ARGoS
3
A parallel, multi-engine simulator for swarm robotics
|
Go to the documentation of this file.
7 #include <argos3/core/simulator/simulator.h>
8 #include <argos3/core/simulator/entity/embodied_entity.h>
9 #include <argos3/core/simulator/entity/composable_entity.h>
19 m_pcEmbodiedEntity(NULL),
87 "positioning",
"default",
88 "Carlo Pinciroli [ilpincy@gmail.com]",
90 "A generic positioning sensor.",
91 "This sensor returns the current position and orientation of a robot. This sensor\n"
92 "can be used with any robot, since it accesses only the body component. In\n"
93 "controllers, you must include the ci_positioning_sensor.h header.\n\n"
94 "REQUIRED XML CONFIGURATION\n\n"
97 " <my_controller ...>\n"
101 " <positioning implementation=\"default\" />\n"
105 " </my_controller>\n"
107 " </controllers>\n\n"
108 "OPTIONAL XML CONFIGURATION\n\n"
109 "It is possible to add uniform noise to the sensor, thus matching the\n"
110 "characteristics of a real robot better. You can add noise through the\n"
111 "attributes 'pos_noise_range', 'angle_noise_range', and 'axis_noise_range'.\n"
112 "Attribute 'pos_noise_range' regulates the noise range on the position returned\n"
113 "by the sensor. Attribute 'angle_noise_range' sets the noise range on the angle\n"
114 "(values expressed in degrees). Attribute 'axis_noise_range' sets the noise for\n"
115 "the rotation axis. Angle and axis are used to calculate a quaternion, which is\n"
116 "the actual returned value for rotation.\n\n"
119 " <my_controller ...>\n"
123 " <positioning implementation=\"default\"\n"
124 " pos_noise_range=\"-0.1:0.2\"\n"
125 " angle_noise_range=\"-10.5:13.7\"\n"
126 " axis_noise_range=\"-0.3:0.4\" />\n"
130 " </my_controller>\n"
132 " </controllers>\n\n"
133 "OPTIONAL XML CONFIGURATION\n\n"
const SAnchor & GetOriginAnchor() const
Returns a const reference to the origin anchor associated to this entity.
CQuaternion Orientation
The orientation of the anchor wrt the global coordinate system.
CRadians Uniform(const CRange< CRadians > &c_range)
Returns a random value from a uniform distribution.
virtual void SetRobot(CComposableEntity &c_entity)
Sets the entity associated to this sensor.
CRange< Real > m_cPosNoiseRange
Noise range on position.
CRange< Real > m_cAxisNoiseRange
Noise range on axis.
virtual void Update()
Updates the state of the entity associated to this sensor.
The namespace containing all the ARGoS related code.
It defines the basic type CRadians, used to store an angle value in radians.
Basic class for an entity that contains other entities.
The exception that wraps all errors in ARGoS.
CEntity & GetComponent(const std::string &str_component)
Returns the component with the passed string label.
virtual void Reset()
Resets the sensor to the state it had just after Init().
This entity is a link to a body in the physics engine.
ticpp::Element TConfigurationNode
The ARGoS configuration XML node.
CQuaternion & FromAngleAxis(const CRadians &c_angle, const CVector3 &c_vector)
CRange< CRadians > m_cAngleNoiseRange
Noise range on angle.
#define THROW_ARGOSEXCEPTION_NESTED(message, nested)
This macro throws an ARGoS exception with the passed message and nesting the passed exception.
virtual void Init(TConfigurationNode &t_tree)
Initializes the sensor from the XML configuration tree.
CPositioningDefaultSensor()
REGISTER_SENSOR(CEyeBotLightRotZOnlySensor, "eyebot_light", "rot_z_only", "Carlo Pinciroli [ilpincy@gmail.com]", "1.0", "The eye-bot light sensor (optimized for 2D).", "This sensor accesses a set of light sensors. The sensors all return a value\n" "between 0 and 1, where 0 means nothing within range and 1 means the perceived\n" "light saturates the sensor. Values between 0 and 1 depend on the distance of\n" "the perceived light. Each reading R is calculated with R=(I/x)^2, where x is the\n" "distance between a sensor and the light, and I is the reference intensity of the\n" "perceived light. The reference intensity corresponds to the minimum distance at\n" "which the light saturates a sensor. The reference intensity depends on the\n" "individual light, and it is set with the \"intensity\" attribute of the light\n" "entity. In case multiple lights are present in the environment, each sensor\n" "reading is calculated as the sum of the individual readings due to each light.\n" "In other words, light wave interference is not taken into account. In\n" "controllers, you must include the ci_light_sensor.h header.\n\n" "REQUIRED XML CONFIGURATION\n\n" " <controllers>\n" " ...\n" " <my_controller ...>\n" " ...\n" " <sensors>\n" " ...\n" " <eyebot_light implementation=\"rot_z_only\" />\n" " ...\n" " </sensors>\n" " ...\n" " </my_controller>\n" " ...\n" " </controllers>\n\n" "OPTIONAL XML CONFIGURATION\n\n" "It is possible to draw the rays shot by the light sensor in the OpenGL\n" "visualization. This can be useful for sensor debugging but also to understand\n" "what's wrong in your controller. In OpenGL, the rays are drawn in cyan when\n" "they are not obstructed and in purple when they are. In case a ray is\n" "obstructed, a black dot is drawn where the intersection occurred.\n" "To turn this functionality on, add the attribute \"show_rays\" as in this\n" "example:\n\n" " <controllers>\n" " ...\n" " <my_controller ...>\n" " ...\n" " <sensors>\n" " ...\n" " <eyebot_light implementation=\"rot_z_only\"\n" " show_rays=\"true\" />\n" " ...\n" " </sensors>\n" " ...\n" " </my_controller>\n" " ...\n" " </controllers>\n\n" "It is possible to add uniform noise to the sensors, thus matching the\n" "characteristics of a real robot better. This can be done with the attribute\n" "\"noise_level\", whose allowed range is in [-1,1] and is added to the calculated\n" "reading. The final sensor reading is always normalized in the [0-1] range.\n\n" " <controllers>\n" " ...\n" " <my_controller ...>\n" " ...\n" " <sensors>\n" " ...\n" " <eyebot_light implementation=\"rot_z_only\"\n" " noise_level=\"0.1\" />\n" " ...\n" " </sensors>\n" " ...\n" " </my_controller>\n" " ...\n" " </controllers>\n\n" "OPTIONAL XML CONFIGURATION\n\n" "None.\n", "Usable")
void GetNodeAttributeOrDefault(TConfigurationNode &t_node, const std::string &str_attribute, T &t_buffer, const T &t_default)
Returns the value of a node's attribute, or the passed default value.
static CRNG * CreateRNG(const std::string &str_category)
Creates a new RNG inside the given category.
CRandom::CRNG * m_pcRNG
Random number generator.
void ToAngleAxis(CRadians &c_angle, CVector3 &c_vector) const
virtual void Init(TConfigurationNode &t_node)
Initializes the sensor from the XML configuration tree.
CVector3 Position
The position of the anchor wrt the global coordinate system.
bool m_bAddNoise
Whether to add noise or not.
CEmbodiedEntity * m_pcEmbodiedEntity
Reference to embodied entity associated to this sensor.
static const CRadians ZERO
Set to zero radians.