitySensor::GetReadings
const std::vector< Real > & GetReadings() const
Definition: ci_proximity_sensor.cpp:18
Exp
#define Exp
Definition: general.h:65
argos::CProximityDefaultSensor::Update
virtual void Update()
Updates the state of the entity associated to this sensor.
Definition: proximity_default_sensor.cpp:75
argos::REGISTER_SENSOR
REGISTER_SENSOR(CEyeBotLightRotZOnlySensor, "eyebot_light", "rot_z_only", "Carlo Pinciroli [ilpincy@gmail.com]", "1.0", "The eye-bot light sensor (optimized for 2D).", "This sensor accesses a set of light sensors. The sensors all return a value\n" "between 0 and 1, where 0 means nothing within range and 1 means the perceived\n" "light saturates the sensor. Values between 0 and 1 depend on the distance of\n" "the perceived light. Each reading R is calculated with R=(I/x)^2, where x is the\n" "distance between a sensor and the light, and I is the reference intensity of the\n" "perceived light. The reference intensity corresponds to the minimum distance at\n" "which the light saturates a sensor. The reference intensity depends on the\n" "individual light, and it is set with the \"intensity\" attribute of the light\n" "entity. In case multiple lights are present in the environment, each sensor\n" "reading is calculated as the sum of the individual readings due to each light.\n" "In other words, light wave interference is not taken into account. In\n" "controllers, you must include the ci_light_sensor.h header.\n\n" "REQUIRED XML CONFIGURATION\n\n" " <controllers>\n" " ...\n" " <my_controller ...>\n" " ...\n" " <sensors>\n" " ...\n" " <eyebot_light implementation=\"rot_z_only\" />\n" " ...\n" " </sensors>\n" " ...\n" " </my_controller>\n" " ...\n" " </controllers>\n\n" "OPTIONAL XML CONFIGURATION\n\n" "It is possible to draw the rays shot by the light sensor in the OpenGL\n" "visualization. This can be useful for sensor debugging but also to understand\n" "what's wrong in your controller. In OpenGL, the rays are drawn in cyan when\n" "they are not obstructed and in purple when they are. In case a ray is\n" "obstructed, a black dot is drawn where the intersection occurred.\n" "To turn this functionality on, add the attribute \"show_rays\" as in this\n" "example:\n\n" " <controllers>\n" " ...\n" " <my_controller ...>\n" " ...\n" " <sensors>\n" " ...\n" " <eyebot_light implementation=\"rot_z_only\"\n" " show_rays=\"true\" />\n" " ...\n" " </sensors>\n" " ...\n" " </my_controller>\n" " ...\n" " </controllers>\n\n" "It is possible to add uniform noise to the sensors, thus matching the\n" "characteristics of a real robot better. This can be done with the attribute\n" "\"noise_level\", whose allowed range is in [-1,1] and is added to the calculated\n" "reading. The final sensor reading is always normalized in the [0-1] range.\n\n" " <controllers>\n" " ...\n" " <my_controller ...>\n" " ...\n" " <sensors>\n" " ...\n" " <eyebot_light implementation=\"rot_z_only\"\n" " noise_level=\"0.1\" />\n" " ...\n" " </sensors>\n" " ...\n" " </my_controller>\n" " ...\n" " </controllers>\n\n" "OPTIONAL XML CONFIGURATION\n\n" "None.\n", "Usable")
argos::CRange::TruncValue
void TruncValue(T &t_value) const
Definition: range.h:97
argos::CProximitySensorEquippedEntity
Definition: proximity_sensor_equipped_entity.h:21
argos::CProximityDefaultSensor::m_cNoiseRange
CRange< Real > m_cNoiseRange
Noise range.
Definition: proximity_default_sensor.h:71
UInt32
unsigned int UInt32
32-bit unsigned integer.
Definition: datatypes.h:97
argos::GetNodeAttributeOrDefault
void GetNodeAttributeOrDefault(TConfigurationNode &t_node, const std::string &str_attribute, T &t_buffer, const T &t_default)
Returns the value of a node's attribute, or the passed default value.
Definition: argos_configuration.h:318
argos::CRange::Set
void Set(const T &t_min, const T &t_max)
Definition: range.h:68
argos::CRay3::GetDistance
Real GetDistance(Real f_t) const
Definition: ray3.h:117
argos::CProximitySensorEquippedEntity::GetNumSensors
size_t GetNumSensors() const
Definition: proximity_sensor_equipped_entity.h:59
argos::CRay3::Set
void Set(const CVector3 &c_start, const CVector3 &c_end)
Definition: ray3.h:67
argos::CRandom::CreateRNG
static CRNG * CreateRNG(const std::string &str_category)
Creates a new RNG inside the given category.
Definition: rng.cpp:326
argos::CProximitySensorEquippedEntity::SSensor::Offset
CVector3 Offset
Definition: proximity_sensor_equipped_entity.h:30
argos::CVector3::Rotate
CVector3 & Rotate(const CQuaternion &c_quaternion)
Rotates this vector by the given quaternion.
Definition: vector3.cpp:25
argos::CControllableEntity
An entity that contains a pointer to the user-defined controller.
Definition: controllable_entity.h:26
argos::CCI_ProximitySensor::m_tReadings
std::vector< Real > m_tReadings
Definition: ci_proximity_sensor.h:34
argos::CCI_Sensor::Init
virtual void Init(TConfigurationNode &t_node)
Initializes the sensor from the XML configuration tree.
Definition: ci_sensor.h:54
argos::CProximityDefaultSensor::m_pcProximityEntity
CProximitySensorEquippedEntity * m_pcProximityEntity
Reference to proximity sensor equipped entity associated to this sensor.
Definition: proximity_default_sensor.h:56
argos::SAnchor::Position
CVector3 Position
The position of the anchor wrt the global coordinate system.
Definition: physics_model.h:51
Real
float Real
Collects all ARGoS code.
Definition: datatypes.h:39
argos::CProximityDefaultSensor::m_bShowRays
bool m_bShowRays
Flag to show rays in the simulator.
Definition: proximity_default_sensor.h:62